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Why not synthesize the software 
directly from specification?
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How to construct a model from 
the specification?

 Synthesis

 Transforms spec. directly to a model that satisfies it.

 Hard (complexitywise) and sometimes undecidable.

 Brute-force enumeration [Bar David, Taubenfeld]

 All possible programs of a specific domain and size are 
generated and model-checked.

 All existing solutions will eventually be found.

 Highly time-intensive. Not practical for programs with 
more than few lines of code.

 Sketching [Lazema]: small variants, resolved 
through SAT solving.
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Combining GP & Model Checking
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Program Representation

 Programs are represented 
as trees.

 Internal nodes represent 
expressions or 
instructions  with 
parameters (assignment,
while, if, block).

 Terminal nodes represent 
constants or expressions 
without any parameter 
(0, 1, 2, me, other).

 Strongly-typed GP is used 
[Montana 95].

while

assign!=

0 A[ ]A[ ] 1

me2

While (A[2] != 0)

A[me] = 1
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Mutation Operation

 The main operation we use.

 Allows performing small modifications 

to an existing program by the following 
method:

 Randomly choose a program node 
(internal, or leaf).

 According to the node type, apply one of 
the following operations with respect to the 
chosen node (strong typing must be kept):
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Replacement Mutation type (a)

 Replace the sub-
tree rooted by 
node with a new 
randomly 
generated sub-
tree.

 Can change a 
single node or 
an entire sub-
tree.

While (A[2] != 0)

A[me] = 1

While (A[2] != 0)

A[me] = A[0]

while

assign!=

0 A[ ]A[ ] 

me2

1A[ ]

0
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Insertion Mutation type (b)

 Add an immediate 
parent to the selected 
node.

 Randomly create other 
offspring to the new 
parent, if needed.

 According to the 
selected parent type, 
can cause:
 Insertion of code,

 Wrapping code with a 
while loop,

 Extending Boolean 
expressions.

while

!=

0A[ ] 

2

assign

A[ ] 1

me

While (A[2] != 0)

A[me] = 1

while

!=

0A[ ] 

2

assign

A[ ] 1

me

block

while

!=

0A[ ] 

2

assign

A[ ] 1

me

block

assign

A[ ] other

2

While (A[2] != 0)

A[2] = other

A[me] = 1
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Reduction Mutation Type (c)

 Replace the selected node by one of its 

offspring.

 Delete the remaining offspring of the 
node.

 Has the opposite effect of the previous 
insertion mutation, and reduces the 

program size.
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Deletion Mutation Type (d)

 Delete the sub-

tree rooted by 
the node.

 Update 
ancestors 

recursively.

assign

A[ ] 1

me

while

!=

0A[ ] 

2

While (A[2] != 0)

A[me] = 1

empty while

!=

0A[ ] 

2
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Crossover Example

if

!=

1A[ ] 

me

assign

A[ ] other

0

block

assign

meA[ ] 

2

empty while

==

A[ ] other

me

A[2] = me

while (a[me] == other)

If (A[me] != 1)

a[0] = other
A[2] = me

a[0] = other

If (A[me] != 1)

while (a[me] == other)
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Building Program’s State-graph
 Each state consists of values of variables, program 

counters, buffers, etc.

 Edges represent atomic transitions caused by program 
instructions.

 Can be decomposed into 
SCCs [Tarjan 72].
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Example: The Mutual 
Exclusion Problem

 Originally described by [Dijkstra 65].

 Many variants and solutions exist.

while wi do
Pre Protocol

Critical Section

Post Protocol

end while

 We want to automatically generate correct 
code for the pre and post protocol parts.
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Specification

 We use Linear Temporal Logic (LTL) [Pnueli 77] 
to define specification properties.

 LTL formulas are interpreted over an infinite 
sequences of states, and consist of:
 Propositional variables,

 Logical connectives, such as  ,  ,  , , and

 Temporal operators, such as:
 (p) – p will eventually occur.

 (p) – p always occurs.

 A model M satisfies a formula φ (M╞ φ) if every 
(fair) run of M satisfies φ.



Specification

 Safety: (p0 in CS0  p1 in CS1)

 Liveness: (pi in preCSi ->pi in CSi)

 Not enough:
solution based on
alternation requires
always willing to
enter critical
section.

 That’s why we added wi
to control process’ wishing
to enter CS.

15

L0:While True do

NC0:wait(Turn=0);

CR0:Turn=1

endwhile ||

L1:While True do

NC1:wait(Turn=1);

CR1:Turn=0

endwhile



Model Checking and GP

 Can standard model checking results be used as a GP 
fitness function?

 Yes, but [Johnson 07]: a fitness function with just two 
values per proerpty is a poor one. Need more fitness levels.

 No execution satisfies the property.

 Some executions satisfy the property.

 Every prefix of a bad execution can be continued to a 
good execution in the program (so, we made infinitely 
many “bad” choices”).

 Statistically, at least/less than some portion of the 
executions satisfy the property.

 All the executions satisfy the property.
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Fitness Level 0

 All SCCs are empty 

(not accepting).

 Property is never 
satisfied.

 No scheduler 
choices are 

needed.

A

ED

CB

Empty SCC

Accepting SCC



Fitness Level 1

 At least one accepting 
SCC.

 At least one empty bottom 
SCC.

 Finite number of scheduler 
choices can lead the 
execution into the empty 
BSCC (D in the example).

 The program will stay 
there forever.

 BSCC with only 1 node 
means a deadlock  gets 
worse score.

A

ED

CB

Empty SCC

Accepting SCC



Fitness Level 2

 All BSCCs are 
accepting. 

 At least one empty 
SCC.

 Infinite scheduler 
choices are needed 
for keeping the 
program inside the 
empty SCC (B in the 
example).

A

ED

CB

Empty SCC

Accepting SCC



Fitness Level 3

 All executions are 

accepting.

 This can be checked 
by converting the 
negation of the 

property, and 
checking the 
emptiness of the 

intersection.



Overall Fitness Function

 Fitness levels & scores are calculated for each specification 
property.

 How to merge into a single fitness function?

 Naïve summing can bias the results, since some properties 
may be trivially satisfied when more basic properties are 
violated.

 Thus, spec. properties are divided into levels, starting from 
level 1 for most basic properties.

 As long as not all properties at level i are satisfied, 
properties at higher level gets fitness of 0.



Parsimony

 GP programs tend to grow up over time to the maximal 
allowed tree size (“bloating”).

 To avoid that, we use parsimony as a secondary fitness 
measure.

 Number of program nodes * small factor is subtracted 
from the fitness score.

 The factor should be carefully chosen.
 Should encourage programs to reduce their size, but
 Should not harm the evolutionary process.

 Therefore, programs cannot get a score of 100, but only 
get close to it. The run can be stopped when all properties 
are satisfied.

 Programs can be reduces either by mutations, or directly 
by detecting dead code by the model checking process, 
and then removing it.



The Mutual Exclusion Problem

 Many variants and solutions exist.

 Modeled using the following program parts 
inside a loop in each process:

 Non Critical Section

 Pre Protocol

 Critical Section

 Post Protocol

 We wish to automatically generate correct 
code for the pre and post protocol parts.
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Spec. Properties
 The specification includes the following LTL properties:

 Some properties are weaker/stronger than others, but 
they produce additional levels!

24



Runs Configuration

 The following parameters were used:

 Population size: 150

 Max number of iterations: 2000

In the following examples, we will show only the body 
of the while loop for one process (the other is 
symmetric).
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An Example of a Run (1st variant)

 Randomly created.

 Does not satisfy mutual exclusion property.

 Higher level properties are set to 0.

Score: 0.0
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An Example of a Run (1st variant)

 Randomly created.

 While loop guarantees mutual exclusion.

 Only process 0 can enter the critical section.

Score: 66.77
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An Example of a Run (1st variant)

 Last line changed by a mutation.

 The naïve mutual exclusion algorithm.

 Processes uses a “turn” flag, but depend on each other.

Score: 75.77
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An Example of a Run (1st variant)

 An important building block common to many algorithms.

 Each process set its own flag and wait for other’s flag, but

 The flag is not turned off correctly.

 Might eventually deadlock.

Score: 70.17
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An Example of a Run (1st variant)

 Last line is replaced by a mutation.

 Now, process 0 correctly turns its flag off.

 Property 5 is fully satisfied

Score: 76.10
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An Example of a Run (1st variant)

 A single node is changed by a mutation.

 Both processes turn off their flag.

 Properties 4 and 5 are fully satisfied.

 Still, deadlock occurs if both processes try to enter 
simultaneously.

Score: 92.77
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An Example of a Run (1st variant)

 A mutation added a line to the empty while loop.

 This turns the deadlock into a livelock, and causes a slight 
fitness improvement.

Score: 93.20
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An Example of a Run (1st variant)

 Another line is added to the while loop.

 No more dead or live locks, but property can still be 
violated by some infinite scheduler choices.

Score: 94.37
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An Example of a Run (1st variant)

 Created by some random mutations.

 All properties are satisfied.

 Still, not the shortest solution.

Score: 96.50
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An Example of a Run (1st variant)

 Created by more mutations.
 The shortest found algorithm.
 Identical to the known “One bit protocol” [Burns 

& Lynch 93].

Score: 97.10
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MCGP – A Software Synthesis Tool Based on 
Model Checking and Genetic Programming
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Synthesizing parametric 
protocols

 Perform model checking for particular cases: in the leader 
election problem, with certain ring sizes.

 Coevolution: remember instances (sizes) that caused more 
candidates to fail, and recheck them.

 No complete guarantee: terminate if enough checks 
passed.

 Model checking as enhanced testing: comprehensive 
verification for specific values.
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Process types

 Concurrent programs are built from process types
 Each process type 

▪ Has its own set of building blocks

▪ Can have multiple running instances

▪ Has a code skeleton, containing

▪ Static parts defined by the user

▪ Dynamic / empty part that have to be synthesized
 A special init process type is responsible for

▪ Initialization of global variables

▪ Creation of instances of the other process types
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Coevolution

 Alternate between generating synthesis 

candidates and parameters for checking it.
 Different fitness functions for the two 

goals.

 Fitness for checking/testing parameters can 
increase with the number of candidates it 
manages to “destroy”.
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Code Correction

 The goal is correcting existing protocols.

 The protocol’s code is divided by the user 
into:

 Static parts that should remain unchanged,

 Dynamic parts that can be improved or replaced 
by the synthesis process.
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Motivating Example: The α-core 
Protocol

 Intended for allowing multiparty interactions between 
distributed processes.

 Published at COORDINATION 2002 conf., and 
Concurrency - Practice and Experience Journal.

 Two types of processes: Participants, Coordinators

 Multiple participants may perform a shared interaction, 
which is managed by a dedicated  coordinator process.
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The α-core Protocol

 Each process has its own state machine

 Processes communicate via asynchronous message 
passing

 The protocol should satisfy the following:

 Exclusion between conflicting interactions.

 If an interaction is committed, all of its participants 
must execute it.

 Any enabled interaction is eventually committed or 
canceled.

 We showed that this requirement can be 
violated!
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Synthesizing Violating 
Architectures

 Main Idea:

 Architectures can be generated by some 
initialization code. Thus, they can be synthesized 
similarly to normal code.

 Define building blocks from which such code 
portions can be built.

 Use genetic programming for the automatic 
generation and evolution of versions of the 
initialization code.

 Define a fitness function that will guide us to the 
target architecture (violating the spec.).
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Initialization code for α-core 
Architectures 

 We define the following building blocks:

 Participant, Coordinator – constants of type 
proc_type

 CreateProc(proc_type) – dynamically 

create new process of type proc_type

 Connect(participant_id, coordinator_id) –
connects between a particular participant 
and coordinator
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Initialization code for α-core 
Architectures - Example

CreateProc(Participant)

CreateProc(Participant)

CreateProc(Participant)

CreateProc(Coordinator)

CreateProc(Coordinator)

CreateProc(Coordinator)

Connect(1, 4)

Connect(1, 5)

Connect(2, 6)

Connect(3, 4)

Connect(3, 5)

Connect(3, 6)

• The code on the left generates the architecture on the right:
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Coevolution: Evolving Violating 
Architectures

 Search of architectures is guided by a fitness 
function, assigning a score for each 
generated architecture.

 Based on model checking, but the goal is to 
falsify the specification.

 Highest score is given when at least one LTL 
property is violated

 Lower scores can be assigned to architectures 
which are “close” to violating a property.
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Finding the α-core Bug

 Each coordinator process uses a variable n
counting its currently active offers.

 n should be decreased to 0 when an interaction 
is canceled.

 We suspected that this property might be 
violated in some rare cases, and fed the protocol 
and this property into our tool.

 The tool indeed discovered an architecture under 
which the property can be violated.

 The violation can lead to a livelocks and 
deadlocks in the algorithm.
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The Found Architecture and 
Counterexample

n is 
wrongly 

decreased 
twice

Found 
architecture
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Correcting the α-core Bug

 The tool first found a correction for the above architecture.

 However, this correction was refuted by another discovered 
architecture.

 After a series of corrections and refutations, a final (and simple) 
solution was found, which could not be refuted.

 The solution includes the following  code replacement:

If n > 0 then 
n := n - 1

If sender  shared then 
n := n - 1
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Conclusions

 Formal methods (Testing, RV, Model 

Checking) have severe limitations: 

 High complexity.

 Decidable under some strict conditions.

 Synthesis is even more difficult!

 Use genetic programming to enhance the 
performance and these methods and 
alleviate restrictions.
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More conclusions

 Can be used to synthesize concurrent code.

 Can be used to synthesize parametric code.

 Can be used to improve and correct code.

 For parametrized systems: use model 

checking as enhanced testing (for particular 
arguments/architectures). 
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