
AUTOMATIC PARALLELISATION
OF SOFTWARE USING

GENETIC IMPROVEMENT

Bobby R. Bruce

BOBBY R. BRUCE

INSPIRATION

Samsung Galaxy S7

BOBBY R. BRUCE

INSPIRATION

Samsung Galaxy S7

Mali-T880 MP12

BOBBY R. BRUCE

INSPIRATION

Samsung Galaxy S7

Mali-T880 MP12

Intel i7-2500K
(overclocked to

5GHz)

BOBBY R. BRUCE

INSPIRATION

Samsung Galaxy S7

Mali-T880 MP12

Intel i7-2500K
(overclocked to

5GHz)

BOBBY R. BRUCE

INSPIRATION

Samsung Galaxy S7

Mali-T880 MP12

Intel i7-2500K
(overclocked to

5GHz)

70 GFLOPs

BOBBY R. BRUCE

INSPIRATION

Samsung Galaxy S7

Mali-T880 MP12

Intel i7-2500K
(overclocked to

5GHz)

265.2 GFLOPs 70 GFLOPs

BOBBY R. BRUCE

INSPIRATION

Mali-T880 MP12

Intel i7-2500K
(overclocked to

5GHz)

265.2 GFLOPs 70 GFLOPs4327 GFLOPs

nVidia GTX 1060

WHY DON’T WE UTILISE THIS POWERFUL HARDWARE?

BOBBY R. BRUCE

• Developers lack the skills

• Hardware specialisation

• Developers’ time is
expensive; translating code
to run on the GPU is
expensive

• Getting decent optimisation
requires manual trial and
error

WHY DON’T WE UTILISE THIS POWERFUL HARDWARE?

BOBBY R. BRUCE

• Developers lack the skills

• Hardware specialisation

• Developers’ time is
expensive; translating code
to run on the GPU is
expensive

• Getting decent optimisation
requires manual trial and
error

An Automated approach
would be ideal

BACKGROUND: WHAT’S CURRENTLY AVAILABLE?

BOBBY R. BRUCE

BACKGROUND: WHAT’S CURRENTLY AVAILABLE?

BOBBY R. BRUCE

Domain

Pros

Cons

BACKGROUND: WHAT’S CURRENTLY AVAILABLE?

BOBBY R. BRUCE

Automatic
Parallelisation

Compilers

Only targets
very specific
loops where
dependencies
are fully
understood

Does not
require any
skills, or
knowledge of,
parallelisation

Domain

Pros

Cons

BACKGROUND: WHAT’S CURRENTLY AVAILABLE?

BOBBY R. BRUCE

Automatic
Parallelisation

Compilers
CUDA/OpenCL

Only targets
very specific
loops where
dependencies
are fully
understood

Difficult to
learn, harder to
master.

Very Manual

Does not
require any
skills, or
knowledge of,
parallelisation

When
implemented
well offers the
best
performance

Domain

Pros

Cons

BACKGROUND: WHAT’S CURRENTLY AVAILABLE?

BOBBY R. BRUCE

Automatic
Parallelisation

Compilers
CUDA/OpenCL Directive-based

Only targets
very specific
loops where
dependencies
are fully
understood

Difficult to
learn, harder to
master.

Very Manual

Does not
require any
skills, or
knowledge of,
parallelisation

When
implemented
well offers the
best
performance

Considerably
easier to
implement.

Still requires
some skill,
practise, and
trial and error.

Domain

Pros

Cons

BACKGROUND: WHAT’S CURRENTLY AVAILABLE?

BOBBY R. BRUCE

Automatic
Parallelisation

Compilers
CUDA/OpenCL Directive-based

Only targets
very specific
loops where
dependencies
are fully
understood

Difficult to
learn, harder to
master.

Very Manual

Does not
require any
skills, or
knowledge of,
parallelisation

When
implemented
well offers the
best
performance

Considerably
easier to
implement.

Still requires
some skill,
practise, and
trial and error.

Domain

Pros

Cons

BACKGROUND: WHAT’S CURRENTLY AVAILABLE?

BOBBY R. BRUCE

Automatic
Parallelisation

Compilers
CUDA/OpenCL Directive-based

Only targets
very specific
loops where
dependencies
are fully
understood

Difficult to
learn, harder to
master.

Very Manual

Does not
require any
skills, or
knowledge of,
parallelisation

When
implemented
well offers the
best
performance

Considerably
easier to
implement.

Still requires
some skill,
practise, and
trial and error.

Domain

Pros

Cons

BACKGROUND: WHAT’S CURRENTLY AVAILABLE?

BOBBY R. BRUCE

Automatic
Parallelisation

Compilers
CUDA/OpenCL Directive-based

Only targets
very specific
loops where
dependencies
are fully
understood

Difficult to
learn, harder to
master.

Very Manual

Does not
require any
skills, or
knowledge of,
parallelisation

When
implemented
well offers the
best
performance

Considerably
easier to
implement.

Still requires
some skill,
practise, and
trial and error.

Domain

Pros

Cons

BACKGROUND: OPENACC

BOBBY R. BRUCE

BACKGROUND: OPENACC

BOBBY R. BRUCE

BACKGROUND: OPENACC

BOBBY R. BRUCE

x20 Speed Up

OUR GOAL: AUTOMATICALLY ADD OPENACC DIRECTIVES

BOBBY R. BRUCE

OPENACC_GI

OUR GOAL: AUTOMATICALLY ADD OPENACC DIRECTIVES

BOBBY R. BRUCE

OPENACC_GI

Patch

Creates

OUR GOAL: AUTOMATICALLY ADD OPENACC DIRECTIVES

BOBBY R. BRUCE

OPENACC_GI

Patch

Creates

CFG-GP

OUR GOAL: AUTOMATICALLY ADD OPENACC DIRECTIVES

BOBBY R. BRUCE

OPENACC_GI

Patch

Creates

CFG-GP FITNESS FUNCTION

Patch

OUR GOAL: AUTOMATICALLY ADD OPENACC DIRECTIVES

BOBBY R. BRUCE

OPENACC_GI

Patch

Creates

CFG-GP

GRAMMAR

FITNESS FUNCTION

Patch

OUR GOAL: AUTOMATICALLY ADD OPENACC DIRECTIVES

BOBBY R. BRUCE

OPENACC_GI

Patch

Creates

CFG-GP

OPENACC
GRAMMAR

GRAMMAR

FITNESS FUNCTION

Patch

OUR GOAL: AUTOMATICALLY ADD OPENACC DIRECTIVES

BOBBY R. BRUCE

OPENACC_GI

Patch

Creates

CFG-GP

OPENACC
GRAMMAR

PROGRAM
DATA

GRAMMAR

FITNESS FUNCTION

Patch

OUR GOAL: AUTOMATICALLY ADD OPENACC DIRECTIVES

BOBBY R. BRUCE

OPENACC_GI

Patch

Creates

CFG-GP

OPENACC
GRAMMAR

PROGRAM
DATA

GRAMMAR

FITNESS FUNCTION

Patch

SOURCE
CODE

LEXICAL
ANALYSER

GRAMMAR

BOBBY R. BRUCE

<start> ::= <base> | <base> <start>
<base> ::= "#pragma acc " <choice>
<choice> ::= "loop "<private> <loop_line_number>
<private> ::= "private(" <variables> ") " | " "
<variables> ::= <variable> | <variable> "," <variables>
<variable> ::= <variable_placeholder>
<variable_placeholder> ::= "1" | "2" | "3" | "4" | "5" | "6" | "7" …

GRAMMAR

BOBBY R. BRUCE

<start> ::= <base> | <base> <start>
<base> ::= "#pragma acc " <choice>
<choice> ::= "loop "<private> <loop_line_number>
<private> ::= "private(" <variables> ") " | " "
<variables> ::= <variable> | <variable> "," <variables>
<variable> ::= <variable_placeholder>
<variable_placeholder> ::= "1" | "2" | "3" | "4" | "5" | "6" | "7" …
<loop_line_number> ::= "15@example1.c" | "145@example2.c"

mailto:15@example1.c
mailto:145@example2.c

GRAMMAR

BOBBY R. BRUCE

<start> ::= <base> | <base> <start>
<base> ::= "#pragma acc " <choice>
<choice> ::= "loop "<private> <loop_line_number>
<private> ::= "private(" <variables> ") " | " "
<variables> ::= <variable> | <variable> "," <variables>
<variable> ::= <variable_placeholder>
<variable_placeholder> ::= "1" | "2" | "3" | "4" | "5" | "6" | "7" …
<loop_line_number> ::= "15@example1.c" | "145@example2.c"

#pragma acc loop private(1,2) 15@example1.c

mailto:15@example1.c
mailto:145@example2.c
mailto:15@example1.c

GRAMMAR

BOBBY R. BRUCE

<start> ::= <base> | <base> <start>
<base> ::= "#pragma acc " <choice>
<choice> ::= "loop "<private> <loop_line_number>
<private> ::= "private(" <variables> ") " | " "
<variables> ::= <variable> | <variable> "," <variables>
<variable> ::= <variable_placeholder>
<variable_placeholder> ::= "1" | "2" | "3" | "4" | "5" | "6" | "7" …
<loop_line_number> ::= "15@example1.c" | "145@example2.c"

mailto:15@example1.c
mailto:145@example2.c

GRAMMAR

BOBBY R. BRUCE

<start> ::= <base> | <base> <start>
<base> ::= "#pragma acc " <choice>
<choice> ::= "loop "<private> <loop_line_number>
<private> ::= "private(" <variables> ") " | " "
<variables> ::= <variable> | <variable> "," <variables>
<variable> ::= <variable_placeholder>
<variable_placeholder> ::= "1" | "2" | "3" | "4" | "5" | "6" | "7" …
<loop_line_number> ::= "15@example1.c" | "145@example2.c"

—- example1.c
+++ example1.c
@@ -15,0 +15,1 @@
+ #pragma acc loop private(x,y)

mailto:15@example1.c
mailto:145@example2.c

INITIAL INVESTIGATION

• Chose to run a very small
example as a sanity check

• nVidia provide an n-body
simulation example already
containing OpenACC
directives

• These directives were
stripped for openacc to
replicate

• Ran for 100 generations with
population of 100

RESULTS

BOBBY R. BRUCE

sequential original gi_best

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Ex
ec

ut
io

n
Ti

m
e

(m
s)

RESULTS

BOBBY R. BRUCE

original gi_best

11
.6

11
.8

12
.0

12
.2

12
.4

12
.6

12
.8

13
.0

Ex
ec

ut
io

n
Ti

m
e

(m
s)

RESULTS: OTHER NOTES
• Seems like much of the gain is due to random search

• We’d like to be able to beat human-written alternatives

• This example is very small, future investigations will show how
well the tool scales

BOBBY R. BRUCE

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100

0
50

10
0

15
0

20
0

25
0

30
0

Generation

El
ite

 P
er

fo
rm

an
ce

 (m
s)

CURRENT/FUTURE WORK

• Currently applying the tool to larger

• At present can only work with C/C++, expanding code to work with
FORTRAN

Possible Improvements:

• Seed initial generation with basic solutions

• Introduce some clever profiling

• Get working with OpenMP as well as OpenACC

BOBBY R. BRUCE

ANY QUESTIONS?

BOBBY R. BRUCE

sequential original optimal

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Ex
ec

ut
io

n
Ti

m
e

(m
s)

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100

0
50

10
0

15
0

20
0

25
0

30
0

Generation

El
ite

 P
er

fo
rm

an
ce

 (m
s)

original optimal

11
.6

11
.8

12
.0

12
.2

12
.4

12
.6

12
.8

13
.0

Ex
ec

ut
io

n
Ti

m
e

(m
s)

