
Design of Repair Operators for

Automated Program Repair

Shin Hwei Tan

National University of Singapore

What is automated program repair?

BUG!

Given a failing Test T , buggy program P

1.Fault localization – Where to fix?

2. Patch Generation using repair operators

– How to fix?

3. Patch Validation – Are all tests passing?

How to extract useful repair operators?

GenProg [ICSE '12] relifix [ICSE '15]

Search • Genetic Programming • Random Local Search

Operators Mutations & crossovers Contextual Operators

Extracted

from

Genetic Operators Human Repair of Software

Regression & investigation of

types of regressions

…

…

Test 1

Test 2

Test 3

while (out > line)
out;

…
…

+…

+…

Test 1

Test 2

Test 3

-while (out > line)
- out;

How to repair?

while (out > line)
out;

Types of Software regressions

+ …

- …

…

Local Unmask

Remote

Changes
--
+

+ …

- …

…

Changes --
+

+ …

- …

…

Changes
--
+

 Changes break existing functionality

Repair: Roll back to previous version
 Changes unmasks existing bug

Repair: Re-mask problematic change

 Changes introduce bug in other unchanged parts

Repair: Re-mask problematic change

 formulate the software regression

repair problem as problem of

reconciling problematic changes

Operator Operator Type Count

Add condition Non-contextual 27

Add statement Non-contextual 21

Use changed expression as input for other operator Contextual 13

Revert to previous statement Contextual 11

Replace with new expression Non-contextual 13

Remove incorrectly added statement Contextual 9

Change type Non-contextual 5

Add method Non-contextual 5

Add parameter Non-contextual 4

Add local variable Non-contextual 3

Swap changed statement with neighbouring statement Contextual 2

Negate added condition Contextual 1

Convert statement to condition variable statement Contextual 1

Add field Non-contextual 1

Total 6 Contextuals 116

Most frequently used Operators in

Human Repair

Contextual Operators

 Use changed expression as input for other operator

 Revert to previous statement

- if (((f = lookup_file (p)) != 0 && f->is_target)

+ if (((f = lookup_file (p)) != 0 && (f->is_target || intermed_ok))

- /* Removing this loop will fix Savannah bug #16670:
- do we want to? */
- while (out > line && isblank ((unsigned char) out[-1]))
- --out ;

Experimental Results
 Evaluated on 7 open source projects

 relifix repairs 23 bugs, GenProg only fixes five bugs

 relifix is less likely to introduce new regressions than

GenProg

 Related questions:

 How about regression in automatically generated

patches?

 How to avoid Regression Introducing Patches?

Search-Based Program Repair

Candidate Patches

Search-Based Repair Tools

Patch

Generation

Patch Evaluation

Tests

• contains at least one failing test

Tests Fail
All Tests

Pass

Final Patch

How do the tests look like?

How do the patches look like?

Search-Based Program Repair

$command $argument1 $argument2

RETVAL=$?

[$RETVAL -eq 0] && echo Success

[$RETVAL -ne 0] && echo Failure

Test Script

Check exit status of command

Non-zero exit status denotes

test failure

Patch Evaluation

TestsCandidate Patches- exit(-2);

Repair patterns from human patches

Human patches Automatic Program Repair

int foo(){

+ if(input1)

+ return(out1)

//compute something

…}

Conditional Control Flow:
+if(a)

+ return b;
Anti-patterns

Set of generic forbidden transformations

that can be enforced on top of any search-based repair tool.

Problem: Weak Oracle

 Statements like exit call/assertions serve as test proxies

 Test proxies should not be randomly manipulated

$command $argument1 $argument2

RETVAL=$?

[$RETVAL -eq 0] && echo Success

[$RETVAL -ne 0] && echo Failure

Failing Test Script

Test outcome determined by

exit status

A1: Anti-delete CFG exit node

 Remove return statements, exit calls, functions with the word “error”, assertions.

static void BadPPM(char* file) {

fprintf(stderr, "%s: Not a PPM file.\n", file);

- exit(-2);

}

Problem: Inadequate Test Coverage

 Repair tools allow removal of code as long as all test passes

 Statements are mistakenly considered as redundant code

 Anti-patterns:

 A2: Anti-delete Control Statement

 A3: Anti-delete Single-statement CFG

 A4: Anti-delete Set-Before-If

A2: Anti-delete Control Statement

Remove control statements (e.g., if-statements, switch-

statements, loops).

call_result = call_user_function_ex(...);

- if (call_result == SUCCESS && ...) {

- if (SUCCESS == statbuf_from_array(...))

- ret = 0;

- } else if (call_result == FAILURE) {…

Problem: Non-termination

• Automatically generated patches may incorrectly removes

loop update

 Cause infinite loop

A5:Anti-delete Loop-Counter Update

Remove assignment statement A inside loop L if:
𝑉𝑎𝑟 𝑖𝑛 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝐿 ∩ {𝑉𝑎𝑟 𝑖𝑛 𝐿𝐻𝑆 𝑜𝑓 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝐴} = ∅

while(x> 5)

- x++;

Problem: Trivial Patch

 Trivial patch – patch that insert return-statements based on

expected output

Ex: +if(test1)

+ return out1

A6: Anti-append Early Exit

Insert return/goto statement at any location except for after

the last statement in a CFG node.

+ if ((type != 0))

+ return;

zend_error((1<<3L),"Uninitialized string offset:",...);

Problem: Functionality Removal

 Removes functionality by inserting T/F

A7: Anti-append Trivial Conditions

 Insert trivial condition.

A condition is trivial if and only if it is:

1) True/False Constant

2) Tautology/Contradiction in expression (e.g., if(x || y || !y))

3) Static analysis (e.g., if(x || y != 0), y is initialized)

- if ((fmap[j].key != format->ptr[i + 1]))

+ if ((fmap[j].key != format->ptr[i + 1]) && !(1))

continue;

Integrating Anti-patterns

Candidate Patches Tests

• contains at least one failing test

Search-Based Repair Tools

Patch

Generation

Patch Evaluation

All Tests

Pass

Tests Fail

Final Patch

YES NO

Is Anti-pattern?

How could anti-pattern helps?

 Evaluated on 12 open source projects
 Enforcing anti-patterns leads to patches with better fix localization

and delete less functionality.

 Tools integrated with anti-patterns generate patches faster due to
repair space reduction.

 Related questions:

 Are existing program repair techniques effective in
generating patches?
 Anti-patterns reveal many problems in automatically generated

patches

 How about anti-patterns for repair operators? Could we
get rid of repair operators that are ineffective?

Design of Repair Operators:

Codeflaws

Programming Competition Benchmark for Objective

Evaluation of Program Repair

Codeflaws Benchmark
 Obtained from Codeforces online database

 Diverse types of defects
 40 defects types

 Large number of defects
 4085 real defects

 Large number of programs
 7945 programs

 Large Held-out test suite for patch validation
 5-350 tests, Average: 40

 Non-trivial programs (algorithmically complex)

 Support large-scale controlled Experiments

 https://codeflaws.github.io/

Frequency and Effectiveness of

Repair Operators
Repair

Operator

GenProg SPR Prophet Angelix

Freq(%) Eff(%) Freq(%) Eff(%) Freq(%) Eff(%) Freq(%) Eff(%)

Delete

Statement

17.53 41.22

Insert

Assignment

17.39 38.46 5.77 43.10 4.80 39.51

Insert If 16.92 38.74 7.96 50.00 5.96 32.56

Loosen

/Tighten

Condition

54.53 22.35 46.06 19.95 3.12 4.44

Variable

Replacement

8.51 56.73 6.46 29.36 19.42 0.36

Relational

Operator

Replacement

31.07 42.41

High frequency, Low Effectiveness

Future Research
 Applications of Program Repair
 Test-Driven Merging
 Instead of using Longest Common Subsequence, use tests

to drive merging of multiple programs

 Provide additional guarantee that merged program pass
all tests

 Anti-patterns beyond Program Repair
 Anti-patterns as specification for guiding repair

 Anti-patterns as selected “code smells”

 Adapt anti-patterns to other search-based
software engineering activities (e.g., specific
code anti-patterns identifying energy hot-spots)

