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What is secure information flow?

Private Public

Task
chedule

» Information flows between objects of a computing systems,
e.g., devices, agents, variables, channels etc.

» Information flow security is concerned with how security
information is allowed to flow through a computer system.

» Flow is considered secure if it accepts a specified policy which
defines the accessibility of the information.
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Example: Secure information flow is violated

Security level
x: HIGH security variable y: LOW security variable

Assignment
yi=X;
Control flow

if (xmod2==0) theny:=0elsey:=1

Termination behaviour
y = X;
while(y # 0) x 1= x * x

/ 50



Non-interference is too restrictive!

Y

Privacy H Q Computing System

’ == Public L *
PublicL ¢

How much information is leaked?

Observer

» A new policy to relax the NI

» From quantitative view, the program is secure if the amount
of information flow from high to low is small enough.

» |dea: we treat the program as a communication channel, use
information theory, consider how much interference?

50



Outline

Information Theory and Measures

6 /50



Information

An Intuitive Example

X1, p1

> 22

X: X2, p2 IXi /\\M ?

which message
you send?

Xn, pN

» Let H be the average minimum number of questions the
receiver needs to guess which symbol you will send:

oH — N

1
H:—Iogzﬁ

H =log, N

H = —log, p
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Information
Information and entropy
» Surprise of an event x; occurring with probability p;:

— log pi

» Information (entropy) = expected value of surprise:

d f
< Zp, Iogz

» Equivalent to a measurement of uncertainty or variation

» Information is maximised under uniform distribution:

H <log, n
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Random Variables

» A discrete random variable is a surjective function from
sample space to observation space:

X : D — R(D)

where D is a finite set with a specified probability distribution,
and R is the finite range of X

» Joint random variable: (X, Y’)

» Random variable X conditioned on Y =y: P(X =x|Y =y)
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Shannon’s measure of entropy

Entropy (expected value of surprise when X is observed)
H(X) = X yex P(x) 1082 55 = — 2 P(x) log, p(x)

Mutual Information (shared information)

164Y)

Z(X;Y)=HX)+H(Y)—H(X,Y)
Conditional Mutual Information

165Y1Z)

I(X; Y|Z) = H(X|Z) + H(Y|Z) — H(X, Y|Z) g
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Leakage definition

A>T
>~

x
>2
<
.

2
2

Leakage Definition for Batch Programs

> L(H,L') 2 Z(H; L'|L) = H(L'|L) [CHMOT]

» Technical considerations allow us to consider L(H, L") as
H(L') [CHMOT]

» How to calculate H(L") 7?7
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Current approaches

description language tool scalability automatic

Clark,Hunt,Mal  bounds analysis while - vV v
Malacaria partition property - - - -
McCament,Ernst  dynanmic analysis C Vv Vv
Backes,Kopf,Ryb  model checking C Vv -

Heusser,Mal model checking C -

Lowe refusal counting CSP - - -

Boreale IT in process calculus CCS - - -
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The idea

while (x>0)

» Consider simple imperative programs:
skiplass|if|while|compose

» Apply probabilistic domain transformer semantics to calculate
distribution on outputs given distribution on inputs

» Use information theory to measure flow for a giving input
distribution

» Automate the computation of the flows using the semantics
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The semantics

MCnd] - X - X M[Exp] : ¥ — Val
M[BExp] : T =X Val : X
stores ¥ : Ide — Val

Figure: Semantics Domains

fi[x::e]] (:u’) £ )‘X:u(f[[;lze]l(x))
fleliled (W) f fleo] © flan (1)
fl[if bcy ca] (1) f f[[q]] o .f[[b]](ﬂ) + f[[cz]l ° f[[ﬁb]l (1)
flwhile b do c] () = fﬂﬂb]l(l'mnﬁoo()\ﬂl-M‘F

feg © fep ()" (AX. 1))
where, figy(p) = AX.u(X N B)

Figure: Probabilistic Denotational Semantics
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The leakage definition of loops

Entropy of loops

» We define the leakage for loops up to k" iterations by:

E = ﬁwhile(k) = ﬁ(P) +ﬁ(Q|,P)
= H(PoU---UP)+H(QoU---UQ[PoU---UPy)

» case k < n, we can compute the leakage due to each iteration
before the loop terminates with the time of observation

» case k = n, this definition has been proved equivalent to
Malacaria's leakage definition of loops [Mal07]

» case k = 0o, nonterminating loops, H(L) =0
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Leakage Analysis by Probabilistic Semantics: Example

Example: A terminating loop

| 1:=0; while(1<h) 1:=1+1;

» Assume h is 3-bit high security variable with distribution:
[Ow.p.% lw.p.% 7W.p.% ]
» | is low security variable

» Consider the decompositions P; and Q; due to event b':

Po= (b)) = (3} Qo={m(0)}={}
Py = {u(b))} = {&} Q1 = {m()} = {5}
Pr={ub) = (&} Q={m(D)}=(&)
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Leakage Analysis by Probabilistic Semantics

Example: A terminating loop

» Note that g; = p;, hence ﬁ(Q|P) =0, i.e., the information
flow within body is 0

» The leakage computation due to each iteration:

Ewhile—o
»thilef 1
Ewhile—2
»thilefi%
Ewhile—él
»thile75
Ewhile—s

»thile77

Po UPL UP,) = 0.412829778
PoUPLUP, UPs) = 0516570646
PoUPLU-- UPy) = 0.616396764
PoUPLU---UPs) = 0.71252562
PoUPLU--UPs) = 0.805158879
PoUPyU---UP;) = 0.894483808
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The idea

» define an abstraction on the measure space

» concrte lattice
» abstract lattice
» Galois connection

» abstract semantic operations are applied to the abstract space
» soundness and correctness of the abstraction

» estimate the abstract spaces to provide safe bounds on the
entropy computation
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Measurable partitions and abstract domain

Concrete lattice

» the o-algebra B of a finite measure space X forms a complete
lattice

» we define a partial order on B as follows:
Vx1,x2 € B,x1 < xp iff H(x1) < H(x2)
» define an equivalence relation on B:

X1 = X2 iff H(Xl) = H(Xg)
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Measurable partitions and abstract domain

Abstract space

» An element of the abstract domain x}j € X! is defined as a
pair (uj, [Ej]), where i is the weight on the element

» Adjust the concrete space to be sorted

» Make the partition: £ = {E;j|1 <i < n}

» Lift to interval-based partition:

[E (0 1Y — i
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Measurable partitions and abstract domain

The Galois connection

» the abstraction function « is a mapping from concrete space
X to the sets of interval-based partitions X*: X — [X /€],
where [X /€] = {(ui, [Ei])|0 < i < n}

» the concretisation function « is a mapping:

X* — U{x|x € [Ej]/n}, where the [E;] are the blocks of the
abstract object X*, 7 is a sub-partition on each block under
uniform distribution
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Entropy of Measurable Partition and Leakage Computation

» Uniformalisation: a transformation of each block of space of a
variable into a space with uniform distribution on each block

> let [[J¢€ = ¢, the leakage upper bound
U, = H(En)=H(E) +H(n|£')

N ’V pi/ Ni
Hul,...yunJrZu, / Ii_)

= H(pa,--- pn) + Z,Ui log, (NV;)

i=1

where N; is the size of the partition E;
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Example

[1:=0; while(1<h) do 1++;]

Ow.p.0.1, 1w.p.0.1
2w.p.0.1, 3w.p.0.1
4 w.p.0.2, 5w.p.0.2
6 w.p.0.1, 7w.p.0.1

» initial distribution pp —
» Consider the partitions &:

{ E1([0,3],[0,0];) — 0.4, }
E>([4,7]n,[0,0];) — 0.6
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Example

[1:=0; while(l<h) do 1++;]

» A fixpoint is reached at the end.

» Concentrate on the low variable, do uniformalisation on each

block to concretise the final space, and have:

0—04/4
{ [0’ 3]/ — 0.4, } Uniforrgsation g 2__: (14_/4_
6 — 0.6/4

> leakage upper bound:
Uy =H(0.4,0.6) + 0.4 * log, 4 + 0.6 x log, 4 = 2.97

> exact leakage: £ =2.92

1—04/4
3—04/4
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Measuring Information Flow in Reactive Processes
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The idea

» Consider the quantity of information flow in reactive processes
by looking at the different behaviours of a high user from a
low user’s observations.

» The reactive system is modelled by using Probabilistic
Labelled Transition System (PLTS)

» The observation records the history traces of behaviours from
the view of low users in a way of distributions.

» Introduce a transformation on the process tree.

» A metric space is built upon the transformation tree, and the
information flow is measured via metrics.
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The Probabilistic Model

Probabilistic Labelled Transition Systems

» The PLTS is given as a triple PLTS = (T, %, i)
» Specifically, p1po: T — [0,1], pp : ¥ — T — [0,1], where for
any a € X and p is a state that can perform the action a,

indicating the possible next states and their probabilities after
p has performed a.

» Furthermore, Vp € T and can perform action a,
> et Map(p’) =1, ie, ppais a probability distribution.
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The Language and its Semantics

Syntax

F:=_1 | X| Ziel aj.pi-Fi | ns | F1||F2 | /J,X.F

Operational Semantics

Act

Par

Rec

E-L, E
E-—2n 30 piaiEi
m:{pi|l <i<n}, a={a]l <i<n}

E T E E " E
EE T E||E2  Ei||E2 - Ei||E}
Ey —Sr E E - E) (
a#T)
)

E1 H Ez —a?—,r117r2 7T1772.a.(E{ || EZ/

ux.E - E[ux.E/x]
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Observation on traces

> A set of traces can be extracted from the process tree built by
the semantics structure.

» Consider the observation as the sum of the low projection on
such traces.

» Information on the projection of the high inputs from the
trace can be deduced from these observations.

» Under repeated observation on traces, we can deduce
probability distributions on the possible traces.
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Probabilistic Low Bi-simulation ~

> an extension to the concept of bisimulation

> an equivalence relation on the set of processes R produced by
the PLTS, such that, whenever

Ei ~| Ej
the following holds:
VSER/ ~ B =5, S E ==, S

where R/ ~ denotes the set of bisimilar classes of R under
~. and E; ==, S if and only if y = " {4/|E! € S} and
E =%, El.
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A Transformation on the Process Tree

Interaction unit
Define a (high) interaction unit (step) as a subtree of the process
tree whose

» root is labelled by a high input action

» includes every branch terminated by a high input action or L.
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Example process tree
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Transformation trees on interaction units

Figure: Transformation tree on the first interaction step T

we obtain two subtrees due to the two atomic actions ?h; and ?hy in ?Hp as:

™ = Gpais iyt
B 2 2 3

)(2) = (71” 'h +*1|/ +*1|/ Ih +*1|/ lh3. 1) — —
= h.thy. L lh. L 3.thy. L lI3.1hs.
1 1M 3 2 322 3-:h3
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Transformation trees on interaction units

Figure: Transformation tree on the second interaction step T>
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Transformation trees on interaction units

we obtain two subtrees due to the two atomic action ?h; and 7h»

in 7Hq as:
. 7 1
T = (0?3?/71.!/1.!/3.¢+%?hl.!/l.!/4.L+6?h1.!/2¢+
2 2 1 1
Z2hp My thy. L+ 2yl L+ S 2hy Mg thy. L+ =?hy 13 1hs. L)
9 9 9 9
1
!
2
1 1 2
T® = (52 -thtls. L+ 22ht L+ 5Pho th Uy L+

2 1 1 1
—?hy . L + =?hy M3 hy. L + Z7hy.1l3.1hs. L —
9 2.t L+ 9 2.3 hy. L+ 9 o1k ths. 1) — 5
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Observation on the transformation tree

» the observation due to the first interaction unit:
oty = (%!/1 + %!/2) - %

O(T(Z)) _ (L/ +1|/ +1|/)Hg
31737273 T3

» the observation due to the second interaction unit:
) 0.3 0.7 1 2
o)y = (??hl.!ll.!l3.i_+??hl.lll.!l4.J_+g?hl.!IZ.J_Jrg?hZ.!/l.J_Jr
27h 1 J_+27h 5.1) !
SThell L+ Tho . :
) 1 1 2 2
omny = (E?hl.lll.!/5.L + E?hl.llz.L + a?hz.!ll.L + a?hz.!lz.L +

2 b1 1) !
Pyl L) — =
9 3 2
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Information Flow Measurement

Jensen-Shannon Divergence (JSD)

» Consider m distributions P(1), P2 p(m),
» The JSD between the m distributions P, ..., P(M with
weights w® ... w(™ is given by

Dys(PW), P2 plm)y — H(Z wl) pU)y — Z wH(PU))
j=1 j=1
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Information Flow Measurement

The Metric
For a set of processes fi,...,fm € R, du(fi,...,fm) is defined as:

dulfiy- s ) = J H(zmj wl) PU)Y — fj WO H(PU))

Jj=1 Jj=1

Proposition 2.

For any processes fi,...,fm € R, d(fi,...,fm), d(fi,...,fm) =0
i f ~p -~ Fon
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Build the metric spaces

» Consider all the interaction units, we build a collection of
metric spaces (|J T;,Jd;), (i=0,1,...):

TO = {pO}a Tl :?HO < T07 sy 7_n—i-l :?Hn < 7_n

» Clearly, for T-(l),...,T-(mi) €T

1 1

s if PM = = p™) g —0,

» otherwise d; = \/DJS(P,.(I), e P,-(m")) is the metric between

the distributions extracted from the subtree set due to the
interaction step /.

42
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Quantity of the information flow

Definition of leakage

» For each interaction unit started by
PHii={?hi_11 = wi—11,..., "hi—1m_, — Wi—im_,}

we have built a metric space (T}, d;)i>1, where

d = \/DJS(P,.“), ., U

» The leakage upper bound is defined as the square of the sum:

O d)?
i=1
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Quantity of the information flow

Example

0.6/, 0.5/

Figure: The example process tree

44
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Quantity of the information flow

Example

Figure: Transformation on the first interaction unit: T

45 /50



Quantity of the information flow

Example

P> the observations:

oP)y = 04 K L406- byl
o(PP) = 055l 4025 hulp.l +0.25- bl
o) = i
oMy = 03kl 407 byl
P the metric:
4 . ; 4 . .
R 0 3L DR SR
i=1 i=1

= 7H(0.47,0.43,0.1) — (0.274(0.4,0.6) + 0.47(0.5, 0.25, 0.25) +
0.1 % 0 + 0.3H(0.3,0.7)) = 0.557
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Quantity of the information flow

Example

0 0

u.s/zu.srle.srl n 0.75 0.41

Iy 131 0.5/,,0/\30.5/3 II3 I [
o

0.7/
Figure: Transformation on the second interaction: T,
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Example: quantity of the information flow

P observations:

P the metric:

& =

> The leakage upper bound:

0.0042hy .} I5.l5.lg. L -+ 0.04?hy .1y .l5. 0 .J7. L
0.122hy by lg. L + 0.22hy.ly .l L + 0.12hy.ly.lg. L + 0.12hy by J3. L
0.17h3.h.13. L + 0.002hs Iy .l5 + 0.217hy .1y Iy

0.0562hy .1y.13.I5.lg. L + 0.0247hy .1y I3l I7. L
0.122hy by lg. L + 0.22hy. Iy .l3. L + 0.12hy. b ls. L + 0.12hy b J5. L
0.17h3.h.13. L + 0.007h4 Iy .l + 0.217hy .1y 1y

2 ; ; 2 ; .

\JMZ w P = 32w ()
i=1 i=1

(#(0.048,0.032,0.12, 0.2, 0.1, 0.1, 0.1, 0.09, 0.21) —

0.57(0.056, 0.024, 0.12, 0.2, 0.1, 0.1, 0.1, 0.09, 0.21) —

1
0.57(0.04, 0.04, 0.12,0.2,0.1, 0.1, 0.1, 0.09, 0.21)) 2 = 0.049

£ < (dy + db)? = 0.36
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Conclusions

» We present an automatic analysis for measuring information
flow within software systems.

» We quantify leakage in terms of information theory and
incorporate this computation into probabilistic semantics.

» An abstraction on the exact leakage analysis

» An approach for leakage analysis in reactive processes
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