
AUTOMATIC PARALLELISATION 
OF SOFTWARE USING 

GENETIC IMPROVEMENT

Bobby R. Bruce



BOBBY R. BRUCE

INSPIRATION

Samsung Galaxy S7



BOBBY R. BRUCE

INSPIRATION

Samsung Galaxy S7

Mali-T880 MP12



BOBBY R. BRUCE

INSPIRATION

Samsung Galaxy S7

Mali-T880 MP12

Intel i7-2500K 
(overclocked to 

5GHz)



BOBBY R. BRUCE

INSPIRATION

Samsung Galaxy S7

Mali-T880 MP12

Intel i7-2500K 
(overclocked to 

5GHz)



BOBBY R. BRUCE

INSPIRATION

Samsung Galaxy S7

Mali-T880 MP12

Intel i7-2500K 
(overclocked to 

5GHz)

70 GFLOPs



BOBBY R. BRUCE

INSPIRATION

Samsung Galaxy S7

Mali-T880 MP12

Intel i7-2500K 
(overclocked to 

5GHz)

265.2 GFLOPs 70 GFLOPs



BOBBY R. BRUCE

INSPIRATION

Mali-T880 MP12

Intel i7-2500K 
(overclocked to 

5GHz)

265.2 GFLOPs 70 GFLOPs4327 GFLOPs

nVidia GTX 1060



WHY DON’T WE UTILISE THIS POWERFUL HARDWARE?

BOBBY R. BRUCE

• Developers lack the skills 

• Hardware specialisation 

• Developers’ time is 
expensive; translating code 
to run on the GPU is 
expensive 

• Getting decent optimisation 
requires manual trial and 
error



WHY DON’T WE UTILISE THIS POWERFUL HARDWARE?

BOBBY R. BRUCE

• Developers lack the skills 

• Hardware specialisation 

• Developers’ time is 
expensive; translating code 
to run on the GPU is 
expensive 

• Getting decent optimisation 
requires manual trial and 
error

An Automated approach 
would be ideal
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<start> ::= <base> | <base> <start> 
<base>  ::= "#pragma acc " <choice> 
<choice> ::= "loop "<private> <loop_line_number> 
<private> ::= "private(" <variables> ") " | " " 
<variables> ::= <variable> | <variable> "," <variables> 
<variable> ::= <variable_placeholder> 
<variable_placeholder> ::= "1" | "2" | "3" | "4" | "5" | "6" | "7" …
<loop_line_number> ::= "15@example1.c" | "145@example2.c"

—- example1.c 
+++ example1.c 
@@ -15,0 +15,1 @@ 
+ #pragma acc loop private(x,y)

mailto:15@example1.c
mailto:145@example2.c


INITIAL INVESTIGATION

• Chose to run a very small 
example as a sanity check 

• nVidia provide an n-body 
simulation example already 
containing OpenACC 
directives 

• These directives were 
stripped for openacc to 
replicate 

• Ran for 100 generations with 
population of 100 
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RESULTS: OTHER NOTES
• Seems like much of the gain is due to random search 

• We’d like to be able to beat human-written alternatives 

• This example is very small, future investigations will show how 
well the tool scales 
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CURRENT/FUTURE WORK

• Currently applying the tool to larger 

• At present can only work with C/C++, expanding code to work with 
FORTRAN 

Possible Improvements: 

• Seed initial generation with basic solutions 

• Introduce some clever profiling 

• Get working with OpenMP as well as OpenACC

BOBBY R. BRUCE
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