
Energy-Efficiency
in Mobile Software

Julia	Rubin	
(jointly	with	Duling	Lai,	Jürgen	Cito,	Phillip	Stanley-Marbell)	

January	31,	2017	

Mobile Applications

•  More	than	2	billion	smartphones	in	use		
–  More	than	desktop	computers	
–  Plus	smart	watches,	glasses,	cameras,	TVs,	in-car	naviga=on,	and	
messaging	

•  More	than	3	million	mobile	apps	in	official	app	stores	
–  …	and	much	more	apps	in	hundreds	of	alterna=ve	stores	

•  ~2.3	million	ac=ve	mobile	developers	worldwide	
–  760,000	people	in	Asia	
–  680,000	people	in	North	America	
–  680,000	people	in	Europe	

2	
[h@ps://blog.newrelic.com/2014/06/13/mobile-app-development-trends-worldwide-need-know/]	
[Developer	Economics	Q3	2014]	

	

Mobile Application Developers

Lack	knowledge,	tools,	and	incen=ves	to	deal	with:	

–  Security		
–  Privacy	
–  Energy-efficiency		

3	

What Can Go Wrong?

4	

What Can Go Wrong?

5	

Major	consumers	of	energy:		
Screen,	WiFi,	GPS,	Sensors,	Camera,	CPU	
	
[Pathak	et	al.,	EuroSys’12,	Banerjee	et	al.,	FSE’14]	

6

Example App

GPS location
used

GPS location
update started

GPS location
used

7

Example App

2	
1	

GPS location
update started

GPS location
used

8

Example App

2	
1	

GPS location
update started

GPS location
used

9

Example App

2	
1	

1	 47%	
more	energy	

Energy Bugs

An	error	in	the	system	that	causes	an	unexpected	
amount	of	high	energy	consump=on	
	

10
[Pathak et al., HotNets’11]

Energy Bugs and Hotspots

An	applica=on	consumes	an	abnormally	high	amount	of	
ba^ery	power	…	

•  …	even	aQer	it	has	completed	execuSon	à	Bug	

•  …	even	though	the	u=liza=on	of	its	hardware	
resources	is	low	à	Hotspot	

	

11
[Banerjee et al., FSE’14]

Taxonomy of
Energy Bugs and Hotspots

Hardware	
Resources	

Resource	
Leak	

Subop=mal	
Resource	
Binding	

Sleep-state	
Transi=on	
Heuris=cs	

Wakelock	
Bug	

Tail	Energy	
Hotspot	

Background	
Services	

Vacuous	
Background	
Services	

Expensive	
Background	
Services	

Defec=ve	
Func=onality	

Immortality	
Bug	

Loop	Bug	

12
[Banerjee et al., FSE’14]

Taxonomy of
Energy Bugs and Hotspots

Hardware	
Resources	

Resource	
Leak	

Subop=mal	
Resource	
Binding	

Sleep-state	
Transi=on	
Heuris=cs	

Wakelock	
Bug	

Tail	Energy	
Hotspot	

Background	
Services	

Vacuous	
Background	
Services	

Expensive	
Background	
Services	

Defec=ve	
Func=onality	

Immortality	
Bug	

Loop	Bug	

13
[Banerjee et al., FSE’14]

Resources	(e.g.,	WiFi)	that	are	not	
released	or	the	device	component	
(e.g.,	screen,	CPU)	is	lee	in	a	high-
power	state	aeer	the	applica=on	has	
finished	execu=on	

Taxonomy of
Energy Bugs and Hotspots

Hardware	
Resources	

Resource	
Leak	

Subop=mal	
Resource	
Binding	

Sleep-state	
Transi=on	
Heuris=cs	

Wakelock	
Bug	

Tail	Energy	
Hotspot	

Background	
Services	

Vacuous	
Background	
Services	

Expensive	
Background	
Services	

Defec=ve	
Func=onality	

Immortality	
Bug	

Loop	Bug	

14
[Banerjee et al., FSE’14]

A	failure	to	remove	a	service	
(e.g.,	loca=on	or	sensor	
updates),	which	will	keep	on	
repor=ng	data	even	though	no	
applica=on	needs	it	

Taxonomy of
Energy Bugs and Hotspots

Hardware	
Resources	

Resource	
Leak	

Subop=mal	
Resource	
Binding	

Sleep-state	
Transi=on	
Heuris=cs	

Wakelock	
Bug	

Tail	Energy	
Hotspot	

Background	
Services	

Vacuous	
Background	
Services	

Expensive	
Background	
Services	

Defec=ve	
Func=onality	

Immortality	
Bug	

Loop	Bug	

15
[Banerjee et al., FSE’14]

Respawning	an	applica=on	or	
service	when	the	applica=on	
has	been	closed	by	the	user	

Taxonomy of
Energy Bugs and Hotspots

Hardware	
Resources	

Resource	
Leak	

Subop=mal	
Resource	
Binding	

Sleep-state	
Transi=on	
Heuris=cs	

Wakelock	
Bug	

Tail	Energy	
Hotspot	

Background	
Services	

Vacuous	
Background	
Services	

Expensive	
Background	
Services	

Defec=ve	
Func=onality	

Immortality	
Bug	

Loop	Bug	

16
[Banerjee et al., FSE’14]

Binding	resources	too	early	
or	releasing	them	too	late	

Taxonomy of
Energy Bugs and Hotspots

Hardware	
Resources	

Resource	
Leak	

Subop=mal	
Resource	
Binding	

Sleep-state	
Transi=on	
Heuris=cs	

Wakelock	
Bug	

Tail	Energy	
Hotspot	

Background	
Services	

Vacuous	
Background	
Services	

Expensive	
Background	
Services	

Defec=ve	
Func=onality	

Immortality	
Bug	

Loop	Bug	

17
[Banerjee et al., FSE’14]

Sca^ered	usage	of	components	
(e.g.,	screen,	WiFi),	which	
causes	tail	energy	consump=on	
when	component	is	switched	off	

Taxonomy of
Energy Bugs and Hotspots

Hardware	
Resources	

Resource	
Leak	

Subop=mal	
Resource	
Binding	

Sleep-state	
Transi=on	
Heuris=cs	

Wakelock	
Bug	

Tail	Energy	
Hotspot	

Background	
Services	

Vacuous	
Background	
Services	

Expensive	
Background	
Services	

Defec=ve	
Func=onality	

Immortality	
Bug	

Loop	Bug	

18
[Banerjee et al., FSE’14]

Fine-grained	instead	of	coarse-
grain	updates	(e.g.,	GPS	vs.	WiFi	
based	loca=on);	unnecessarily	
high	sampling	rate	for	a	service	

Taxonomy of
Energy Bugs and Hotspots

Hardware	
Resources	

Resource	
Leak	

Subop=mal	
Resource	
Binding	

Sleep-state	
Transi=on	
Heuris=cs	

Wakelock	
Bug	

Tail	Energy	
Hotspot	

Background	
Services	

Vacuous	
Background	
Services	

Expensive	
Background	
Services	

Defec=ve	
Func=onality	

Immortality	
Bug	

Loop	Bug	

19
[Banerjee et al., FSE’14]

Repeatedly	execu=ng	por=on	
of	the	applica=on	even	if	not	
necessary	(e.g.,	con=nuously	
accessing	unreachable	server)	

Taxonomy of
Energy Bugs and Hotspots

Hardware	
Resources	

Resource	
Leak	

Subop=mal	
Resource	
Binding	

Sleep-state	
Transi=on	
Heuris=cs	

Wakelock	
Bug	

Tail	Energy	
Hotspot	

Background	
Services	

Vacuous	
Background	
Services	

Expensive	
Background	
Services	

Defec=ve	
Func=onality	

Immortality	
Bug	

Loop	Bug	

20

•  Pathak	et	al.,	MobiSys’12:		
sta=c	analysis	to	find	defini=ons	(resource	
acquisi=on)	that	are	not	killed	(released)	

•  Guo	et	al.,	ASE’13	(Relda):		
builds	a	Func=on	Call	Graph	(callbacks	and	
resource-related	opera=ons)	to	check	which	
resources	are	not	released	

Taxonomy of
Energy Bugs and Hotspots

Hardware	
Resources	

Resource	
Leak	

Subop=mal	
Resource	
Binding	

Sleep-state	
Transi=on	
Heuris=cs	

Wakelock	
Bug	

Tail	Energy	
Hotspot	

Background	
Services	

Vacuous	
Background	
Services	

Expensive	
Background	
Services	

Defec=ve	
Func=onality	

Immortality	
Bug	

Loop	Bug	

21

•  Liu	et	al.,	PerCom’13	(GreenDroid):	
calculates	u=liza=on	ra=o	by	using	
dynamic	taint	analysis	

•  Banerjee	et	al.,	MobileSoQ’16:		
improves	binding	loca=on	by	matching	
defect	and	design	expressions	

GPS location
update started

GPS location
used

22

Example App

2	
1	

1	 47%	
more	energy	

GPS location
update started

GPS location
used

23

Example App

2	
1	

1	 47%	
more	energy	

2	 visibly		
slower	

?	

QoS Considerations

“For	best	loca=on	accuracy,	you	might	choose	to	start	
listening	for	loca=on	updates	when	users	begin	crea<ng	the	
content	or	even	when	the	applica<on	starts,	<…>”		
	
“You	might	need	to	consider	how	long	a	typical	task	of	
crea=ng	the	content	takes	and	judge	if	this	dura=on	allows	
for	efficient	collec=on	of	a	loca=on	es=mate.”	
	
	

[h^ps://developer.android.com/guide/topics/loca=on/strategies.html]	

24	

Taxonomy of
Energy Bugs and Hotspots

Hardware	
Resources	

Resource	
Leak	

Subop=mal	
Resource	
Binding	

Sleep-state	
Transi=on	
Heuris=cs	

Wakelock	
Bug	

Tail	Energy	
Hotspot	

Background	
Services	

Vacuous	
Background	
Services	

Expensive	
Background	
Services	

Defec=ve	
Func=onality	

Immortality	
Bug	

Loop	Bug	

25

•  Chen	et	al.,	HotPower’13:	
prefetching	ads;	upper-bound	is	
3.2%,	hard	to	achieve	

•  Li	et	al.,	ICSE’16:		
bundles	sequen=al	HTTP	requests,	
15%	reduc=on	

Taxonomy of
Energy Bugs and Hotspots

Hardware	
Resources	

Resource	
Leak	

Subop=mal	
Resource	
Binding	

Sleep-state	
Transi=on	
Heuris=cs	

Wakelock	
Bug	

Tail	Energy	
Hotspot	

Background	
Services	

Vacuous	
Background	
Services	

Expensive	
Background	
Services	

Defec=ve	
Func=onality	

Immortality	
Bug	

Loop	Bug	

26

Taxonomy of
Energy Bugs and Hotspots

Hardware	
Resources	

Resource	
Leak	

Subop=mal	
Resource	
Binding	

Sleep-state	
Transi=on	
Heuris=cs	

Wakelock	
Bug	

Tail	Energy	
Hotspot	

Background	
Services	

Vacuous	
Background	
Services	

Expensive	
Background	
Services	

Defec=ve	
Func=onality	

Immortality	
Bug	

Loop	Bug	

27

•  Cito	et	al.,	ASE’16	

Advertising and Analytics (A&A)

•  At	least	3	third-party	libs	in	an	app	[Rubin	at	al.,	ASE’15]	

•  Consume	65%-75%	of	energy	[Pathak	et	al.,	EuroSys’12]	

•  More	than	40%	of	HTTP	connec=ons	do	not	contribute	to		
user-observable	behavior	[Rubin	at	al.,	ASE’15]	–	Analy=cs		

•  Adver=sing	consumes	16%	of	energy	(plus	48%	more	CPU	=me	
and	79%	more	network	data)	[Gui	et	al.,	ICSE’15]	

28	

29	

Main Idea

Automa=cally	iden=fy	recurrent	A&A	requests	and	
adapt	their	frequency	to	the	current	ba^ery	state.	

30	

31	

Battery Aware Transformation
Based	on		
•  ρ	–	period	of	the	recurrent	requests	
•  b	–	ba^ery	status	
add	a	delay	before	recurrent	A&A	requests	

32	

Linear	adapta=on:	

Low	power	mode	
(at	20%	ba^ery	status):	

Savings – an Example

•  VLC	Direct:		video	stream	player	
•  One	recurrent	request	–	every	30	sec	
•  Introduced	100%	delay	–	to	60	sec	
•  Run	for	30	mins	
•  5.8%	reduc=on	in	energy	consump=on		

(16%	upper	bound)	

33	

Providing Incentives

•  Problem:	applica=ons	are	“greedy”	
–  Do	not	consider	other	apps		
–  Do	not	consider	ba^ery	status	

•  In	plan:	game-theore=cal	approach	for	mobile	energy	
marketplace	
–  price	energy	and	bill	applica=ons	for	the	energy	they	use	

34	

Summary

35	

