
Design of Repair Operators for

Automated Program Repair

Shin Hwei Tan

National University of Singapore

What is automated program repair?

BUG!

Given a failing Test T , buggy program P

1.Fault localization – Where to fix?

2. Patch Generation using repair operators

– How to fix?

3. Patch Validation – Are all tests passing?

How to extract useful repair operators?

GenProg [ICSE '12] relifix [ICSE '15]

Search • Genetic Programming • Random Local Search

Operators Mutations & crossovers Contextual Operators

Extracted

from

Genetic Operators Human Repair of Software

Regression & investigation of

types of regressions

…

…

Test 1

Test 2

Test 3

while (out > line)
out;

…
…

+…

+…

Test 1

Test 2

Test 3

-while (out > line)
- out;

How to repair?

while (out > line)
out;

Types of Software regressions

+ …

- …

…

Local Unmask

Remote

Changes
--
+

+ …

- …

…

Changes --
+

+ …

- …

…

Changes
--
+

 Changes break existing functionality

Repair: Roll back to previous version
 Changes unmasks existing bug

Repair: Re-mask problematic change

 Changes introduce bug in other unchanged parts

Repair: Re-mask problematic change

 formulate the software regression

repair problem as problem of

reconciling problematic changes

Operator Operator Type Count

Add condition Non-contextual 27

Add statement Non-contextual 21

Use changed expression as input for other operator Contextual 13

Revert to previous statement Contextual 11

Replace with new expression Non-contextual 13

Remove incorrectly added statement Contextual 9

Change type Non-contextual 5

Add method Non-contextual 5

Add parameter Non-contextual 4

Add local variable Non-contextual 3

Swap changed statement with neighbouring statement Contextual 2

Negate added condition Contextual 1

Convert statement to condition variable statement Contextual 1

Add field Non-contextual 1

Total 6 Contextuals 116

Most frequently used Operators in

Human Repair

Contextual Operators

 Use changed expression as input for other operator

 Revert to previous statement

- if (((f = lookup_file (p)) != 0 && f->is_target)

+ if (((f = lookup_file (p)) != 0 && (f->is_target || intermed_ok))

- /* Removing this loop will fix Savannah bug #16670:
- do we want to? */
- while (out > line && isblank ((unsigned char) out[-1]))
- --out ;

Experimental Results
 Evaluated on 7 open source projects

 relifix repairs 23 bugs, GenProg only fixes five bugs

 relifix is less likely to introduce new regressions than

GenProg

 Related questions:

 How about regression in automatically generated

patches?

 How to avoid Regression Introducing Patches?

Search-Based Program Repair

Candidate Patches

Search-Based Repair Tools

Patch

Generation

Patch Evaluation

Tests

• contains at least one failing test

Tests Fail
All Tests

Pass

Final Patch

How do the tests look like?

How do the patches look like?

Search-Based Program Repair

$command $argument1 $argument2

RETVAL=$?

[$RETVAL -eq 0] && echo Success

[$RETVAL -ne 0] && echo Failure

Test Script

Check exit status of command

Non-zero exit status denotes

test failure

Patch Evaluation

TestsCandidate Patches- exit(-2);

Repair patterns from human patches

Human patches Automatic Program Repair

int foo(){

+ if(input1)

+ return(out1)

//compute something

…}

Conditional Control Flow:
+if(a)

+ return b;
Anti-patterns

Set of generic forbidden transformations

that can be enforced on top of any search-based repair tool.

Problem: Weak Oracle

 Statements like exit call/assertions serve as test proxies

 Test proxies should not be randomly manipulated

$command $argument1 $argument2

RETVAL=$?

[$RETVAL -eq 0] && echo Success

[$RETVAL -ne 0] && echo Failure

Failing Test Script

Test outcome determined by

exit status

A1: Anti-delete CFG exit node

 Remove return statements, exit calls, functions with the word “error”, assertions.

static void BadPPM(char* file) {

fprintf(stderr, "%s: Not a PPM file.\n", file);

- exit(-2);

}

Problem: Inadequate Test Coverage

 Repair tools allow removal of code as long as all test passes

 Statements are mistakenly considered as redundant code

 Anti-patterns:

 A2: Anti-delete Control Statement

 A3: Anti-delete Single-statement CFG

 A4: Anti-delete Set-Before-If

A2: Anti-delete Control Statement

Remove control statements (e.g., if-statements, switch-

statements, loops).

call_result = call_user_function_ex(...);

- if (call_result == SUCCESS && ...) {

- if (SUCCESS == statbuf_from_array(...))

- ret = 0;

- } else if (call_result == FAILURE) {…

Problem: Non-termination

• Automatically generated patches may incorrectly removes

loop update

 Cause infinite loop

A5:Anti-delete Loop-Counter Update

Remove assignment statement A inside loop L if:
𝑉𝑎𝑟 𝑖𝑛 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝐿 ∩ {𝑉𝑎𝑟 𝑖𝑛 𝐿𝐻𝑆 𝑜𝑓 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝐴} = ∅

while(x> 5)

- x++;

Problem: Trivial Patch

 Trivial patch – patch that insert return-statements based on

expected output

Ex: +if(test1)

+ return out1

A6: Anti-append Early Exit

Insert return/goto statement at any location except for after

the last statement in a CFG node.

+ if ((type != 0))

+ return;

zend_error((1<<3L),"Uninitialized string offset:",...);

Problem: Functionality Removal

 Removes functionality by inserting T/F

A7: Anti-append Trivial Conditions

 Insert trivial condition.

A condition is trivial if and only if it is:

1) True/False Constant

2) Tautology/Contradiction in expression (e.g., if(x || y || !y))

3) Static analysis (e.g., if(x || y != 0), y is initialized)

- if ((fmap[j].key != format->ptr[i + 1]))

+ if ((fmap[j].key != format->ptr[i + 1]) && !(1))

continue;

Integrating Anti-patterns

Candidate Patches Tests

• contains at least one failing test

Search-Based Repair Tools

Patch

Generation

Patch Evaluation

All Tests

Pass

Tests Fail

Final Patch

YES NO

Is Anti-pattern?

How could anti-pattern helps?

 Evaluated on 12 open source projects
 Enforcing anti-patterns leads to patches with better fix localization

and delete less functionality.

 Tools integrated with anti-patterns generate patches faster due to
repair space reduction.

 Related questions:

 Are existing program repair techniques effective in
generating patches?
 Anti-patterns reveal many problems in automatically generated

patches

 How about anti-patterns for repair operators? Could we
get rid of repair operators that are ineffective?

Design of Repair Operators:

Codeflaws

Programming Competition Benchmark for Objective

Evaluation of Program Repair

Codeflaws Benchmark
 Obtained from Codeforces online database

 Diverse types of defects
 40 defects types

 Large number of defects
 4085 real defects

 Large number of programs
 7945 programs

 Large Held-out test suite for patch validation
 5-350 tests, Average: 40

 Non-trivial programs (algorithmically complex)

 Support large-scale controlled Experiments

 https://codeflaws.github.io/

Frequency and Effectiveness of

Repair Operators
Repair

Operator

GenProg SPR Prophet Angelix

Freq(%) Eff(%) Freq(%) Eff(%) Freq(%) Eff(%) Freq(%) Eff(%)

Delete

Statement

17.53 41.22

Insert

Assignment

17.39 38.46 5.77 43.10 4.80 39.51

Insert If 16.92 38.74 7.96 50.00 5.96 32.56

Loosen

/Tighten

Condition

54.53 22.35 46.06 19.95 3.12 4.44

Variable

Replacement

8.51 56.73 6.46 29.36 19.42 0.36

Relational

Operator

Replacement

31.07 42.41

High frequency, Low Effectiveness

Future Research
 Applications of Program Repair
 Test-Driven Merging
 Instead of using Longest Common Subsequence, use tests

to drive merging of multiple programs

 Provide additional guarantee that merged program pass
all tests

 Anti-patterns beyond Program Repair
 Anti-patterns as specification for guiding repair

 Anti-patterns as selected “code smells”

 Adapt anti-patterns to other search-based
software engineering activities (e.g., specific
code anti-patterns identifying energy hot-spots)

