
1

Automatic Synthesis of
Code Using Genetic
Programming

Doron A. Peled

Bar Ilan University,
Israel

Why not synthesize the software
directly from specification?

Specification System

Model checking/

testing

Yes!! No +

Counterexample

Revision

Specification

Synthesis

System

2

How to construct a model from
the specification?

 Synthesis

 Transforms spec. directly to a model that satisfies it.

 Hard (complexitywise) and sometimes undecidable.

 Brute-force enumeration [Bar David, Taubenfeld]

 All possible programs of a specific domain and size are
generated and model-checked.

 All existing solutions will eventually be found.

 Highly time-intensive. Not practical for programs with
more than few lines of code.

 Sketching [Lazema]: small variants, resolved
through SAT solving.

3

Combining GP & Model Checking

GP

Engine

Enhanced

Model

Checker

User
1. Specification2. Configuration

3. Initial population

4. Verification results

5. New programs

6. Final Model / Results

4
RV2016

Program Representation

 Programs are represented
as trees.

 Internal nodes represent
expressions or
instructions with
parameters (assignment,
while, if, block).

 Terminal nodes represent
constants or expressions
without any parameter
(0, 1, 2, me, other).

 Strongly-typed GP is used
[Montana 95].

while

assign!=

0 A[]A[] 1

me2

While (A[2] != 0)

A[me] = 1
5

Mutation Operation

 The main operation we use.

 Allows performing small modifications

to an existing program by the following
method:

 Randomly choose a program node
(internal, or leaf).

 According to the node type, apply one of
the following operations with respect to the
chosen node (strong typing must be kept):

6

Replacement Mutation type (a)

 Replace the sub-
tree rooted by
node with a new
randomly
generated sub-
tree.

 Can change a
single node or
an entire sub-
tree.

While (A[2] != 0)

A[me] = 1

While (A[2] != 0)

A[me] = A[0]

while

assign!=

0 A[]A[]

me2

1A[]

0

7

Insertion Mutation type (b)

 Add an immediate
parent to the selected
node.

 Randomly create other
offspring to the new
parent, if needed.

 According to the
selected parent type,
can cause:
 Insertion of code,

 Wrapping code with a
while loop,

 Extending Boolean
expressions.

while

!=

0A[]

2

assign

A[] 1

me

While (A[2] != 0)

A[me] = 1

while

!=

0A[]

2

assign

A[] 1

me

block

while

!=

0A[]

2

assign

A[] 1

me

block

assign

A[] other

2

While (A[2] != 0)

A[2] = other

A[me] = 1
8

Reduction Mutation Type (c)

 Replace the selected node by one of its

offspring.

 Delete the remaining offspring of the
node.

 Has the opposite effect of the previous
insertion mutation, and reduces the

program size.

9

Deletion Mutation Type (d)

 Delete the sub-

tree rooted by
the node.

 Update
ancestors

recursively.

assign

A[] 1

me

while

!=

0A[]

2

While (A[2] != 0)

A[me] = 1

empty while

!=

0A[]

2

10

Crossover Example

if

!=

1A[]

me

assign

A[] other

0

block

assign

meA[]

2

empty while

==

A[] other

me

A[2] = me

while (a[me] == other)

If (A[me] != 1)

a[0] = other
A[2] = me

a[0] = other

If (A[me] != 1)

while (a[me] == other)
11

Building Program’s State-graph
 Each state consists of values of variables, program

counters, buffers, etc.

 Edges represent atomic transitions caused by program
instructions.

 Can be decomposed into
SCCs [Tarjan 72].

12

Example: The Mutual
Exclusion Problem

 Originally described by [Dijkstra 65].

 Many variants and solutions exist.

while wi do
Pre Protocol

Critical Section

Post Protocol

end while

 We want to automatically generate correct
code for the pre and post protocol parts.

13

Specification

 We use Linear Temporal Logic (LTL) [Pnueli 77]
to define specification properties.

 LTL formulas are interpreted over an infinite
sequences of states, and consist of:
 Propositional variables,

 Logical connectives, such as  ,  ,  , , and

 Temporal operators, such as:
 (p) – p will eventually occur.

 (p) – p always occurs.

 A model M satisfies a formula φ (M╞ φ) if every
(fair) run of M satisfies φ.

Specification

 Safety: (p0 in CS0  p1 in CS1)

 Liveness: (pi in preCSi ->pi in CSi)

 Not enough:
solution based on
alternation requires
always willing to
enter critical
section.

 That’s why we added wi
to control process’ wishing
to enter CS.

15

L0:While True do

NC0:wait(Turn=0);

CR0:Turn=1

endwhile ||

L1:While True do

NC1:wait(Turn=1);

CR1:Turn=0

endwhile

Model Checking and GP

 Can standard model checking results be used as a GP
fitness function?

 Yes, but [Johnson 07]: a fitness function with just two
values per proerpty is a poor one. Need more fitness levels.

 No execution satisfies the property.

 Some executions satisfy the property.

 Every prefix of a bad execution can be continued to a
good execution in the program (so, we made infinitely
many “bad” choices”).

 Statistically, at least/less than some portion of the
executions satisfy the property.

 All the executions satisfy the property.
16

Fitness Level 0

 All SCCs are empty

(not accepting).

 Property is never
satisfied.

 No scheduler
choices are

needed.

A

ED

CB

Empty SCC

Accepting SCC

Fitness Level 1

 At least one accepting
SCC.

 At least one empty bottom
SCC.

 Finite number of scheduler
choices can lead the
execution into the empty
BSCC (D in the example).

 The program will stay
there forever.

 BSCC with only 1 node
means a deadlock  gets
worse score.

A

ED

CB

Empty SCC

Accepting SCC

Fitness Level 2

 All BSCCs are
accepting.

 At least one empty
SCC.

 Infinite scheduler
choices are needed
for keeping the
program inside the
empty SCC (B in the
example).

A

ED

CB

Empty SCC

Accepting SCC

Fitness Level 3

 All executions are

accepting.

 This can be checked
by converting the
negation of the

property, and
checking the
emptiness of the

intersection.

Overall Fitness Function

 Fitness levels & scores are calculated for each specification
property.

 How to merge into a single fitness function?

 Naïve summing can bias the results, since some properties
may be trivially satisfied when more basic properties are
violated.

 Thus, spec. properties are divided into levels, starting from
level 1 for most basic properties.

 As long as not all properties at level i are satisfied,
properties at higher level gets fitness of 0.

Parsimony

 GP programs tend to grow up over time to the maximal
allowed tree size (“bloating”).

 To avoid that, we use parsimony as a secondary fitness
measure.

 Number of program nodes * small factor is subtracted
from the fitness score.

 The factor should be carefully chosen.
 Should encourage programs to reduce their size, but
 Should not harm the evolutionary process.

 Therefore, programs cannot get a score of 100, but only
get close to it. The run can be stopped when all properties
are satisfied.

 Programs can be reduces either by mutations, or directly
by detecting dead code by the model checking process,
and then removing it.

The Mutual Exclusion Problem

 Many variants and solutions exist.

 Modeled using the following program parts
inside a loop in each process:

 Non Critical Section

 Pre Protocol

 Critical Section

 Post Protocol

 We wish to automatically generate correct
code for the pre and post protocol parts.

23

Spec. Properties
 The specification includes the following LTL properties:

 Some properties are weaker/stronger than others, but
they produce additional levels!

24

Runs Configuration

 The following parameters were used:

 Population size: 150

 Max number of iterations: 2000

In the following examples, we will show only the body
of the while loop for one process (the other is
symmetric).

25

An Example of a Run (1st variant)

 Randomly created.

 Does not satisfy mutual exclusion property.

 Higher level properties are set to 0.

Score: 0.0

26

An Example of a Run (1st variant)

 Randomly created.

 While loop guarantees mutual exclusion.

 Only process 0 can enter the critical section.

Score: 66.77

27

An Example of a Run (1st variant)

 Last line changed by a mutation.

 The naïve mutual exclusion algorithm.

 Processes uses a “turn” flag, but depend on each other.

Score: 75.77

28

An Example of a Run (1st variant)

 An important building block common to many algorithms.

 Each process set its own flag and wait for other’s flag, but

 The flag is not turned off correctly.

 Might eventually deadlock.

Score: 70.17

29

An Example of a Run (1st variant)

 Last line is replaced by a mutation.

 Now, process 0 correctly turns its flag off.

 Property 5 is fully satisfied

Score: 76.10

30

An Example of a Run (1st variant)

 A single node is changed by a mutation.

 Both processes turn off their flag.

 Properties 4 and 5 are fully satisfied.

 Still, deadlock occurs if both processes try to enter
simultaneously.

Score: 92.77

31

An Example of a Run (1st variant)

 A mutation added a line to the empty while loop.

 This turns the deadlock into a livelock, and causes a slight
fitness improvement.

Score: 93.20

32

An Example of a Run (1st variant)

 Another line is added to the while loop.

 No more dead or live locks, but property can still be
violated by some infinite scheduler choices.

Score: 94.37

33

An Example of a Run (1st variant)

 Created by some random mutations.

 All properties are satisfied.

 Still, not the shortest solution.

Score: 96.50

34

An Example of a Run (1st variant)

 Created by more mutations.
 The shortest found algorithm.
 Identical to the known “One bit protocol” [Burns

& Lynch 93].

Score: 97.10

35

MCGP – A Software Synthesis Tool Based on
Model Checking and Genetic Programming

36

Synthesizing parametric
protocols

 Perform model checking for particular cases: in the leader
election problem, with certain ring sizes.

 Coevolution: remember instances (sizes) that caused more
candidates to fail, and recheck them.

 No complete guarantee: terminate if enough checks
passed.

 Model checking as enhanced testing: comprehensive
verification for specific values.

37

Process types

 Concurrent programs are built from process types
 Each process type

▪ Has its own set of building blocks

▪ Can have multiple running instances

▪ Has a code skeleton, containing

▪ Static parts defined by the user

▪ Dynamic / empty part that have to be synthesized
 A special init process type is responsible for

▪ Initialization of global variables

▪ Creation of instances of the other process types

38

Coevolution

 Alternate between generating synthesis

candidates and parameters for checking it.
 Different fitness functions for the two

goals.

 Fitness for checking/testing parameters can
increase with the number of candidates it
manages to “destroy”.

39

Code Correction

 The goal is correcting existing protocols.

 The protocol’s code is divided by the user
into:

 Static parts that should remain unchanged,

 Dynamic parts that can be improved or replaced
by the synthesis process.

40

Motivating Example: The α-core
Protocol

 Intended for allowing multiparty interactions between
distributed processes.

 Published at COORDINATION 2002 conf., and
Concurrency - Practice and Experience Journal.

 Two types of processes: Participants, Coordinators

 Multiple participants may perform a shared interaction,
which is managed by a dedicated coordinator process.

41

The α-core Protocol

 Each process has its own state machine

 Processes communicate via asynchronous message
passing

 The protocol should satisfy the following:

 Exclusion between conflicting interactions.

 If an interaction is committed, all of its participants
must execute it.

 Any enabled interaction is eventually committed or
canceled.

 We showed that this requirement can be
violated!

42

Synthesizing Violating
Architectures

 Main Idea:

 Architectures can be generated by some
initialization code. Thus, they can be synthesized
similarly to normal code.

 Define building blocks from which such code
portions can be built.

 Use genetic programming for the automatic
generation and evolution of versions of the
initialization code.

 Define a fitness function that will guide us to the
target architecture (violating the spec.).

43

Initialization code for α-core
Architectures

 We define the following building blocks:

 Participant, Coordinator – constants of type
proc_type

 CreateProc(proc_type) – dynamically

create new process of type proc_type

 Connect(participant_id, coordinator_id) –
connects between a particular participant
and coordinator

44

Initialization code for α-core
Architectures - Example

CreateProc(Participant)

CreateProc(Participant)

CreateProc(Participant)

CreateProc(Coordinator)

CreateProc(Coordinator)

CreateProc(Coordinator)

Connect(1, 4)

Connect(1, 5)

Connect(2, 6)

Connect(3, 4)

Connect(3, 5)

Connect(3, 6)

• The code on the left generates the architecture on the right:

45

Coevolution: Evolving Violating
Architectures

 Search of architectures is guided by a fitness
function, assigning a score for each
generated architecture.

 Based on model checking, but the goal is to
falsify the specification.

 Highest score is given when at least one LTL
property is violated

 Lower scores can be assigned to architectures
which are “close” to violating a property.

46

Finding the α-core Bug

 Each coordinator process uses a variable n
counting its currently active offers.

 n should be decreased to 0 when an interaction
is canceled.

 We suspected that this property might be
violated in some rare cases, and fed the protocol
and this property into our tool.

 The tool indeed discovered an architecture under
which the property can be violated.

 The violation can lead to a livelocks and
deadlocks in the algorithm.

47

The Found Architecture and
Counterexample

n is
wrongly

decreased
twice

Found
architecture

48

Correcting the α-core Bug

 The tool first found a correction for the above architecture.

 However, this correction was refuted by another discovered
architecture.

 After a series of corrections and refutations, a final (and simple)
solution was found, which could not be refuted.

 The solution includes the following code replacement:

If n > 0 then
n := n - 1

If sender  shared then
n := n - 1

49

Conclusions

 Formal methods (Testing, RV, Model

Checking) have severe limitations:

 High complexity.

 Decidable under some strict conditions.

 Synthesis is even more difficult!

 Use genetic programming to enhance the
performance and these methods and
alleviate restrictions.

50

More conclusions

 Can be used to synthesize concurrent code.

 Can be used to synthesize parametric code.

 Can be used to improve and correct code.

 For parametrized systems: use model

checking as enhanced testing (for particular
arguments/architectures).

51

