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GRAY BOX OPTIMIZATION

We can construct “Gray Box” optimization for pseudo-Boolean
optimization problems composed of M subfunctions, where each
subfunction accepts at most k variables.

Exploit the general properties of every Mk Landscape:

f(x) =

m∑
i=1

fi(x)

Which can be expressed as a Walsh Polynomial

W (f(x)) =

m∑
i=1

W (fi(x))

Or can be expressed as a sum of k Elementary Landscapes

f(x) =

k∑
i=1

ϕ(k)(W (f(x)))



Walsh Example: MAXSAT



Walsh Example
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BLACK BOX OPTIMIZATION

Don’t wear a blind fold when walking about London if you can help it!



NK-Landscapes

An Adjacent NK Landscape: n = 6 and k = 3. The subfunctions:

f0(x0, x1, x2)
f1(x1, x2, x3)

f2(x2, x3, x4)
f3(x3, x4, x5)

f4(x4, x5, x0)
f5(x5, x0, x1)

These problems can be solved to optimality using Dynamic Programming.



Percent of Offspring that are Local Optima

Using a Very Simple (Stupid) Hybrid GA:

N k Model 2-point Xover Uniform Xover PX
100 2 Adj 74.2 ±3.9 0.3 ±0.3 100.0 ±0.0
300 4 Adj 30.7 ±2.8 0.0 ±0.0 94.4 ±4.3
500 2 Adj 78.0 ±2.3 0.0 ±0.0 97.9 ±5.0
500 4 Adj 31.0 ±2.5 0.0 ±0.0 93.8 ±4.0

100 2 Rand 0.8 ±0.9 0.5 ±0.5 100.0 ±0.0
300 4 Rand 0.0 ±0.0 0.0 ±0.0 86.4 ±17.1
500 2 Rand 0.0 ±0.0 0.0 ±0.0 98.3 ±4.9
500 4 Rand 0.0 ±0.0 0.0 ±0.0 83.6 ±16.8



Number of partition components discovered

N k Model Paired PX
Mean Max

100 2 Adjacent 3.34 ±0.16 16
300 4 Adjacent 5.24 ±0.10 26
500 2 Adjacent 7.66 ±0.47 55
500 4 Adjacent 7.52 ±0.16 41

100 2 Random 3.22 ±0.16 15
300 4 Random 2.41 ±0.04 13
500 2 Random 6.98 ±0.47 47
500 4 Random 2.46 ±0.05 13

Paired PX uses Tournament Selection. The first parent is selected by
fitness. The second parent is selected by Hamming Distance.



Optimal Solutions for Adjacent NK

2-point Uniform Paired PX
N k Found Found Found

300 2 18 0 100
300 3 0 0 100
300 4 0 0 98
500 2 0 0 100
500 3 0 0 98
500 4 0 0 70

Percentage over 50 runs where the global optimum was Found in the
experiments of the hybrid GA with the Adjacent NK Landscape.



Tunnelling Local Optima Networks

NK Landscapes: Ochoa et al. GECCO 2015
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NK and Mk Landscapes, P and NP



NK and Mk Landscapes, P and NP



But a Hybrid Genetic Algorithm is NOT how we should solve these
NK Landscape Problems.

We can exactly know the location of improving moves in constant time.
No enumeration of neighbors is needed.

Under well behaved conditions,
we can exactly know the location of improving moves
for r steps ahead in constant time.



Walsh Analysis

Every n-bit MAXSAT or NK-landscape or P-spin problem is a sum of m
subfunctions, fi:

f(x) =

m∑
i=1

fi(x)

The Walsh transform of f is a sum of the Walsh transforms of the
individual subfunctions.

W (f(x)) =

m∑
i=1

W (fi(x))

If m is O(n) then the number of Walsh coefficients is m 2k = O(n).



“Mk Landscapes”

A General Model for all bounded Pseudo-Boolean Problems

1  0  1  0  1  1  1  0  0  1  1  0  0  1  0  1  0  1  0  0  1  0  1  1  1  0  0  1

f1  f2 f3 f f4 m

f

i = 1
i
(x, mask)f(x) = 

m



When 1 bit flips what happens?

1  0  1  0  1  1  1  0  0  1  1  0  0  1  0  1  0  1  0  0  1  0  1  1  1  0  0  1

f1  f2 f3 f f4 m

f

i = 1
i

f(x) = 

m

(x, mask )
i

flip



Constant Time Steepest Descent

Assume we flip bit p to move from x to yp ∈ N(x).
Construct a vector Score such that

Score(x, yp) = −2

 ∑
∀b, p⊂b

−1b
T xwb(x)


In this way, all of the Walsh coefficients whose signs will be changed by
flipping bit p are collected into a single number Score(x, yp).

The GSAT algorithm has done this for 23 years (Thanks to H. Hoos).

NOTE: Hoos and Stützle have claimed a constant time result, but
without proof. An average case complexity proof is required to obtain
general constant time complexity results (Whitley 2013, AAAI). Also it
does not matter if the problems are uniform random or not.



Best Improving and Next Improving moves

“Best Improving” and “Next Improving” moves cost the same.

GSAT uses a Buffer of best improving moves

Buffer(best.improvement) =< M10,M1919,M9999 >

But the Buffer does not empty monotonically: this leads to thrashing.

Instead uses multiple Buckets to hold improving moves

Bucket(best.improvement) =< M10,M1919,M9999 >

Bucket(best.improvement− 1) =< M8371,M4321,M847 >

Bucket(all.other.improving.moves) =< M40,M519,M6799 >

This improves the runtime of GSAT by a factor of 20X to 30X.
The solution for NK Landscapes is only slightly more complicated.



The locations of the updates are obvious

Score(yp, y1) = Score(x, y1)

Score(yp, y2) = Score(x, y2)

Score(yp, y3) = Score(x, y3)− 2(
∑

∀b, (p∧3)⊂b

w′b(x))

Score(yp, y4) = Score(x, y4)

Score(yp, y5) = Score(x, y5)

Score(yp, y6) = Score(x, y6)

Score(yp, y7) = Score(x, y7)

Score(yp, y8) = Score(x, y8)− 2(
∑

∀b, (p∧8)⊂b

w′b(x))

Score(yp, y9) = Score(x, y9)



The locations of the updates are obvious



What if we could look R Moves Lookahead?

Consider R=3

Let Score(3, x, yi,j,k) indicate we move from x to yi,j,k by flipping the 3
bits i, j, k. In general, we compute Score(r, x, yp) when flipping r bits.

f(yi) = f(x) + Score(1, x, yi)

f(yi,j) = f(yi) + Score(1, yi, yj)

f(yi,j) = f(x) + Score(2, x, yi,j)

f(yi,j,k) = f(yi,j) + Score(1, yi,j , yk)

f(yi,j,k) = f(x) + Score(3, x, yi,j,k)

With thanks to Francisco Chicano!



Why Doesn’t this exponentially EXPLODE???

f(yi,j,k) = ((f(x) + Score(1, x, yi)) + Score(1, yi, yj)) + Score(1, yi,j , yk)

Score(3, x, yi,j,k) = Score(2, x, yi,j) + Score(1, yi,j , yi,j,k)

If there is no Walsh Coefficient wi,j then Score(1, yi, yi,j) = 0.

Assume we have already moves of length shorter than 3.
If there are no Walsh Coefficients “linking” i, j, k then
Score(3, x, yi,j,k) = 0.



The Variable Interaction Graph
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The Variable Interaction Graph

Assume all distance 1 moves are taken.

There cannot be a move flipping bits 4, 6, 9 that yields an improving
move because there are no interactions and no Walsh coefficients.



Multiple Step Lookahead Local Search
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In this figure, N = 12,000, k=3, and q=4. The radius is 1, 2, 3, 4, 5, 6.
At r=6 the global optimum is found.



Steepest Descent on Moments

Both f(x) and Avg(N(x)) can be computed with Walsh Spans.

f(x) =

3∑
z=0

ϕ(z)(x)

Avg(N(x)) = f(x)− 1/d

3∑
z=0

2zϕ(p)(x)

Avg(N(x)) =

3∑
z=0

ϕ(z)(x)− 1/N

3∑
z=0

2zϕ(z)(x)

Avg(N(x)) =

3∑
z=0

ϕ(z)(x)− 2/N
3∑

z=0

zϕ(z)(x)



Steepest Descent on Moments

Assume the vectors Sp = Scorep and Zp just map the change in the
Walsh coefficients. Zp is computed using changes in zϕ(z)(x)

ScoreAvg(yp, y1) = ScoreAvg(x, y1)

ScoreAvg(yp, y2) = ScoreAvg(x, y2)

ScoreAvg(yp, y3) = ScoreAvg(x, y3) +WeightedWalshUpdate

ScoreAvg(yp, y4) = ScoreAvg(x, y4)

ScoreAvg(yp, y5) = ScoreAvg(x, y5)

ScoreAvg(yp, y6) = ScoreAvg(x, y6)

ScoreAvg(yp, y7) = ScoreAvg(x, y7)

ScoreAvg(yp, y8) = ScoreAvg(x, y8) +WeightedWalshUpdate

ScoreAvg(yp, y9) = ScoreAvg(x, y9)



Θ(1) Steepest Descent on Moments



What’s (Obviously) Next?

Local Search with r Move Lookahead PLUS Partition Crossover.

Apply r Move Lookahead and Partition Crossover to MAX-kSAT.

Use Deterministic Improving Moves.

Use Deterministic Recombination.



What’s (Obviously) Next?

We can now solve 1 million variable NK-Landscapes to optimality in
approximately linear time. (Paper submitted.)



What’s (Obviously) Next?

Put an End to the domination of Black Box Optimization.

Wait for Tonight and Try to Take over the World.



THANK YOU

Take Home Message:

PROBLEM STRUCTURE MATTERS.

Black Box Optimizers can never match the
performance of an algorithm that efficiently exploits
problem structure.

But we need only a small amount of information:
Gray Box Optimization.

For Mk Landscapes , we can use
Deterministic Moves and Deterministic Crossover.


