Automatic Synthesis of
Code Using Genetic
Programming

! g
! 4 e
(&)
: 4
N f

< ol N ." : ‘-...—'"7,'?»_
b

Doron A. Peled

Bar Ilan University,
Israel

Why not synthesize the software
directly from specification?

Revision |

How to construct a model from
i the specification?

Synthesis
= Transforms spec. directly to a model that satisfies it.
« Hard (complexitywise) and sometimes undecidable.

s Brute-force enumeration

= All possible programs of a specific domain and size are
generated and model-checked.

= All existing solutions will eventually be found.

= Highly time-intensive. Not practical for programs with
more than few lines of code.

= Sketching [Lazema]: small variants, resolved
through SAT solving.

i Combining GP & Model Checking

2. Configuration User 1. Specification

6. Final Model / Results

3. Initial population

g
Enhanced
GE) 4. Verification results Model
Engine « Checker

5. New programs

RV2

@)
-
(@)

i Program Representation

rograms are represented @
as trees.
= Internal nodes represent o @
expressions or

instructions with

parameters (assignment, @ o @ °

while, if, block).

= Terminal nodes represent
constants or expressions ° @
without any parameter
(0, 1, 2, me, other). @

= Strongly-typed GP is used

[Montana 95]. While (A[2] != 0)
Alme]=1

i Mutation Operation

= [he main operation we use.

= Allows performing small modifications
to an existing program by the following
method:

= Randomly choose a program node
(internal, or leaf).

= According to the node type, apply one of
the following operations with respect to the
chosen node (strong typing must be kept):

6

Replacement Mutation type (a)

= Replace the sub-
tree rooted by
node with a new o @
randomly Ca) Co > Ca CaD
generated sub-
tree. (23 (me >

= Can change a o
single node or @
an entire sub- While (A[2] I= 0)

tree. A[me] = A[0]

(uhie),

* Insertion Mutation type (b)

an immediate
parent to the selected
node.

= Randomly create other
offspring to the new
parent, if needed.

= According to the
selected parent type,
can cause:
= Insertion of code,

= Wrapping code with a
while loop,

» Extending Boolean
expressions.

While (A[2] != 0)
A[2] = other 8
Alme] =1

i Reduction Mutation Type (c)

= Replace the selected node by one of its
offspring.

= Delete the remaining offspring of the
node.

= Has the opposite effect of the previous
insertion mutation, and reduces the
program size.

= Delete the sub-
tree rooted by
the node.

= Update
ancestors
recursively.

While (A[2] '= 0)
Alme] =1

10

Crossover Example

f§

A[2] me
a[0] = other

If (A[me] 1= 1)
while (a[me] == other)

11

uilding Program’s State-graph

ach state consists of values of variables, program

Edges represent atomic transitions caused by program

Instructions.

Non Critical Section
Alme] = 1

While (A[1] == A[other]) >
Critical Section

A[1] = other

Can be decomposed into
SCCs [Tarjan 72].

.ﬂ:fau C$1Non €S

I'-.l Try “HBT1}

N
\ 000 g liNon CS

i

i T,
'_.[_II-EIC.IAE‘_.J]:NGEL s

P \
'.\.El-ﬂ_l_d/;*.:f]:h'au Cs5 _."I1:=

1 while ‘:ETr}

N
rann e, %
L0301 L 0MNenCS |

-/q.

I, 1:Enter C 3,“

v

o e
._\E-LI:_IIJH_L:Nau Ccs

—

0T

.,_!;_5"1'\

...'\G Ty
.,

™,

l:Tr_v\

W=

-
T
N

b

zuw ;q__'.‘l:N-:-:CEm

—
= D= |LTuy 4,
)

(2110))
A \

12

Example: The Mutual
i Exclusion Problem

= Originally described by [Dijkstra 65].
= Many variants and solutions exist.
while wi do
Pre Protocol

Critical Section
Post Protocol

end while

= We want to automatically generate correct
code for the pre and post protocol parts.

13

iNSpecification
= We use Linear Temporal Logic (LTL) [Pnueli 77]

to define specification properties.

= LTL formulas are interpreted over an infinite
sequences of states, and consist of:
= Propositional variables,
= Logical connectives, suchas -, A, v, —, and

= Temporal operators, such as:
= O(p) — p will eventually occur.
« [I(p) — p always occurs.

= A model M satisfies a formula ¢ (M F @) if every
(fair) run of M satisfies .

i Specification

Safety: [1—(py in CSy A py in CS;)
Liveness:[] (p; in preCS; ->p; in CS))
Not enough:
solution based on
alternation requires
always willing to
enter critical
section.

That's why we added w/
to control process’ wishing
to enter CS.

LO:While True do
NCO:wait(Turn=0);
CRO:Turn=1

endwhile | |

L1:While True do
NC1l:wait(Turn=1),
CR1:Turn=0

endwhile

15

i Model Checking and GP

= Can standard model checking results be used as a GP
fitness function?

= Yes, but [Johnson 07]: a fitness function with just two
values per proerpty is a poor one. Need more fitness levels.

No execution satisfies the property.
Some executions satisfy the property.

Every prefix of a bad execution can be continued to a
good execution in the program (so, we made infinitely
many “bad” choices”).

Statistically, at least/less than some portion of the
executions satisfy the property.

All the executions satisfy the property.
16

i Fitness Level 0

s All SCCs are empty | e ™
(not accepting).

= Property iIs never
satisfied.

s No scheduler
choices are
needed.

B Empty SCC

i Fitness Level 1

At least one accepting B Accepiing SCC
SCC.

= At least one empty bottom
SCC.

= Finite number of scheduler
choices can lead the
execution into the empty
BSCC (D in the example).

= The program will stay
there forever.

B Empty SCC

= BSCC with onl?/ 1 node
means a deadlock — gets
WOorse score.

i Fitness Level 2

= All BSCCs are = \ccepting SCC
accepting.

= At least one empty
SCC.

= Infinite scheduler
choices are needed
for keeping the
program inside the

empty SCC (B in the
example).

Fitness Level 3

= All executions are
accepting.

= This can be checked
by converting the
negation of the
property, and
checking the
emptiness of the
intersection.

i Overall Fitness Function

Fitness levels & scores are calculated for each specification
property.

How to merge into a single fitness function?

Naive summing can bias the results, since some properties

may be trivially satisfied when more basic properties are
violated.

Thus, spec. properties are divided into levels, starting from
level 1 for most basic properties.

As long as not all properties at level i are satisfied,
properties at higher level gets fitness of 0.

P

rsimony

'

GP programs tend to grow up over time to the maximal
allowed tree size (“bloating”).

To avoid that, we use parsimony as a secondary fitness
measure.

Number of program nodes * small factor is subtracted
from the fitness score.

The factor should be carefully chosen.

= Should encourage programs to reduce their size, but
= Should not harm the evolutionary process.

Therefore, programs cannot get a score of 100, but only
get close to it. The run can be stopped when all properties
are satisfied.

Programs can be reduces either by mutations, or directly
by detecting dead code by the model checking process,
and then removing it.

i The Mutual Exclusion Problem

= Many variants and solutions exist.

= Modeled using the following program parts
inside a loop in each process:
= Non Critical Section
= Pre Protocol
= Critical Section
= Post Protocol

= We wish to automatically generate correct
code for the pre and post protocol parts.

23

Spec. Properties

includes the following LTL properties:

No. | Tvpe Definition Description Level

1 Safety O-(pp in CS A py in CS) Mutual Exclusion | 1

2 Liveness | O(py in Post — <(pg in | Progress 2
NonCS))

3 O(py in Pest — <©(p; in
NonCS))

4 O{pg in Pre A O(p; in NonCS)) | No Contest 3
— ©(po in C8))

5 O{py in Pre A O(pg in NonCs))
— ¢(py in CS))

6 O{(pg in Pre A py in Pre) — | Deadlock Freedom | 4
Clip in CS V py in CS))

7 O(pg in Pre — <(pp in CS)) Starvation

8 O(py in Pre — <(py in C8))

= Some properties are weaker/stronger than others, but
they produce additional levels!

‘_h Runs Configuration

= The following parameters were used:
= Population size: 150
= Max number of iterations: 2000

In the following examples, we will show only the body
of the while loop for one process (the other is
symmetric).

25

‘_L An Example of a Run (1st variant)

Non Critical Sectilon
if (A[O] == 0)

AlO] = A[1]
Critical Section
A[1] = Alother]

Score: 0.0

= Randomly created.
= Does not satisfy mutual exclusion property.
= Higher level properties are set to 0.

26

‘_L An Example of a Run (1st variant)

Non Critical Section
While (A[1] !'= me)
Critical Section
A[O] = 0O

Score: 66.77

= Randomly created.
= While loop guarantees mutual exclusion.
= Only process 0 can enter the critical section.

27

i An Example of a Run (1%t variant)

Nlon Critical Sectlon
While (A[1] '= me)
Critical Section
A[1] = other

Score: 75.77

= Last line changed by a mutation.
= The naive mutual exclusion algorithm.
= Processes uses a “turn” flag, but depend on each other.

28

i An Example of a Run (15t variant)

Non Critical Sectilon
Alme] =1

While (A[other] != 0)
Critical Section
Alother] = Alother]

Score: 70.17

= An important building block common to many algorithms.
= Each process set its own flag and wait for other’s flag, but
= The flag is not turned off correctly.

= Might eventually deadlock.

29

‘_L An Example of a Run (15t variant)

Non Critical Section
Alme] = 1

While (Alocther] !'= 0)
Critical Sectlon
Alme] = me

Score: 76.10

= Last line is replaced by a mutation.
= Now, process 0 correctly turns its flag off.
= Property 5 is fully satisfied

30

‘_L An Example of a Run (15t variant)

Non Critical Secticon
Alme] = 1

While (Alother] !'= 0)
Critical Section
Alme] = 0

Score: 92.77

= A single node is changed by a mutation.
= Both processes turn off their flag.
= Properties 4 and 5 are fully satisfied.

= Still, deadlock occurs if both processes try to enter
simultaneously. 31

An Example of a Run (15t variant)

Non Critical Section

Alme] = 1
While (A[other] '= 0)
Alme] = 1

Critical Section
Alme] = me

Score: 93.20

= A mutation added a line to the empty while loop.

= This turns the deadlock into a livelock, and causes a slight
fitness improvement.

32

An Example of a Run (1st variant)

Non Critical Section
Alme] =1

While (A[other] t'= 0)
Alme] = me
Alme] =1
Critical Section
Alme] = 0

Score: 94.37

= Another line is added to the while loop.

= No more dead or live locks, but property can still be
violated by some infinite scheduler choices.

33

An Example of a Run (15t variant)

Non Critical Section
Alme] =1

While (A[other] !'= 0)
Alme] = me
While (Al[other] != A[QO])
While (A[1] '= 0)
Alme] = 1
Critical Section
Alme] = 0

Score: 96.50

= Created by some random mutations.
= All properties are satisfied.
= Still, not the shortest solution.

34

An Example of a Run (15t variant)

Non Critical Section
Alme] = 1

While (A[other] != 0)
Alme] = me
While (A[other] == 1)
Alme] = 1

Critical Secticn

Alme] = 0

Score: 97.10

= Created by more mutations.
= The shortest found algorithm.

= Identical to the known “One bit protocol” [Burns
& Lynch 93].

35

MCGP - A Software Synthesis Tool Based on
Model Checking and Genetic Programming

Best generated programs:

Generated code: Properties:

Wihile (True) Mame Fitness % Programid ~ Fithess % iteration
choose
Nop o5 100 132 27.81 0
ar progresz1 100 E42 E010 i
state[me] = TRY_CE progress2 100 2623 B0.11 20
Alother] =1 no-content1 1a0 6292 6011 43
Map ne-gontent2 100 16991 7859 135
While |:1 == A[me]) entrancei 33
Mop entrances 33 Automatically follow best program
state[me] = ENTER_CS FrogramSize 2
state[me] = LEAVE_CS P s
Alother] = 0 Elapzed time: 0:00:50
state[me] = MON_CS Tatal iterations: 145
Total fithess 2 -I Best program's fithess %: _.
7853 7853

36

Synthesizing parametric
i protocols

= Perform model checking for particular cases: in the leader
election problem, with certain ring sizes.

= Coevolution: remember instances (sizes) that caused more
candidates to fail, and recheck them.

= No complete guarantee: terminate if enough checks
passed.

= Model checking as enhanced testing: comprehensive
verification for specific values.

37

i Process types

= Concurrent programs are built from process types
= Each process type

- Has its own set of building blocks

- Can have multiple running instances

- Has a code skeleton, containing
Static parts defined by the user

Dynamic / empty part that have to be synthesized
= A special init process type is responsible for

- Initialization of global variables
- Creation of instances of the other process types

38

i Coevolution

- Alternate between generating synthesis
candidates and parameters for checking it.

= Different fitness functions for the two
goals.

= Fitness for checking/testing parameters can
increase with the number of candidates it
manages to “destroy”.

39

‘_L Code Correction

= The goal is correcting existing protocols.

= The protocol’s code is divided by the user
into:
= Static parts that should remain unchanged,

= Dynamic parts that can be improved or replaced
by the synthesis process.

40

Motivating Example: The a-core
Protocol

Intended for allowing multiparty interactions between
distributed processes.

Published at COORDINATION 2002 conf., and
Concurrency - Practice and Experience Journal.

Two types of processes: Participants, Coordinators

Multiple participants may perform a shared interaction,
which is managed by a dedicated coordinator process.

41

i The a-core Protocol

= Each process has its own state machine

= Processes communicate via asynchronous message
passing

= The protocol should satisfy the following:
= Exclusion between conflicting interactions.

« If an interaction is committed, all of its participants
must execute it.
= Any enabled interaction is eventually committed or
canceled.
« We showed that this requirement can be
violated!

42

Synthesizing Violating
Architectures

Main Idea:

= Architectures can be generated by some
initialization code. Thus, they can be synthesized
similarly to normal code.

= Define building blocks from which such code
portions can be built.

= Use genetic programming for the automatic
generation and evolution of versions of the
initialization code.

= Define a fitness function that will guide us to the
target architecture (violating the spec.).

43

Initialization code for a-core
i Architectures

= We define the following building blocks:

» Participant, Coordinator — constants of type

proc_type
= CreateProc(proc_type) — dynamically
create new process of type proc_type

» Connect(participant_id, coordinator_id) —
connects between a particular participant
and coordinator

44

Initialization code for a-core
Architectures - Example

The code on the left generates the architecture on the right:

CreateProc(Participant)
CreateProc(Participant)
CreateProc(Participant) Pl P2
CreateProc(Coordinator)
CreateProc(Coordinator)
CreateProc(Coordinator) :>
Connect(1,4) “!
Connect(1,5)

Connect(2,6)

Connect(3, 4) P3

Connect(3,5)
Connect(3,6)

Coevolution: Evolving Violating
i Architectures

= Search of architectures is guided by a fitness
function, assigning a score for each
generated architecture.

= Based on model checking, but the goal is to
falsify the specification.

= Highest score is given when at least one LTL
roperty is violated

= Lower scores can be assigned to architectures
which are “close” to violating a property.

46

i Finding the a-core Bug

Each coordinator process uses a variable n
counting its currently active offers.

n should be decreased to 0 when an interaction
IS canceled.

We suspected that this property might be
violated in some rare cases, and fed the protocol
and this property into our tool.

The tool indeed discovered an architecture under
which the property can be violated.

The violation can lead to a livelocks and
deadlocks in the algorithm.

47

The Found Architecture and
Counterexample

msc Assertion violation
Found
peo| [o2 | [a |] @ architecture
OFFHR (1) N
OFFER (2) .
OFFER (3) - — P1 P2
OFFHR (1) R ::;
LOCK (5)
OK| (6) .
 LOCK (1) o e
0K (8)
LOCK (9)
) STAR[T (10)
REFUSE (11)
_START (12)
- REFU$E (13)
. ACKREF (14)
B UNLOEK (15) —
) OFFER (159~ (=0
DFFEM — 1S
) ACKREF (18) n=0 wrongly
I N NS decre_ased
twice

48

Correcting the a-core Bug

The tool first found a correction for the above architecture.

However, this correction was refuted by another discovered
architecture.

After a series of corrections and refutations, a final (and simple)
solution was found, which could not be refuted.

The solution includes the following code replacement:

If n > 0 then
n:=n-1

If sender e shared then
n:=n-1

49

i Conclusions

= Formal methods (Testing, RV, Model
Checking) have severe limitations:
=« High complexity.
= Decidable under some strict conditions.
= Synthesis is even more difficult!

= Use genetic programming to enhance the
performance and these methods and
alleviate restrictions.

50

i More conclusions

= Can be used to synthesize concurrent code.
= Can be used to synthesize parametric code.
= Can be used to improve and correct code.

= For parametrized systems: use model
checking as enhanced testing (for particular
arguments/architectures).

51

