

Julia Rubin

(jointly with Duling Lai, Jürgen Cito, Phillip Stanley-Marbell)

January 31, 2017

THE UNIVERSITY OF BRITISH COLUMBIA

Mobile Applications

- More than 2 billion smartphones in use
 - More than desktop computers
 - Plus smart watches, glasses, cameras, TVs, in-car navigation, and messaging
- More than 3 million mobile apps in official app stores
 - and much more apps in hundreds of alternative stores
- ~2.3 million active mobile developers worldwide
 - 760,000 people in Asia
 - 680,000 people in North America
 - 680,000 people in Europe

Mobile Application Developers

Lack <u>knowledge</u>, <u>tools</u>, and <u>incentives</u> to deal with:

- Security
- Privacy
- Energy-efficiency

What Can Go Wrong?

What Can Go Wrong?

Major consumers of energy: Screen, WiFi, GPS, Sensors, Camera, CPU

[Pathak et al., EuroSys'12, Banerjee et al., FSE'14]

GPS location used

Energy Bugs

An error in the system that causes an unexpected amount of high energy consumption

[Pathak et al., HotNets'11]

Energy Bugs and Hotspots

An application consumes an abnormally high amount of battery power ...

- ... even after it has completed execution \rightarrow **Bug**
- … even though the utilization of its hardware resources is low → *Hotspot*

[Banerjee et al., FSE'14]

[Banerjee et al., FSE'14]

[Banerjee et al., FSE'14]

resources are not released

QoS Considerations

"For best location accuracy, you might choose to start listening for location updates *when users begin creating the content or even when the application starts*, <...>"

"You might need to consider *how long* a typical task of creating the content takes and judge if this duration allows for efficient collection of a location estimate."

[https://developer.android.com/guide/topics/location/strategies.html]

Advertising and Analytics (A&A)

- At least 3 third-party libs in an app [Rubin at al., ASE'15]
- Consume 65%-75% of energy [Pathak et al., EuroSys'12]
- More than 40% of HTTP connections do not contribute to user-observable behavior [Rubin at al., ASE'15] – Analytics
- Advertising consumes 16% of energy (plus 48% more CPU time and 79% more network data) [Gui et al., ICSE'15]

Mobile Users

Mobile Developers

Goal Maximize Battery Life Minimize Energy Consumption

Maximize Revenue (Ads) Maximize App Insight (Analytics)

Main Idea

Automatically identify *recurrent A&A requests* and *adapt their frequency* to the current battery state.

Battery Aware Transformation

Based on

- ρ period of the recurrent requests
- b battery status

add a delay before recurrent A&A requests

Linear adaptation:
$$f_{linear}(b, \rho) = \frac{\rho * c}{b}$$

Low power mode (at 20% battery status): $f_{LowPowerMode}(b,\rho) = \begin{cases} \rho * c & if \ b \leq 0.2 \\ 0 & otherwise \end{cases}$

Savings – an Example

- VLC Direct: video stream player
- One recurrent request every 30 sec
- Introduced 100% delay to 60 sec
- Run for 30 mins
- 5.8% reduction in energy consumption (16% upper bound)

Providing Incentives

- Problem: applications are "greedy"
 - Do not consider other apps
 - Do not consider battery status
- In plan: game-theoretical approach for mobile energy marketplace
 - price energy and bill applications for the energy they use

Summary

