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Offline Improvement

We modified two C++ files: Solver.cc, containing the core solving algorithm (321
out of 582 lines of code), and SimpSolver.cc, which simplifies the input instance (327
out of 480 lines of code).

Furthermore, we were evolving a list of changes, that is, a list of copy, replace and
delete instructions. We only kept such lists in memory, instead of multiple copies of an
evolved source code.

For each generation the top half of the population was selected. These were either
mutated, by adding some of the three operations mentioned above, or crossover was
applied, which simply merged two lists of changes together. Mutation and crossover
took place with 50% probability each. New individuals were created by selecting one
of the three mutation operations.

For each generation five problems were randomly chosen from the five groups of test
cases. Fitness was evaluated as follows: if correct answer was returned by an individual,
2 points were added; if, additionally, the modified program was faster, 1 more point
was added. Only individuals with 10 or more points were considered for selection. In
order to avoid environmental factors, we counted the number of lines used to establish
whether a mutated program was more efficient than the original one. The whole process
is presented in Figure 1.

Fig. 1. GP improvement of MiniSAT.

4 Initial Results

A summary of our results is shown in Table 1. We refer to versions of MiniSAT that run
faster than the unmodified solver on the maximum set of instances as ‘best individuals’.

We ran our experiments on a test suite with 71 test cases taken from the 2011 SAT
competition. Each generation contained 20 individuals. Time limit was set to 25 seconds
and it took 14 hours to produce 100 generations. We only modified the Solver.cc file,
containing the core solving algorithm. Of all programs generated 73% of them com-
piled. The best one was more efficient than the unmodified solver on 70 SAT instances,
in terms of lines of code used. However, the modified versions mostly just removed
assertions as well as some statistical data. Some optimisations have also been deleted,
but these in turn led to longer runtimes on certain instances.

Next, we selected the test cases from only the application tracks of SAT competi-
tions. MiniSAT was able to find an answer for 107 problems out of 500 instances tested
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Expensive

Tied to offline environment



Environmental Factors

We cannot anticipate the environment that 
the software will be executed; hence it is 

hard to optimise for it.



Offline Optimisation

One Generation

selection
crossover
mutation

fitness evaluation

…



…

Amortised Optimisation

selection
crossover
mutation

…

Persistence Layer

Optimisation executed in micro-steps,
each in-situ execution as a single fitness evaluation 



Amortised Optimisation

Genetic I
mprovement, 

out in the
 wild!

Budget Controlled
(will stop when run out)

Low Overhead
(only microscopes)



Does it work?

We applied amortised optimisation to pypy,
a tracing-JIT based python implementation.



Tracing JIT Parameters

When to begin 
tracing? When to mark as hot?

When to compile the 
bridge?



PIACIN

1.Install the package.
2.Import the package
3. There is no step 3.



Table 1. Benchmark user scripts used for the JIT optimisation case study

Script Description

bm call method.py Repeated method calls in Python
bm django.py Use django to generate 100 by 100 tables
bm nbody.py Predict n-body planetary movementsa

bm nqueens.py Solve the 8 queens problem
bm regex compile.py Forced recompliations of regular expressions
bm regex v8.py Regular expression matching benchmark adopted from V8

b

bm spambayes.py Apply a Bayesian spam filterc to a stored mailbox
bm spitfire.py Generate HTML tables using spitfire

d library

a Adopted from http://shootout.alioth.debian.org/u64q/benchmark.php?test=

nbody&lang=python&id=4.
b Google’s Javascript Runtime: https://code.google.com/p/v8/.
c
http://spambayes.sourceforge.net

d A template compiler library: https://code.google.com/p/spitfire/

need to be set once during the execution of a single user script, name Y simi-
larly only need to be called twice: when the user script starts (to configure pypy
with the current parameters), and when it finishes (to record the fitness value
associate with the current parameters). The first hook is implemented by imple-
menting name Y as a Python package, and placing the JIT configuration code
as part of the package initialisation. The second hook is implemented by using
the atexit hook that is provided by Python by default. The benefits of this
package-based design is that the user only need to include name Y package (i.e.
to have import piacin at the beginning of the user script) to benefit from it.

The amortised optimisation algorithm in name Y is the steepest ascent hill
climbing. Neighbourhood solutions are generated by adding and subtracting pre-
defined step values to each of the parameters: 20 for function threshold, 10 for
trace eagerness, and 0.05 for threshold ratio. When the newly generated can-
didate solution has any parameter outside the predefined range, the parameter
value is wrapped around the range.

We use the default parameters of pypy as the starting point of the hill climb-
ing. Since these parameters are the result of careful benchmarking, it would be
wasteful to discard them without consideration. However, when the hill climbing
reaches local optima, we fall back to the random restart mechanism.

Control vs. Treatment Group The control group consists of 20 un-optimised
runs of user benchmark scripts. Each control group run contains 20 un-optimised
pypy executions of the corresponding scripts. The treatment group consists of 20
optimised runs of user benchmark scripts. Each treatment group run contains
100 optimised pypy executions of the corresponding scripts: 80 executions at
the beginning is used for optimisation, the best solution from which is used by
the remaining 20 executions. Both groups have been executed with pypy version
2.4.0 on Mac OS X 10.10.2, using Intel Xeon 3.3Hz CPU with 6 cores and 16GB
of RAM. All the user scripts are single threaded and were executed one by one.
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{ } { } { }

How about hardware?

Let us consider matrix multiplication.

x =

Blocked Matrix Multiplication: smaller inner loop
to fit everything into L1 cache.

Optimal block size depends on L1 size.



NIA3CIN
Non-Invasive, Amortised and Autonomous Code Injection

Annotation-based

Event-driven dependency injection



Evaluation

4.2 Experimental Setup

Implementation We use a Java implementation of the BMM algorithm for
matrices of double type. The amortised optimisation framework, called Name X
(Non-Invasive Amortised & Automated Adaptivity Code Injection), uses the hill
climbing algorithm and is also implemented in Java2. To be as little intrusive as
possible, Name X a publish-subscribe style event bus to establish communication
between the SUMO and the optimisation. Parameters to be optimised (in the
case study, the block size), as well as the measure of the fitness (in the case
study, the number of floating point multiplications performed in second), need
to be marked with annotation. Before the parameter is to be used, the SUMO
needs to call Name X so that the parameter variable is updated with the current
solution; after the parameter has been used, the SUMO needs to call Name X
so that the fitness is fed back to the optimisation.

The range of block size was set to [1, 512]. Name X generates neighbouring
solutions by adding and subtracting 1 to the current block size. When moving
through consecutive block sizes, certain sizes will be evaluated twice: first as
the current solution, and second as a neighbour. Since the non-functional fitness
measure is expected to be noisy, the redundant behaviour was left in Name X
deliberately, providing opportunities to evaluate the same solution more than
once (and, therefore, getting clearer measures of the fitness).

Table 3. Information about CPUs for which BMM was optimised

CPU Clock Frequency L1 Instruction Cache L1 Data Cache

Intel Xeon W3680a 3.33GHz 32KB 32KB
Intel Core-i7 3820QMa 2.7GHz 32KB 32KB
ARM1176 (BCM2835 SoC)b 250MHz 16KB 16KB

a These Intel CPUs share data and instruction caches between two processor threads.
b Raspberry Pi Model B, first edition.

Environment Table 3 shows three di↵erent CPUs for which the BMM algo-
rithm was optimised in this study. Intel Xeon is a 6 code desktop CPU with
32KB instruction and data cache; Core-i7 used for this study is a mobile (lap-
top) version, which has the same cache provision as the Xeon CPU. Finally, to
investigate how well the amortised optimisation can adapt to an environment
with very limited resources, we use ARM1176 core on a Broadcom BCM2835
System-on-Chip, which is found in Raspberry Pi version 1 model B. Both Intel
CPUs ran OS X 10.10.2 and Java SE Runtime (build 1.8.0 25-b17) with the
HopSpot 64-Bit Server VM (build 25.25-b02); Raspberry Pi ran Linux 3.18.8
and Java SE Runtime (build 1.8.0-b132, mixed mode) with the HotSpot Client
VM (build 25.0-b70, mixed mode).

2 Name X is made available as open source software at [redacted for blind

review].
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GPGPU 
Workgroup Size

✤ Local Workgroup Size: decides 
how many threads are 
executed by stream 
multiprocessor units

✤ Too small: under-utilised GPU

✤ Too large: local memory spill, 
resulting in costly I/O with 
RAM

18,688 Nvidia Tesla K20X GPUs

Introduction of GPU in high performance computing



Exposing hidden parameter: Deep Parameter Optimisation2

� For cases where parameter that controls the performance is hidden
� Expose ‘deep’(previously hidden) parameter to be explicitly controlled
� Our case,

� Local work group size for GPGPU module of OpenCV controls the performance
Î Should be exposed to be explicitly controlled for optimisation of the performance

function

CPU

GPU Local work 
group size

?

?

2Wu, F., Weimer, W., Harman, M., Jia, Y., Krinke, J.: Deep parameter optimisation. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation. pp. 1375{1382. GECCO '15, ACM, New York, NY, 
USA (2015)



Exposing hidden parameter: Deep Parameter Optimisation2

� For cases where parameter that controls the performance is hidden
� Expose ‘deep’(previously hidden) parameter to be explicitly controlled
� Our case,

� Local work group size for GPGPU module of OpenCV controls the performance
Î Should be exposed to be explicitly controlled for optimisation of the performance

function

CPU

GPU Local work 
group size

?

?Local work 
group size

!

2Wu, F., Weimer, W., Harman, M., Jia, Y., Krinke, J.: Deep parameter optimisation. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation. pp. 1375{1382. GECCO '15, ACM, New York, NY, 
USA (2015)



Results
Default Amortised optimisation Best



Tuning MPM 
Modules for Apache

✤ Web servers run in many 
devices: Raspberry Pi, rack 
servers, desktop PCs, …

✤ But they have the same 
Apache2 parameters!



Methodology – Objective / Fitness 

• Server Side (unit: %):
• Minimize (average CPU usage) + (average memory usage)

• Client Side (unit: sec):
• Minimize (max response time) / 10 + (average response time)

• Measured 2 times, use average value



Experiments

• Server Environments:
• Xen Virtual Server (Hosted by SPARCS)
• Target: a simple MediaWiki site (Apache2.4 + PHP5 + MySQL)
• 1st Server (CPU: Xeon E5645@2.40GHz 1 core / Memory: 256MB)
• 2nd Server (CPU: Xeon E5645@2.40GHz 2 cores / Memory: 2GB)

• Client Environments:
• Sungwon’s Personal Computer: Ubuntu, Same Subnet
• Microsoft Azure: Ubuntu, Different Subnet



• 1st Server, 1st Scenario (around 60min):

• 1st Server, 2nd Scenario (around 70min):

Results

RAW DATA FITNESS

CPU AVG MEM AVG TIME MAX TIME AVG SERVER CLIENT

DEFAULT 86.3445 61.6227 2.8777 0.8150 147.9672 1.1028

OUR SOL 82.2728 50.5601 1.7528 0.7327 132.8329 0.9080

RAW DATA FITNESS

CPU AVG MEM AVG TIME MAX TIME AVG SERVER CLIENT

DEFAULT 85.3299 66.2125 2.8559 0.8190 151.5424 1.1046

OUR SOL 85.5942 47.3762 1.3903 0.7653 132.9704 0.9043



Threats

Restricted to
behaviour-
preserving 

optimisations 
only

User may experience
performance 
fluctuation

Getting precise 
measurements

We want you!



Next Steps

✤ Population-based optimisation using multiplicity: for 
example, swarm optimisation of performance-critical 
parameters in a data centre.

✤ Shadowing: parallel instance dedicated for 
optimisation.

✤ Prepackaged GI: GI as aspects, tagging, directives
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Amortised Optimisation

Persistence Layer

Optimisation executed in micro-steps,
each in-situ execution as a single fitness evaluation 

Does it work?

We applied amortised optimisation to pypy,
a tracing-JIT based python implementation.

Evaluation

4.2 Experimental Setup

Implementation We use a Java implementation of the BMM algorithm for
matrices of double type. The amortised optimisation framework, called Name X
(Non-Invasive Amortised & Automated Adaptivity Code Injection), uses the hill
climbing algorithm and is also implemented in Java2. To be as little intrusive as
possible, Name X a publish-subscribe style event bus to establish communication
between the SUMO and the optimisation. Parameters to be optimised (in the
case study, the block size), as well as the measure of the fitness (in the case
study, the number of floating point multiplications performed in second), need
to be marked with annotation. Before the parameter is to be used, the SUMO
needs to call Name X so that the parameter variable is updated with the current
solution; after the parameter has been used, the SUMO needs to call Name X
so that the fitness is fed back to the optimisation.

The range of block size was set to [1, 512]. Name X generates neighbouring
solutions by adding and subtracting 1 to the current block size. When moving
through consecutive block sizes, certain sizes will be evaluated twice: first as
the current solution, and second as a neighbour. Since the non-functional fitness
measure is expected to be noisy, the redundant behaviour was left in Name X
deliberately, providing opportunities to evaluate the same solution more than
once (and, therefore, getting clearer measures of the fitness).

Table 3. Information about CPUs for which BMM was optimised

CPU Clock Frequency L1 Instruction Cache L1 Data Cache

Intel Xeon W3680a 3.33GHz 32KB 32KB
Intel Core-i7 3820QMa 2.7GHz 32KB 32KB
ARM1176 (BCM2835 SoC)b 250MHz 16KB 16KB

a These Intel CPUs share data and instruction caches between two processor threads.
b Raspberry Pi Model B, first edition.

Environment Table 3 shows three di↵erent CPUs for which the BMM algo-
rithm was optimised in this study. Intel Xeon is a 6 code desktop CPU with
32KB instruction and data cache; Core-i7 used for this study is a mobile (lap-
top) version, which has the same cache provision as the Xeon CPU. Finally, to
investigate how well the amortised optimisation can adapt to an environment
with very limited resources, we use ARM1176 core on a Broadcom BCM2835
System-on-Chip, which is found in Raspberry Pi version 1 model B. Both Intel
CPUs ran OS X 10.10.2 and Java SE Runtime (build 1.8.0 25-b17) with the
HopSpot 64-Bit Server VM (build 25.25-b02); Raspberry Pi ran Linux 3.18.8
and Java SE Runtime (build 1.8.0-b132, mixed mode) with the HotSpot Client
VM (build 25.0-b70, mixed mode).

2 Name X is made available as open source software at [redacted for blind

review].

GPGPU 
Workgroup Size

✤ Local Workgroup Size: decides 
how many threads are 
executed by stream 
multiprocessor units

✤ Too small: under-utilised GPU

✤ Too large: local memory spill, 
resulting in costly I/O with 
RAM

18,688 Nvidia Tesla K20X GPUs

Introduction of GPU in high performance computing

Tuning MPM 
Modules for Apache

✤ Web servers run in many 
devices: Raspberry Pi, rack 
servers, desktop PCs, …

✤ But they have the same 
Apache2 parameters!
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Amortised Optimisation
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https://bitbucket.org/ntrolls/piacin

Code Available

https://bitbucket.org/ntrolls/niacin


