Design of Repalr Operators for

Automated Program Repair

Shin Hwel Tan

National University of Singapore

What is automated program repair?

Given a failing Test T , buggy program P
1.Fault localization — Where to fix?
2. Patch Generation using repair operators
— How to fix?
3. Patch Validation — Are all tests passing?

How to extract useful repair operators?

GenProg [ICSE '12] relifix [ICSE '15]

» Genetic Programming Random Local Search
Mutations & crossovers Contextual Operators
Genetic Operators Human Repair of Software
Regression & investigation of
types of regressions

while (out > line)
out;

-

Test 3

Regression Fixedﬁ

Types of Software regressions

Local Unmask
— -
Changes { Q Changes { .
» Changes break existing functionality » Changes unmasks existing bug
Repair: Roll back to previous version Repair: Re-mask problematic change
Remote
! » formulate the software regression
repair problem as problem of
Changes { reconciling problematic changes

» Changes introduce bug in other unchanged parts
Repair: Re-mask problematic change

\C

e

Most frequently used Operators in
Human Repalr

Operator Operator Type Count
Add condition Non-contextual 27
Add statement Non-contextual 21
Use changed expression as input for other operator Contextual 13
Revert to previous statement Contextual 11
Replace with new expression Non-contextual 13
Remove incorrectly added statement Contextual 9
Change type Non-contextual 5
Add method Non-contextual 5
Add parameter Non-contextual 4
Add local variable Non-contextual 3
Swap changed statement with neighbouring statement Contextual 2
Negate added condition Contextual 1
Convert statement to condition variable statement Contextual 1
Add field Non-contextual 1
Total 6 Contextuals 116

™~

Contextual Operators

e Use changed expression as input for other operator

- if ((4f = lookup file (p)) != 0 && f—>is_targetb
+ if ((df = lookup file (p)) != 0 && (f—>is_target||| intermed_ok))

e Revert to previous statement

- /* Removing this loop will fix Savannah bug #16670:

- do we want to? */
- while (out > line && isblank ((unsigned char) out[-1]))

- --out ;

Experimental Results

e Evaluated on 7 open source projects
e relifix repairs 23 bugs, GenProg only fixes five bugs

e relifix is less likely to introduce new regressions than
GenProg

> Related guestions:

* How about regression in automatically generated
patches?

* How to avoid Regression Introducing Patches?

Search-Based Program Repair

Final Patch
Search-Based Repair Tools
@

Tests Fall
Patch
Generation How do the tests Iook Ilke’>
Tests
Candidate Patches e contains at least one failing test

|
How do the patches Ioow

-

[

Search-Based Program Repair

Test Script

Scommand Sargumentl Sargument?

RETVAL=S7 _
SRETVAL 01 s& Success Check exit status of command
SRETVAL 0 1 ss& Failure Non-zero exit status denotes

test failure
74

t exit (=2); Tests J
—

Patch Evaluation

e

Repair patterns from human patches

Human patches Automatic Program Repair

ool

“ully’

il

Anti-patterns

Set of generic forbidden transformations
that can be enforced on top of any search-based repair tool.

Problem: Weak Oracle

Failing Test Script

Scommand Sargumentl Sargument?

RETVAL=S"?
SRETVAL 0
SRETVAL 0

Success
Falilure

4

&&
&&

exit status

}I’est outcome determined by

o Statements like exit call/assertions serve as test proxies

e Test proxies should not be randomly manipulated

Al: Anti-delete CFG exit node

% Remove return statements, exit calls, functions with the word “error”, assertions.

static void BadPPM (char* file)
fprintf (stderr, "%s: Not a

- exit(-2);

}

{
PPM file.\n",

file);

e
Problem: Inadequate Test Coverage

e Repair tools allow removal of code as long as all test passes

e Statements are mistakenly considered as redundant code
e Anti-patterns:
* A2: Anti-delete Control Statement

* A3: Anti-delete Single-statement CFG
* A4: Anti-delete Set-Before-If

A2: Anti-delete Control Statement

% Remove control statements (e.qg., if-statements, switch-
statements, loops).

call result = call user function ex(...);
- 1f (call result == SUCCESS && ...) {
- 1f (SUCCESS == statbuf from array(...))
- ret = 0;
- } else 1f (call result == FAILURE) ({..

™~

Problem: Non-termination

- Automatically generated patches may incorrectly removes
loop update

» Cause infinite loop

A5:Anti-delete Loop-Counter Update

¥ Remove assignment statement A inside loop L if:
{Var in Termination Condition of L} N {Var in LHS of assignment A} = @

while (x> 5)
- X+t

e
Problem: Trivial Patch

e Trivial patch — patch that insert return-statements based on
expected output

EX: +1f (testl)
+ return outl

A6: Anti-append Early Exit
®Insert return/goto statement at any location except for after
the last statement in a CFG node.

+ 1if ((type !'= 0))
+ return;
zend error ((1<<3L),"Uninitilalized string offset:",...);

4 R
Problem: Functionality Removal

e Removes functionality by inserting T/F

A7. Anti-append Trivial Conditions

% Insert trivial condition.

<A condition is trivial if and only if it is:

1) True/False Constant

2) Tautology/Contradiction in expression (e.g., iIf(x || y || 'y))
3) Static analysis (e.qg., if(x || y '= 0), y is Initialized)

- 1f ((fmap[]j] .key != format->ptr[i + 1]))

+ 1f ((fmap([j].key != format->ptr[i1 + 1]) && ! (1))
continue;

Integrating Anti-patterns

Search-Based Repair Tools Final Patch
@

Patch Tests Fall
Generation All Tests
Pass

Candidate Patches Tests J
t

I
|

« contains at least one failing tes

Patch Evaluation

How could anti-pattern helps?

e Evaluated on 12 open source projects

» Enforcing anti-patterns leads to patches with better fix localization
and delete less functionality.

» Tools integrated with anti-patterns generate patches faster due to
repair space reduction.
> Related guestions:

» Are existing program repair techniques effective in
generating patches?

Anti-patterns reveal many problems in automatically generated
patches

* How about anti-patterns for repair operators? Could we
get rid of repair operators that are ineffective?

Design of Repair Operators:
Codeflaws

Programming Competition Benchmark for Objective
Evaluation of Program Repair

Codeflaws Benchmark

Obtained from Codeforces online database

Diverse types of defects
» 40 defects types

Large number of defects
» 4085 real defects

Large number of programs
* 7945 programs

Large Held-out test suite for patch validation
» 5-350 tests, Average: 40

Non-trivial programs (algorithmically complex)
Support large-scale controlled Experiments
https://codeflaws.qgithub.io/

4 _ N
Frequency and Effectiveness of

Repalir Operators
Repair

SlEIEIE] Freq(%) Eff(%) Freq(%) Eff(%) Freq(%) Eff(%) Freq(%) Eff(%)

Delete 17.53 41.22
Statement

Insert 17.39 38.46 5.77 43.10 4.80 39.51
Assignment

Insert If 16.92 38.74 7.96 50.00 5.96 32.56

Loosen 54.53 22.35 46.06 1995 3.12 4.44
/Tighten
Condition

Variable : : 29.36 19.42 0.36
Replacement

Relational 42.41
Operator

Replacement

High frequency, Low Effectiveness

-

Future Research

e Applications of Program Repair

» Test-Driven Merging

Instead of using Longest Common Subsequence, use tests
to drive merging of multiple programs

e Provide additional guarantee that merged program pass
all tests

e Anti-patterns beyond Program Repair
» Anti-patterns as specification for guiding repair
» Anti-patterns as selected “code smells”

» Adapt anti-patterns to other search-based
software engineering activities (e.g., specific
code anti-patterns identifying energy hot-spots)

