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How to construct a model from 
the specification?

 Synthesis

 Transforms spec. directly to a model that satisfies it.

 Hard (complexitywise) and sometimes undecidable.

 Brute-force enumeration [Bar David, Taubenfeld]

 All possible programs of a specific domain and size are 
generated and model-checked.

 All existing solutions will eventually be found.

 Highly time-intensive. Not practical for programs with 
more than few lines of code.

 Sketching [Lazema]: small variants, resolved 
through SAT solving.
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Combining GP & Model Checking
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Program Representation

 Programs are represented 
as trees.

 Internal nodes represent 
expressions or 
instructions  with 
parameters (assignment,
while, if, block).

 Terminal nodes represent 
constants or expressions 
without any parameter 
(0, 1, 2, me, other).

 Strongly-typed GP is used 
[Montana 95].

while

assign!=

0 A[ ]A[ ] 1

me2

While (A[2] != 0)

A[me] = 1
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Mutation Operation

 The main operation we use.

 Allows performing small modifications 

to an existing program by the following 
method:

 Randomly choose a program node 
(internal, or leaf).

 According to the node type, apply one of 
the following operations with respect to the 
chosen node (strong typing must be kept):
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Replacement Mutation type (a)

 Replace the sub-
tree rooted by 
node with a new 
randomly 
generated sub-
tree.

 Can change a 
single node or 
an entire sub-
tree.

While (A[2] != 0)

A[me] = 1

While (A[2] != 0)

A[me] = A[0]

while

assign!=

0 A[ ]A[ ] 

me2

1A[ ]

0
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Insertion Mutation type (b)

 Add an immediate 
parent to the selected 
node.

 Randomly create other 
offspring to the new 
parent, if needed.

 According to the 
selected parent type, 
can cause:
 Insertion of code,

 Wrapping code with a 
while loop,

 Extending Boolean 
expressions.

while

!=

0A[ ] 

2

assign

A[ ] 1

me

While (A[2] != 0)

A[me] = 1

while

!=

0A[ ] 

2

assign

A[ ] 1

me

block

while

!=

0A[ ] 

2

assign

A[ ] 1

me

block

assign

A[ ] other

2

While (A[2] != 0)

A[2] = other

A[me] = 1
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Reduction Mutation Type (c)

 Replace the selected node by one of its 

offspring.

 Delete the remaining offspring of the 
node.

 Has the opposite effect of the previous 
insertion mutation, and reduces the 

program size.
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Deletion Mutation Type (d)

 Delete the sub-

tree rooted by 
the node.

 Update 
ancestors 

recursively.

assign

A[ ] 1

me

while

!=

0A[ ] 

2

While (A[2] != 0)

A[me] = 1

empty while

!=

0A[ ] 

2
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Crossover Example

if

!=

1A[ ] 

me

assign

A[ ] other

0

block

assign

meA[ ] 

2

empty while

==

A[ ] other

me

A[2] = me

while (a[me] == other)

If (A[me] != 1)

a[0] = other
A[2] = me

a[0] = other

If (A[me] != 1)

while (a[me] == other)
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Building Program’s State-graph
 Each state consists of values of variables, program 

counters, buffers, etc.

 Edges represent atomic transitions caused by program 
instructions.

 Can be decomposed into 
SCCs [Tarjan 72].
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Example: The Mutual 
Exclusion Problem

 Originally described by [Dijkstra 65].

 Many variants and solutions exist.

while wi do
Pre Protocol

Critical Section

Post Protocol

end while

 We want to automatically generate correct 
code for the pre and post protocol parts.
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Specification

 We use Linear Temporal Logic (LTL) [Pnueli 77] 
to define specification properties.

 LTL formulas are interpreted over an infinite 
sequences of states, and consist of:
 Propositional variables,

 Logical connectives, such as  ,  ,  , , and

 Temporal operators, such as:
 (p) – p will eventually occur.

 (p) – p always occurs.

 A model M satisfies a formula φ (M╞ φ) if every 
(fair) run of M satisfies φ.



Specification

 Safety: (p0 in CS0  p1 in CS1)

 Liveness: (pi in preCSi ->pi in CSi)

 Not enough:
solution based on
alternation requires
always willing to
enter critical
section.

 That’s why we added wi
to control process’ wishing
to enter CS.
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L0:While True do

NC0:wait(Turn=0);

CR0:Turn=1

endwhile ||

L1:While True do

NC1:wait(Turn=1);

CR1:Turn=0

endwhile



Model Checking and GP

 Can standard model checking results be used as a GP 
fitness function?

 Yes, but [Johnson 07]: a fitness function with just two 
values per proerpty is a poor one. Need more fitness levels.

 No execution satisfies the property.

 Some executions satisfy the property.

 Every prefix of a bad execution can be continued to a 
good execution in the program (so, we made infinitely 
many “bad” choices”).

 Statistically, at least/less than some portion of the 
executions satisfy the property.

 All the executions satisfy the property.
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Fitness Level 0

 All SCCs are empty 

(not accepting).

 Property is never 
satisfied.

 No scheduler 
choices are 

needed.

A

ED

CB

Empty SCC

Accepting SCC



Fitness Level 1

 At least one accepting 
SCC.

 At least one empty bottom 
SCC.

 Finite number of scheduler 
choices can lead the 
execution into the empty 
BSCC (D in the example).

 The program will stay 
there forever.

 BSCC with only 1 node 
means a deadlock  gets 
worse score.

A

ED

CB

Empty SCC

Accepting SCC



Fitness Level 2

 All BSCCs are 
accepting. 

 At least one empty 
SCC.

 Infinite scheduler 
choices are needed 
for keeping the 
program inside the 
empty SCC (B in the 
example).

A

ED

CB

Empty SCC

Accepting SCC



Fitness Level 3

 All executions are 

accepting.

 This can be checked 
by converting the 
negation of the 

property, and 
checking the 
emptiness of the 

intersection.



Overall Fitness Function

 Fitness levels & scores are calculated for each specification 
property.

 How to merge into a single fitness function?

 Naïve summing can bias the results, since some properties 
may be trivially satisfied when more basic properties are 
violated.

 Thus, spec. properties are divided into levels, starting from 
level 1 for most basic properties.

 As long as not all properties at level i are satisfied, 
properties at higher level gets fitness of 0.



Parsimony

 GP programs tend to grow up over time to the maximal 
allowed tree size (“bloating”).

 To avoid that, we use parsimony as a secondary fitness 
measure.

 Number of program nodes * small factor is subtracted 
from the fitness score.

 The factor should be carefully chosen.
 Should encourage programs to reduce their size, but
 Should not harm the evolutionary process.

 Therefore, programs cannot get a score of 100, but only 
get close to it. The run can be stopped when all properties 
are satisfied.

 Programs can be reduces either by mutations, or directly 
by detecting dead code by the model checking process, 
and then removing it.



The Mutual Exclusion Problem

 Many variants and solutions exist.

 Modeled using the following program parts 
inside a loop in each process:

 Non Critical Section

 Pre Protocol

 Critical Section

 Post Protocol

 We wish to automatically generate correct 
code for the pre and post protocol parts.
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Spec. Properties
 The specification includes the following LTL properties:

 Some properties are weaker/stronger than others, but 
they produce additional levels!
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Runs Configuration

 The following parameters were used:

 Population size: 150

 Max number of iterations: 2000

In the following examples, we will show only the body 
of the while loop for one process (the other is 
symmetric).
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An Example of a Run (1st variant)

 Randomly created.

 Does not satisfy mutual exclusion property.

 Higher level properties are set to 0.

Score: 0.0
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An Example of a Run (1st variant)

 Randomly created.

 While loop guarantees mutual exclusion.

 Only process 0 can enter the critical section.

Score: 66.77
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An Example of a Run (1st variant)

 Last line changed by a mutation.

 The naïve mutual exclusion algorithm.

 Processes uses a “turn” flag, but depend on each other.

Score: 75.77
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An Example of a Run (1st variant)

 An important building block common to many algorithms.

 Each process set its own flag and wait for other’s flag, but

 The flag is not turned off correctly.

 Might eventually deadlock.

Score: 70.17
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An Example of a Run (1st variant)

 Last line is replaced by a mutation.

 Now, process 0 correctly turns its flag off.

 Property 5 is fully satisfied

Score: 76.10
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An Example of a Run (1st variant)

 A single node is changed by a mutation.

 Both processes turn off their flag.

 Properties 4 and 5 are fully satisfied.

 Still, deadlock occurs if both processes try to enter 
simultaneously.

Score: 92.77
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An Example of a Run (1st variant)

 A mutation added a line to the empty while loop.

 This turns the deadlock into a livelock, and causes a slight 
fitness improvement.

Score: 93.20
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An Example of a Run (1st variant)

 Another line is added to the while loop.

 No more dead or live locks, but property can still be 
violated by some infinite scheduler choices.

Score: 94.37

33



An Example of a Run (1st variant)

 Created by some random mutations.

 All properties are satisfied.

 Still, not the shortest solution.

Score: 96.50
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An Example of a Run (1st variant)

 Created by more mutations.
 The shortest found algorithm.
 Identical to the known “One bit protocol” [Burns 

& Lynch 93].

Score: 97.10

35



MCGP – A Software Synthesis Tool Based on 
Model Checking and Genetic Programming
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Synthesizing parametric 
protocols

 Perform model checking for particular cases: in the leader 
election problem, with certain ring sizes.

 Coevolution: remember instances (sizes) that caused more 
candidates to fail, and recheck them.

 No complete guarantee: terminate if enough checks 
passed.

 Model checking as enhanced testing: comprehensive 
verification for specific values.
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Process types

 Concurrent programs are built from process types
 Each process type 

▪ Has its own set of building blocks

▪ Can have multiple running instances

▪ Has a code skeleton, containing

▪ Static parts defined by the user

▪ Dynamic / empty part that have to be synthesized
 A special init process type is responsible for

▪ Initialization of global variables

▪ Creation of instances of the other process types
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Coevolution

 Alternate between generating synthesis 

candidates and parameters for checking it.
 Different fitness functions for the two 

goals.

 Fitness for checking/testing parameters can 
increase with the number of candidates it 
manages to “destroy”.
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Code Correction

 The goal is correcting existing protocols.

 The protocol’s code is divided by the user 
into:

 Static parts that should remain unchanged,

 Dynamic parts that can be improved or replaced 
by the synthesis process.
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Motivating Example: The α-core 
Protocol

 Intended for allowing multiparty interactions between 
distributed processes.

 Published at COORDINATION 2002 conf., and 
Concurrency - Practice and Experience Journal.

 Two types of processes: Participants, Coordinators

 Multiple participants may perform a shared interaction, 
which is managed by a dedicated  coordinator process.
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The α-core Protocol

 Each process has its own state machine

 Processes communicate via asynchronous message 
passing

 The protocol should satisfy the following:

 Exclusion between conflicting interactions.

 If an interaction is committed, all of its participants 
must execute it.

 Any enabled interaction is eventually committed or 
canceled.

 We showed that this requirement can be 
violated!
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Synthesizing Violating 
Architectures

 Main Idea:

 Architectures can be generated by some 
initialization code. Thus, they can be synthesized 
similarly to normal code.

 Define building blocks from which such code 
portions can be built.

 Use genetic programming for the automatic 
generation and evolution of versions of the 
initialization code.

 Define a fitness function that will guide us to the 
target architecture (violating the spec.).
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Initialization code for α-core 
Architectures 

 We define the following building blocks:

 Participant, Coordinator – constants of type 
proc_type

 CreateProc(proc_type) – dynamically 

create new process of type proc_type

 Connect(participant_id, coordinator_id) –
connects between a particular participant 
and coordinator
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Initialization code for α-core 
Architectures - Example

CreateProc(Participant)

CreateProc(Participant)

CreateProc(Participant)

CreateProc(Coordinator)

CreateProc(Coordinator)

CreateProc(Coordinator)

Connect(1, 4)

Connect(1, 5)

Connect(2, 6)

Connect(3, 4)

Connect(3, 5)

Connect(3, 6)

• The code on the left generates the architecture on the right:
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Coevolution: Evolving Violating 
Architectures

 Search of architectures is guided by a fitness 
function, assigning a score for each 
generated architecture.

 Based on model checking, but the goal is to 
falsify the specification.

 Highest score is given when at least one LTL 
property is violated

 Lower scores can be assigned to architectures 
which are “close” to violating a property.
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Finding the α-core Bug

 Each coordinator process uses a variable n
counting its currently active offers.

 n should be decreased to 0 when an interaction 
is canceled.

 We suspected that this property might be 
violated in some rare cases, and fed the protocol 
and this property into our tool.

 The tool indeed discovered an architecture under 
which the property can be violated.

 The violation can lead to a livelocks and 
deadlocks in the algorithm.
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The Found Architecture and 
Counterexample

n is 
wrongly 

decreased 
twice

Found 
architecture
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Correcting the α-core Bug

 The tool first found a correction for the above architecture.

 However, this correction was refuted by another discovered 
architecture.

 After a series of corrections and refutations, a final (and simple) 
solution was found, which could not be refuted.

 The solution includes the following  code replacement:

If n > 0 then 
n := n - 1

If sender  shared then 
n := n - 1
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Conclusions

 Formal methods (Testing, RV, Model 

Checking) have severe limitations: 

 High complexity.

 Decidable under some strict conditions.

 Synthesis is even more difficult!

 Use genetic programming to enhance the 
performance and these methods and 
alleviate restrictions.
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More conclusions

 Can be used to synthesize concurrent code.

 Can be used to synthesize parametric code.

 Can be used to improve and correct code.

 For parametrized systems: use model 

checking as enhanced testing (for particular 
arguments/architectures). 
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