
Symbolic Execution for Evolving Software

Cristian Cadar
Department of Computing

Imperial College London

CREST Open Workshop
UCL, London, UK, 30 January 2017

Joint work with

Peter Collingbourne, Paul Kelly, Tomek Kuchta,

Paul Marinescu, Hristina Palikareva

2

Motivation

Software evolves, with new versions and patches being
released frequently

Unfortunately, patches are notoriously unreliable

E.g., many users refuse to upgrade their software…

…relying instead on outdated versions flawed with
vulnerabilities or missing useful features and bug fixes

Crameri, O., Knezevic, N., Kostic, D., Bianchini, R., Zwaenepoel, W.
Staged deployment in Mirage, an integrated software upgrade testing and distribution system.SOSP’07

Many admins (70% of those interviewed) refuse to upgrade

Automatically-Generated Patches

• Research community has recently started to
look at automatically-generated patches for

– Program repair / bug fixing

– Improving non-functional properties such as

performance and energy consumption

– Porting to other hardware/software
environments

3

Symbolic Execution for
Evolving Software

• Active area of research in the Software
Reliability Group at Imperial

• Three main directions so far:

– Testing/verifying semantics-preserving changes,
such as performance optimizations and porting to

different platforms

– Coverage-testing of arbitrary software patches

– Behaviour-testing of arbitrary software patches

• We have only looked at manual changes

– Are automatically-generated testing any different?
4

Symbolic Execution
or Dynamic Symbolic Execution (DSE)

Symbolic execution is a program

analysis technique for automatically

exploring paths through a program

Reasons about the feasibility of

individual paths using a constraint

solver

Can generate test inputs for each path

explored

6

Symbolic Execution
for Evolving Software

Evolving software offer the potential to:

• Prune a large part of the search space

• Perform incremental reasoning/analysis

• Use previous version as an oracle

10

SymEx for Evolving Software

Testing and Verifying

Optimizations

12

Testing Semantics-Preserving

Evolution via Crosschecking

Lots of available opportunities as code is:

Optimized frequently Refactored frequently

Ported to new platforms

13

We can find any mismatches in their behavior by:

1. Use symbolic execution to explore multiple paths in version 1

2. For each explored path, explore corresponding path(s) in version 2

3. Comparing the (symbolic) output b/w versions

Unoptimized version

Optimized version

Symbolic

execution

engine

Mismatches

SIMD Optimizations

Most processors offer support

for SIMD instructions

• Can operate on multiple data

concurrently

• Many algorithms can make

use of them (e.g., computer

vision algorithms)

[EuroSys 2011]

OpenCV

Popular computer vision

library from Intel and

Willow Garage

[Corner detection algorithm]

20

Computer vision

algorithms were

optimized to make

use of SIMD

OpenCV Results

• Crosschecked 51 SIMD-optimized versions against

their reference scalar implementations

• Verified the correctness of 41 of them up to a certain image

size (bounded verification)

• Found mismatches in 10

• Most mismatches due to tricky FP-related issues:

• Precision, rounding, associativity, distributivity, NaN values

[EuroSys 2011]

GPGPU Optimizations

Scalar vs. GPGPU code

[HVC 2011]

SymEx for Evolving Software

High-Coverage Patch Testing

with Katch

•1 test4

KATCH: High-Coverage

Symbolic Patch Testing

commit

KATCH

test1 test4

--- klee/trunk/lib/Core/Executor.cpp 2009/08/01 22:31:44 77819

+++ klee/trunk/lib/Core/Executor.cpp 2009/08/02 23:09:31 77922

@@ -2422,8 +2424,11 @@

info << "none\n";

} else {

const MemoryObject *mo = lower->first;

+ std::string alloc_info;

+ mo->getAllocInfo(alloc_info);

info << "object at " << mo->address

- << " of size " << mo->size << "\n";

+ << " of size " << mo->size << "\n"

+ << "\t\t" << alloc_info << "\n“;

test3
test4

test4

bug

test4

test4

test4

test4
test4 test4test4test4

test4

test4test4

test4 test4

bug
bug

test4

[SPIN 2012, ESEC/FSE 2013]

Symbolic Patch TestingSeed input

Patch
+ if (errno == ECHILD) +

{ log_error_write(srv,

__FILE__, __LINE__, "s",

”...");

+ cgi_pid_del(srv, p, p-

>cgi_pid.ptr[ndx]);

Program

1. Select the regression

input closest to the patch

(or partially covering it)

•1 test4
test1 test4

test3
test4

test4

bug

test4

test4

test4

test4
test4 test4test4test4

test4

test4test4

test4 test4

bug
bug

test4

KATCH

Symbolic Patch Testing

Program

Patch

2. Greedily drive

exploration toward

uncovered basic

blocks in the patch

•1 test4
test1 test4

test3
test4

test4

bug

test4

test4

test4

test4
test4 test4test4test4

test4

test4test4

test4 test4

bug
bug

test4

KATCH

Seed input

Symbolic Patch Testing

3. If stuck, identify the

constraints/bytes that

disallow execution to

reach the patch, and

backtrack

•1 test4
test1 test4

test3
test4

test4

bug

test4

test4

test4

test4
test4 test4test4test4

test4

test4test4

test4 test4

bug
bug

test4

KATCH

Program

Patch

Seed input

Symbolic Patch Testing

Combines symbolic execution with

various program analyses such as

weakest preconditions for input

selection, and definition switching for

backtracking

•1 test4
test1 test4

test3
test4

test4

bug

test4

test4

test4

test4
test4 test4test4test4

test4

test4test4

test4 test4

bug
bug

test4

KATCH

Program

Patch

[ESEC/FSE 2013]

Seed input

Extended Evaluation

Key evaluation criteria: no cherry picking!

• choose all patches for an application over a

contiguous time period

App. Suite ELOC Patches #BBs

FindUtils (FU)
find, locate, xargs

~12k 125 written over

~26 months

344

DiffUtils (DU)
cmp, (s)diff, diff3

~55k

+ 280k in libs

175 written over

~30 months

166

BinUtils (BU)
ar, elfedit, nm, etc.

82k

+ 800k in libs

181 written over

~16 months

852

[ESEC/FSE 2013]

Patch Coverage (basic block level)

TEST Uncovered

100%63%0%

FU:

TEST

100%0%

BU: Uncovered

18%

Standard symbolic execution (30min/BB) only added +1.2% to FU

TEST Uncovered

100%35%0%

DU:

Patch Coverage (basic block level)

TEST + KATCH Un

87% 100%63%0%

FU: 10min/BB

Standard symbolic execution (30min/BB) only added +1.2% to FU

TEST + KATCH Uncovered

73% 100%35%0%

DU: 10min/BB

TEST

100%33%0%

BU: +K Uncovered

18%

15min/BB

Binutils Bugs

41

• Found 14 distinct crash bugs

• 12 bugs still present in latest version of BU

• Reported and fixed by developers

• 10 bugs found in the patch code itself or in code

affected by patch code

TEST

100%33%0%

BU: +K Uncovered

18%

15min/BB

SymEx for Evolving Software

Behavioural Patch Testing

via Shadow Symbolic Execution

Is Basic Block Coverage Enough?

x = 6 x = 7 x = 8 x = 9

if (x % 2 == 0)

. . .

if (x % 3 == 0)

. . .

• If I change a statement, what tests should I add?

Old New

44

Is High Coverage Enough?

if (x % 2 == 0)

. . .

if (x % 3 == 0)

. . .

x = 6 x = 7 x = 8

Full branch coverage in the new version

x = 9

• If I change a statement, what tests should I add?

Old New

45

Is High Coverage Enough?

if (x % 2 == 0)

. . .

if (x % 3 == 0)

. . .

x = 6 x = 7 x = 8 x = 9

However, totally useless for testing the patch!

• If I change a statement, what tests should I add?

Old New

46

Is High Coverage Enough?

• If I change a statement, what tests should I add?

if (x % 2 == 0)

. . .

if (x % 3 == 0)

. . .

x = 6 x = 7 x = 8 x = 9

old then

new else

old else

new then

Old New

Shadow Symbolic Execution

48

Automatically generate inputs that trigger different

behaviors in the two versions

The novelty of shadow symbolic execution is to run the two

versions together (in the same symbolic execution instance),

with the old version shadowing the new

• Can prune large parts of the search space, for which the two

versions behave identically

• Provides the ability to reason about specific values leading to

simpler path constraints

• Is memory-efficient by sharing large parts of the symbolic

constraints

• Does not execute unchanged computations twice

Behavioural Testing: Algorithm

52

1) Start with seed inputs covering patch

 Or use KATCH if one is not available

Program

Seed input

Patch

Behavioural Testing: Algorithm

53

1) Start with seed inputs covering patch

 Or use KATCH if one is not available

2) Whenever a possible divergence found
on those paths, generate a test case

Program

Patch

Seed input

Behavioural Testing: Methodology

54

1) Start with seed inputs covering patch

 Or use KATCH if one is not available

2) Whenever a possible divergence found
on those paths, generate a test input

3) Start bounded symbolic execution at

each divergence point, to generate
more divergent test inputs

Program

Patch

BSE

BSE

Seed input

Mismatches Found in cut

Input Old New

cut –c1-3,8- -output-d=: file

(file is “abcdefg”)

abc abc + buffer overflow

cut -c1-7,8- --output-d=: file

file contains “abcdefg”

abcdef abcdef + buffer
overflow

cut -b0-2,2- --output-d=: file

file contains “abc”

abc signal abort

cut -s -d: -f0- file

(file is “:::\n:1”)

:::\n:1 \n\n

cut –d: -f1,0- file

(file is “a:b:c”)

a:b:c a

[Palikareva, Kuchta, Cadar, ICSE 2016]

Symbolic Execution

for Evolving Software

• Testing and bounded verification of optimizations via

crosschecking (equivalence checking)

• Found semantic errors and performed bounded

verification of SIMD and GPGPU optimizations

• KATCH: automatic patch testing guided by heuristics and

program analyses

• Automatically improved patch coverage and found errors in

FindUtils, DiffUtils, BinUtils and Lighttpd

• Shadow symbolic execution: behavioral patch testing

• Revealed regression bugs and expected divergences in

complex Coreutils patches

Symbolic Execution

for Automatically-Generated Patches

• Do automatically-generated patches present any additional

challenges?

• Can patch generation and testing benefit from collaborating with

each other?

• Can patches be generated so that they are more easily tested?

• Can testing technique take advantage of the structure of

automatically-generated patches?

