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Travelling
Salesman

Problem (TSP)

TSP: The Big-valley Structure.
Local optima confined to a small
region
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Fig. 1: Depiction of the ‘hig-valley’ structure.
Distance to best local minimum
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WHAT IS A FUNNEL?

Fig. 1: Depiction of the ‘big-valley’ structure.
o Term from the protein folding community

“a region of configuration space that can be described in
terms of a set of downhill pathways that converge on a
single low-energy structure or a set of closely-related low-
energy structures” (Doye et al 1999 )

o Related to the notion of the “big-valley” in COP

o Studied mainly in the context of continuous
optimisation (Global structure)
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THE TSP BIG-VALLEY STRUCTURE REVISITED

o Big valley structure breaks down around solutions close to the
global optimum. Multiple funnels appear!

o Explains why: ILS can quickly find high-quality solutions, but fail
to consistently find the global optimum.
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D. Hains, D. Whitley, A. Howe. 2011. Revisiting the Big Valley Search Space
Structure in the TSP, Journal of the Operational Research Society.

G. Ochoa, N. Veerapen, D. Whitley and E. K.Burke. The Multi-Funnel Structur
of TSP Fitness Landscapes: A Visual Exploration, Artificial Evolution, EA 2015
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NETWORKS ARE EVERYWHERE!

The Internet: global Social networks:
computer network providing a lecti ¢ 1 h
variety of information and collections ol people, eac
communication facilities, of whom is acquainted with
consisting of interconnected some subset of the others

networks using standardized
communication protocols.

LOCAL OPTIMA NETWORKS ~ &< o ™
(LON MODEL)

Medium level o\ Local Optima Network

Low level , S Fitness landscape

Nodes: local optima
Edges: transitions

Mount Everest (centre) and the Himalayan mountain range

P. K. Doye. The network topology of a potential energy landscape: a static
scale-free network. Physical Review Letter, 88:238701, 2002.

G. Ochoa, M. Tomassini, S. Verel, and C. Darabos. A study of NK landscapes'
basins and local optima networks. GECCO’ 08, pages 555-562. ACM, 2008. °




s i+1
Double bridge
DEFINITIONS move 44 i
I ji+1
o Nodes: local optima, LO k+1 ¢

e Atouris alocal optimum if no tour in its neighbourhood is
shorter than it

* Neighbourhood: LK-search, which has variable values of k.

o Escape Kdges: Directed and based on
the double-bridge operator. E,,,
* A = Bif B can be obtained after applying
a double-bridge kick to A followed by LK.
o Local Optima Network
« Graph LON = (LO, E

esc)

Data: I, TSP instance
Result: L, set of local optima,

E, set of escape edges
L {LE+«{}
for i < 1 to 1000 do

Sgart 4+ initialSolution()

Ssart + LK(Sgart)

L+ LU{sgan}

while j < 10000 do

Send aPP]YKiCk(Ssmn)

Send LK(send)

j—j+1

if fimess(sopg) < fimess(sgq ) then
L+ LU {send}

f - il_;{ (.5'9 art s Send )} Lin-Lin-Kernighan (1975)

start end Chained Lin-Kernighan

j<0 (Martin, Otto, Felten, 1991)
end

Nodes: LK optima
Edges: Double-bridge move

end o
end (GATHERING LANDSCAPE DATA

3/9/2017



@ Node mn largest component

@ Node in 2°? largest component

@ Node in 3™ largest component
Node in 4 largest component

® Node in 5* largest component
Global Optimum

attb32

R, igraph
Fruchterman & Reingold
Layout (force-directed method)
* Position nodes in 2D

» Edges of similar length

* Minimise crossings

* Exhibit symmetries

@ Node in largest component

ratb75 @ Node in 2* largest component

@ Node in 3" largest component
Nede in 4% largest component

@ Node in 5% largest component

@ Node in a smaller component
contaimng global optimum
Node in any remaining component
Global Optimum
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CHARACTERISING FUNNELS

o Funnel Floors: High quality optima conjectured to be
at the bottom of a funnel

Empirically: end of a CLK run for a large enough
effort (10,000 without an improvement)

2. Sinks of the induced sub-graph of the funnel floors
o Funnel Basins: Local optima belonging to ta funnel
1. Connected components

—_

2. Communities?
3. 3D visual inspection
4. Monotonic sequences (MLON)

» Sequence of local optima where the fitness is non-
deteriorating.

» Compute all downhill paths to funnel sinks o

IDENTIFYING FUNNEL STRUCTURES

o Adapt notion of monotonic sequences: sequence of local
optima where fitness is always improving

o The set of monotonic sequences leading to a particular
minimum is a funnel or super-basin

o A solution may belong to more than one funnel!

S: set of sinks. Nodes
i+ 0 without outgoing edges

for s € S do
fbasini] < breadthFirstSearch(LON, s)
fbsize[i] + length( fbasin|i])
i+ i+1

end
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TSP INSTANCES & METRICS

-m--

C755 32,040 28,937 1.11

C1243 0.136 1 59,894 52,929 1.13 9
E755 0.128 1 24,774 23,569 1.05 10
E1243 0.030 1 50,779 46,366 1.10 148
attb32 0.437 2 23,851 827 28.8 2
ub74 0.442 4 28,115 1,230 22.9 2

ul060 0.214 163,569 1.4 million! 5,579 250.2 90

DIMACS Random Generator & TSBLIB e

CLUSTERED RANDOM INSTANCES

C1243
0.1%, 1 funnel, CLKs: 1.0 0.05% , 3 funnels, CLKs: 0.14 @
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UNIFORM RANDOM INSTANCES

0.1%, 4 funnels, CLKs: 0.13 0.05% , 19 funnels, CLKs: 0.030

STRUCTURED INSTANCES

att532 ub74
0.1%, 2 funnels, CLK: 0.44 0:1%, 2 funnels, CLK: 0.44
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MAIN FINDING 1: MORE THAN ONE VALLEY ON TSP LSNDSCAPES

local minima

Best local
minimum in this
funnel

Objective Function Value

global minimum

Search Space

MAIN FINDING 2: PRESENCE OF NEUTRALITY (LARGE PLATEAUS)

ul060, 1 comp. L
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MAIN FINDING 2: PRESENCE OF NEUTRALITY
(LARGE PLATEAUS)
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TUNNELLING CROSSOVER

® NETWORKS

NK landscapes
® - Asymmetric TSP

EXTENDING LONS T0O EAS AND HYBRID EAS

P + poplnit()

while termination condition is not satisfied do

(1) + bestSolution(P)

for i + 2 to mazPop do

(p1,p2) 4+ selection(P)

Q(1) + crossover(py, p2); 8 < 3opt(Q(i))

LO + LOU{s} E + EU{(p1.5).(p2.5)}

if crossover did not improve the solutions then
best + chooseBest(py, p2)
Q(i) < doubleBridgeMutation(best); s < 3opt(Q(i))
LO + LOU {s}; E + E U{(best,s)}

end

Two types of Edges
* Perturbation
* Crossover

end
if best sol. did not improve in last 20 gen. then @ + immigration(P)
P+Q

end
Algorithm 1: Local optima network sampling in evolutionary algorithm. a

3/9/2017
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Instance rbg323 _
LONS, 20 Runs TEmm—

Hybrid GA
yor Local search
(Chained-LK)

VISUALISING GREY-BOX BASED HYBRID EAS

PX-based Algorithms PX + perturbation

3/9/2017
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CONCLUSIONS

o More accessible (visual) approach to heuristic
understanding

o Global structure characterisation is challenging!
o Model extended: XLON, MLON, CMLON

o Big valley de-constructs into several valleys, also called
funnels in theoretical chemistry

o Search difficulty relates to the global structure
« Kasy: global optimum in dominant funnel
o Hard: global optimum in small funnel
o Presence of neutrality on structured instances
o Crossover may help to escape funnels °
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