
Program Analysis for Quantified Information Flow
The 5th CREST Open Workshop

Chunyan Mu

joint work with David Clark

CREST, King’s College London

March 31, 2010

1 / 50

The Problem

Information Theory and Measures

Related work

Automating Leakage Computation for Simple Programs

An Approximation on Exact Leakage Computation

Measuring Information Flow in Reactive Processes

Conclusions
2 / 50

Outline

The Problem

Information Theory and Measures

Related work

Automating Leakage Computation for Simple Programs

An Approximation on Exact Leakage Computation

Measuring Information Flow in Reactive Processes

Conclusions

2 / 50

What is secure information flow?

������������	
 ����
�����������������	��������� ������
◮ Information flows between objects of a computing systems,

e.g., devices, agents, variables, channels etc.

◮ Information flow security is concerned with how security
information is allowed to flow through a computer system.

◮ Flow is considered secure if it accepts a specified policy which
defines the accessibility of the information.

3 / 50

Example: Secure information flow is violated

Security level

x : HIGH security variable y : LOW security variable

Assignment

y := x ;

Control flow
if (x mod 2 == 0) then y := 0 else y := 1

Termination behaviour
y := x ;
while(y 6= 0) x := x ∗ x

4 / 50

Non-interference is too restrictive!

 !"#$% & '$()%* + , --. /012345678 9:;5<2 =4>?6@ /9<@4A65:B7C1A2D5617 E>;<AF<A
How much information is leaked?

◮ A new policy to relax the NI

◮ From quantitative view, the program is secure if the amount
of information flow from high to low is small enough.

◮ Idea: we treat the program as a communication channel, use
information theory, consider how much interference?

5 / 50

Outline

The Problem

Information Theory and Measures

Related work

Automating Leakage Computation for Simple Programs

An Approximation on Exact Leakage Computation

Measuring Information Flow in Reactive Processes

Conclusions

6 / 50

Information

An Intuitive Example

!xi
which message
 you send?

??

X1, p1

X2, p2
� ...

XN, pN

X: ?

Q1? Q2? QH?......

A1! A2! AH!......

◮ Let H be the average minimum number of questions the
receiver needs to guess which symbol you will send:

2H = N H = log2 N

H = − log2

1

N
H = − log2 p

7 / 50

Information

Information and entropy

◮ Surprise of an event xi occurring with probability pi :

− log2 pi

◮ Information (entropy) = expected value of surprise:

H def
=

n∑

1

pi log2
1

pi

◮ Equivalent to a measurement of uncertainty or variation

◮ Information is maximised under uniform distribution:

H ≤ log2 n

8 / 50

Random Variables

◮ A discrete random variable is a surjective function from
sample space to observation space:

X : D → R(D)

where D is a finite set with a specified probability distribution,
and R is the finite range of X

◮ Joint random variable: 〈X ,Y 〉
◮ Random variable X conditioned on Y = y : P(X = x |Y = y)

9 / 50

Shannon’s measure of entropy

Entropy (expected value of surprise when X is observed)

H(X) =
∑

x∈X p(x) log2
1

p(x) = −∑
x p(x) log2 p(x)

Mutual Information (shared information)

I(X ;Y) = H(X) + H(Y) −H(X ,Y)

Conditional Mutual Information

I(X ;Y |Z) = H(X |Z) + H(Y |Z) −H(X ,Y |Z)

10 / 50

Leakage definition

GH IHJKLKMKNNN OKPKQKNNNG I IG
Leakage Definition for Batch Programs

◮ L(H,L′) , I(H;L′|L) = H(L′|L) [CHM07]

◮ Technical considerations allow us to consider L(H,L′) as
H(L′) [CHM07]

◮ How to calculate H(L′) ??

11 / 50

Outline

The Problem

Information Theory and Measures

Related work

Automating Leakage Computation for Simple Programs

An Approximation on Exact Leakage Computation

Measuring Information Flow in Reactive Processes

Conclusions

12 / 50

Current approaches

description language tool scalability automatic

Clark,Hunt,Mal bounds analysis while -
√ √

Malacaria partition property - - - -

McCament,Ernst dynanmic analysis C
√ √ √

Backes,Köpf,Ryb model checking C
√

-
√

Heusser,Mal model checking C
√

-
√

Lowe refusal counting CSP - - -

Boreale IT in process calculus CCS - - -

13 / 50

Outline

The Problem

Information Theory and Measures

Related work

Automating Leakage Computation for Simple Programs

An Approximation on Exact Leakage Computation

Measuring Information Flow in Reactive Processes

Conclusions

14 / 50

The idea

◮ Consider simple imperative programs:
skip|ass|if|while|compose

◮ Apply probabilistic domain transformer semantics to calculate
distribution on outputs given distribution on inputs

◮ Use information theory to measure flow for a giving input
distribution

◮ Automate the computation of the flows using the semantics

15 / 50

The semantics

M[[Cmd]] : Σ → Σ M[[Exp]] : Σ → Val

M[[BExp]] : Σ → Σ Val : X

stores Σ : Ide → Val

Figure: Semantics Domains

f[[x :=e]](µ) , λX .µ(f −1
[[x :=e]](X))

f[[c1]];[[c2]](µ) , f[[c2]] ◦ f[[c1]](µ)

f[[if b c1 c2]](µ) , f[[c1]] ◦ f[[b]](µ) + f[[c2]] ◦ f[[¬b]](µ)

f[[while b do c]](µ) , f[[¬b]](limn→∞(λµ′.µ+

f[[c]] ◦ f[[b]](µ
′))n(λX .⊥))

where, f[[B]](µ) = λX .µ(X ∩ B)

Figure: Probabilistic Denotational Semantics

16 / 50

The leakage definition of loops

Entropy of loops

◮ We define the leakage for loops up to kth iterations by:

E 7→ Lwhile(k) = H̃(P) + H̃(Q|P)

= H̃(P0 ∪ · · · ∪ Pk) + H̃(Q0 ∪ · · · ∪ Qk |P0 ∪ · · · ∪ Pk)

◮ case k < n, we can compute the leakage due to each iteration
before the loop terminates with the time of observation

◮ case k = n, this definition has been proved equivalent to
Malacaria’s leakage definition of loops [Mal07]

◮ case k = ∞, nonterminating loops, H(⊥) = 0

17 / 50

Leakage Analysis by Probabilistic Semantics: Example

Example: A terminating loop

l:=0; while(l<h) l:=l+1;

◮ Assume h is 3-bit high security variable with distribution:[
0 w.p. 7

8 1 w.p. 1
56 . . . 7 w.p. 1

56

]

◮ l is low security variable

◮ Consider the decompositions Pi and Qi due to event bi :

P0 = {µ(b0)} = {7
8} Q0 = {µl (0)} = {7

8}
P1 = {µ(b1)} = { 1

56} Q1 = {µl (1)} = { 1
56}

.
P7 = {µ(b7)} = { 1

56} Q7 = {µl (7)} = { 1
56}

18 / 50

Leakage Analysis by Probabilistic Semantics

Example: A terminating loop

◮ Note that qi = pi , hence H̃(Q|P) = 0, i.e., the information
flow within body is 0

◮ The leakage computation due to each iteration:

Lwhile−0 = H̃(P0) = 0.192645

Lwhile−1 = H̃(P0 ∪ P1) = 0.304939275

Lwhile−2 = H̃(P0 ∪ P1 ∪ P2) = 0.412829778

Lwhile−3 = H̃(P0 ∪ P1 ∪ P2 ∪ P3) = 0.516570646

Lwhile−4 = H̃(P0 ∪ P1 ∪ · · · ∪ P4) = 0.616396764

Lwhile−5 = H̃(P0 ∪ P1 ∪ · · · ∪ P5) = 0.71252562

Lwhile−6 = H̃(P0 ∪ P1 ∪ · · · ∪ P6) = 0.805158879

Lwhile−7 = H̃(P0 ∪ P1 ∪ · · · ∪ P7) = 0.894483808

19 / 50

Outline

The Problem

Information Theory and Measures

Related work

Automating Leakage Computation for Simple Programs

An Approximation on Exact Leakage Computation

Measuring Information Flow in Reactive Processes

Conclusions

20 / 50

The idea

◮ define an abstraction on the measure space
◮ concrte lattice
◮ abstract lattice
◮ Galois connection

◮ abstract semantic operations are applied to the abstract space
◮ soundness and correctness of the abstraction

◮ estimate the abstract spaces to provide safe bounds on the
entropy computation

21 / 50

Measurable partitions and abstract domain

Concrete lattice

◮ the σ-algebra B of a finite measure space X forms a complete
lattice

◮ we define a partial order on B as follows:

∀x1, x2 ∈ B, x1 < x2 iff H(x1) ≤ H(x2)

◮ define an equivalence relation on B:

x1 ≃ x2 iff H(x1) = H(x2)

22 / 50

Measurable partitions and abstract domain

Abstract space

◮ An element of the abstract domain x
♯
i ∈ X ♯ is defined as a

pair (µi , [Ei]), where µi is the weight on the element

◮ Adjust the concrete space to be sorted

◮ Make the partition: ξ = {Ei |1 ≤ i ≤ n}
◮ Lift to interval-based partition:

[Ei] : 〈I i
1, I

i
2, . . . , I

i
k〉 → µi

23 / 50

Measurable partitions and abstract domain

The Galois connection

◮ the abstraction function α is a mapping from concrete space
X to the sets of interval-based partitions X ♯: X −→ [X/ξ],
where [X/ξ] = {(µi , [Ei])|0 < i ≤ n}

◮ the concretisation function γ is a mapping:
X ♯ → ⋃{x |x ∈ [Ei]/η}, where the [Ei] are the blocks of the
abstract object X ♯, η is a sub-partition on each block under
uniform distribution

24 / 50

Entropy of Measurable Partition and Leakage Computation

◮ Uniformalisation: a transformation of each block of space of a
variable into a space with uniform distribution on each block

◮ let [[·]]ξ = ξ′, the leakage upper bound

Uv = H(ξ′η) = H(ξ′) + H(η|ξ′)

= H(µ1, . . . , µn) +
n∑

i=1

µiH(
µi/Ni

µi

, . . . ,
µi/Ni

µi

)

= H(µ1, . . . , µn) +

n∑

i=1

µi log2(Ni)

where Ni is the size of the partition Ei

25 / 50

Example

[[l:=0; while(l<h) do l++;]]

◮ initial distribution µh 7→

0 w .p. 0.1, 1 w .p. 0.1
2 w .p. 0.1, 3 w .p. 0.1
4 w .p. 0.2, 5 w .p. 0.2
6 w .p. 0.1, 7 w .p. 0.1

◮ Consider the partitions ξ:

{
E1〈[0, 3]h, [0, 0]l 〉 → 0.4,
E2〈[4, 7]h, [0, 0]l 〉 → 0.6

}

26 / 50

Example

[[l:=0; while(l<h) do l++;]]

◮ A fixpoint is reached at the end.

◮ Concentrate on the low variable, do uniformalisation on each
block to concretise the final space, and have:

{
[0, 3]l → 0.4,
[4, 7]l → 0.6

}
Uniformalisation

=⇒ µl 7→

0 → 0.4/4 1 → 0.4/4
2 → 0.4/4 3 → 0.4/4
−−− −− −−−−−
4 → 0.6/4 5 → 0.6/4
6 → 0.6/4 7 → 0.6/4

◮ leakage upper bound:
Ul = H(0.4, 0.6) + 0.4 ∗ log2 4 + 0.6 ∗ log2 4 = 2.97

◮ exact leakage: L = 2.92

27 / 50

Outline

The Problem

Information Theory and Measures

Related work

Automating Leakage Computation for Simple Programs

An Approximation on Exact Leakage Computation

Measuring Information Flow in Reactive Processes

Conclusions

28 / 50

The idea

◮ Consider the quantity of information flow in reactive processes
by looking at the different behaviours of a high user from a
low user’s observations.

◮ The reactive system is modelled by using Probabilistic
Labelled Transition System (PLTS)

◮ The observation records the history traces of behaviours from
the view of low users in a way of distributions.

◮ Introduce a transformation on the process tree.

◮ A metric space is built upon the transformation tree, and the
information flow is measured via metrics.

29 / 50

The Probabilistic Model

Probabilistic Labelled Transition Systems

◮ The PLTS is given as a triple PLTS = (T ,Σ, µ)

◮ Specifically, µp,a : T → [0, 1], µp : Σ → T → [0, 1], where for
any a ∈ Σ and p is a state that can perform the action a,
indicating the possible next states and their probabilities after
p has performed a.

◮ Furthermore, ∀p ∈ T and can perform action a,∑
p′∈T µa,p(p

′) = 1, i.e., µp,a is a probability distribution.

30 / 50

The Language and its Semantics

Syntax

F ::= ⊥ | x |
∑

i∈I ai .pi .Fi | ⊓ S | F1‖F2 | µx .F

Operational Semantics

Act
E

ai−→pi
Ei

E
a

−→π

Pn
i=1 pi .ai .Ei

π : {pi |1 ≤ i ≤ n}, a = {ai |1 ≤ i ≤ n}

Par
E1

τ
−→ E ′

1

E1‖E2
τ

−→ E ′
1‖E2

E2
τ

−→ E ′
2

E1‖E2
τ

−→ E1‖E ′
2

E1
a

−→π1 E ′
1 E2

a
−→π2 E ′

2

E1‖E2
a

−→π1,π2 π1π2.a.(E ′
1‖E

′
2)

(a 6= τ)

Rec
µx .E

τ

−→ E [µx .E/x]

31 / 50

Observation on traces

◮ A set of traces can be extracted from the process tree built by
the semantics structure.

◮ Consider the observation as the sum of the low projection on
such traces.

◮ Information on the projection of the high inputs from the
trace can be deduced from these observations.

◮ Under repeated observation on traces, we can deduce
probability distributions on the possible traces.

32 / 50

Probabilistic Low Bi-simulation ∼L

◮ an extension to the concept of bisimulation

◮ an equivalence relation on the set of processes R produced by
the PLTS, such that, whenever

Ei ∼L Ej

the following holds:

∀S ∈ R/ ∼L .Ei
L

=⇒µ S ⇔ Ej
L

=⇒µ S

where R/ ∼L denotes the set of bisimilar classes of R under

∼L and Ei
L

=⇒µ S if and only if µ =
∑{µ′|E ′

i ∈ S} and

Ei
L

=⇒µ′ E ′
i .

33 / 50

A Transformation on the Process Tree

Interaction unit
Define a (high) interaction unit (step) as a subtree of the process
tree whose

◮ root is labelled by a high input action

◮ includes every branch terminated by a high input action or ⊥.

34 / 50

Example process tree

E

1
3
?h1

1
2
!l1

1
2
?h3

0.3!l3 0.7!l4

1
2
?h4

!l5

1
2
!l2

2
3
?h2

1
3
!l1

1
3
!l2

!h1

1
3
!l3

1
2
!h2

1
2
!h3

35 / 50

Transformation trees on interaction units

T1

T
(1)
1

1
3
?h1

•
1
2
!l1

1
2
!l2

T
(2)
1

2
3
?h2

1
3
!l1

!h1

1
3
!l2

1
3
!l3

1
2
!h2

1
2
!h3

Figure: Transformation tree on the first interaction step T1

we obtain two subtrees due to the two atomic actions ?h1 and ?h2 in ?H0 as:

T
(1)
1 = (

1

2
!l1.⊥ +

1

2
!l2.⊥) →

1

3

T
(2)
1 = (

1

3
!l1.!h1.⊥ +

1

3
!l2.⊥ +

1

6
!l3.!h2.⊥ +

1

6
!l3.!h3.⊥) →

2

3

36 / 50

Transformation trees on interaction units

T2

T
(1)
2

1
2
?h3

1
3
?h1

1
2
!l1

0.3!l3 0.7!l4

1
2
!l2

2
3
?h2

1
3
!l1

!h1

1
3
!l2

1
3
!l3

1
2
!h2

1
2
!h3

T
(2)
2

1
2
?h4

1
3
?h1

1
2
!l1

!l5

1
2
!l2

2
3
?h2

1
3
!l1

!h1

1
3
!l2

1
3
!l3

1
2
!h2

1
2
!h3

Figure: Transformation tree on the second interaction step T2

37 / 50

Transformation trees on interaction units

we obtain two subtrees due to the two atomic action ?h1 and ?h2

in ?H1 as:

T
(1)
2 = (

0.3

6
?h1.!l1.!l3.⊥ +

0.7

6
?h1.!l1.!l4.⊥ +

1

6
?h1.!l2.⊥ +

2

9
?h2.!l1.!h1.⊥ +

2

9
?h2.!l2.⊥ +

1

9
?h2.!l3.!h2.⊥ +

1

9
?h2.!l3.!h3.⊥)

→ 1

2

T
(2)
2 = (

1

6
?h1.!l1.!l5.⊥ +

1

6
?h1.!l2.⊥ +

2

9
?h2.!l1.!h1.⊥ +

2

9
?h2.!l2.⊥ +

1

9
?h2.!l3.!h2.⊥ +

1

9
?h2.!l3.!h3.⊥) → 1

2

38 / 50

Observation on the transformation tree

◮ the observation due to the first interaction unit:

O(T
(1)
1) = (

1

2
!l1 +

1

2
!l2) →

1

3

O(T
(2)
1) = (

1

3
!l1 +

1

3
!l2 +

1

3
!l3) →

2

3

◮ the observation due to the second interaction unit:

O(T
(1)
2) = (

0.3

6
?h1.!l1.!l3.⊥ +

0.7

6
?h1.!l1.!l4.⊥ +

1

6
?h1.!l2.⊥ +

2

9
?h2.!l1.⊥ +

2

9
?h2.!l2.⊥ +

2

9
?h2.!l3.⊥) →

1

2

O(T
(2)
2) = (

1

6
?h1.!l1.!l5.⊥ +

1

6
?h1.!l2.⊥ +

2

9
?h2.!l1.⊥ +

2

9
?h2.!l2.⊥ +

2

9
?h2.!l3.⊥) →

1

2

39 / 50

Information Flow Measurement

Jensen-Shannon Divergence (JSD)

◮ Consider m distributions P(1),P(2), . . . ,P(m).

◮ The JSD between the m distributions P(1), . . . ,P(m) with
weights w (1), . . . ,w (m) is given by

DJS(P
(1),P(2), . . . ,P(m)) = H(

m∑

j=1

w (j)P(j))−
m∑

j=1

w (j)H(P(j))

40 / 50

Information Flow Measurement

The Metric
For a set of processes f1, . . . , fm ∈ R, dµ(f1, . . . , fm) is defined as:

dµ(f1, . . . , fm) =

√√√√H(

m∑

j=1

w (j)P(j)) −
m∑

j=1

w (j)H(P(j))

Proposition 2.

For any processes f1, . . . , fm ∈ R, d(f1, . . . , fm), d(f1, . . . , fm) = 0
iff f1 ∼L · · · ∼L fm.

41 / 50

Build the metric spaces

◮ Consider all the interaction units, we build a collection of
metric spaces (

⋃
Ti ,

⋃
di), (i = 0, 1, . . .):

T0 = {p0}, T1 =?H0 ≺ T0, . . . , Tn+1 =?Hn ≺ Tn

◮ Clearly, for T
(1)
i , . . . ,T

(mi)
i ∈ Ti ,

◮ if P
(1)
i = · · · = P

(mi)
i , di = 0;

◮ otherwise di =

√
DJS(P

(1)
i , . . . , P

(mi)
i) is the metric between

the distributions extracted from the subtree set due to the
interaction step i .

42 / 50

Quantity of the information flow

Definition of leakage

◮ For each interaction unit started by

?Hi−1 = {?hi−1,1 → wi−1,1, . . . , ?hi−1,mi−1
→ wi−1,mi−1

}

we have built a metric space (Ti , di)i≥1, where

di =

√
DJS(P

(1)
i , . . . ,P

(mi−1)
i)

◮ The leakage upper bound is defined as the square of the sum:

(

n∑

i=1

di)
2

43 / 50

Quantity of the information flow

Example

T

0.2?h1

0.4l1

l3

0.5?h5

0.7l5

l6

0.3l5

l7

0.5?h6

0.5l1

0.5l6 0.5l7

0.6l2

l4

0.2?h2

0.5l1

l3

0.5l1

0.5l4 0.5l3

0.1?h3

l1

l3

0.3?h4

0.3l1

l3

0.7l2

l4

Figure: The example process tree

44 / 50

Quantity of the information flow

Example

T1

T
(1)
1

0.2?h1

0.4l1

•
l3

0.6l2

l4

T
(2)
1

0.2?h2

0.5l1

l3

0.5l1

0.5l4 0.5l3

T
(3)
1

0.1?h3

l1

l3

T
(4)
1

0.3?h4

0.3l1

l3

0.7l2

l4

Figure: Transformation on the first interaction unit: T1

45 / 50

Quantity of the information flow

Example
◮ the observations:

O(P
(1)
0) = 0.4 · l1.l3.⊥ + 0.6 · l2.l4.⊥

O(P
(2)
0) = 0.5 · l1.l3.⊥ + 0.25 · l2.l4.⊥ + 0.25 · l2.l3.⊥

O(P
(3)
0) = l1.l3.⊥

O(P
(4)
0) = 0.3 · l1.l3.⊥ + 0.7 · l2.l4.⊥

◮ the metric:

d1 =

v

u

u

tH(
4

X

i=1

w
(i)
0 P

(i)
0) −

4
X

i=1

w
(i)
0 H(P

(i)
0)

= H(0.47, 0.43, 0.1) − (0.2H(0.4, 0.6) + 0.4H(0.5, 0.25, 0.25) +

0.1 ∗ 0 + 0.3H(0.3, 0.7)) = 0.557

46 / 50

Quantity of the information flow

Example

T2

T
(1)
1

?h11, 0.5

0.2?h1

0.4l1

•
l3

0.7l5

l6

0.3l5

l7

0.6l2

l4

0.2?h2

0.5l1

l3

0.5l1

0.5l4 0.5l3

0.1?h3

l1

l3

0.3?h4

0.3l1

l3

0.7l2

l4

T
(2)
1

?h12, 0.5

0.2?h1

0.4l1

•
l3

0.5l1

0.5l6 0.5l7

0.6l2

l4

0.2?h2

0.5l1

l3

0.5l1

0.5l4 0.5l3

0.1?h3

l1

l3

0.3?h4

0.3l1

l3

0.7l2

l4

Figure: Transformation on the second interaction: T2

47 / 50

Example: quantity of the information flow

◮ observations:

O(P
(1)
1) = 0.004?h1 .l1.l3.l5.l6.⊥ + 0.04?h1 .l1.l3.l5.l7.⊥

0.12?h1 .l2.l4.⊥ + 0.2?h2.l1.l3.⊥ + 0.1?h2.l2.l4.⊥ + 0.1?h2 .l2.l3.⊥

0.1?h3 .l1.l3.⊥ + 0.09?h4 .l1.l3 + 0.21?h4 .l2.l4

O(P
(2)
1) = 0.056?h1 .l1.l3.l5.l6.⊥ + 0.024?h1 .l1.l3.l5.l7.⊥

0.12?h1 .l2.l4.⊥ + 0.2?h2.l1.l3.⊥ + 0.1?h2.l2.l4.⊥ + 0.1?h2 .l2.l3.⊥

0.1?h3 .l1.l3.⊥ + 0.09?h4 .l1.l3 + 0.21?h4 .l2.l4

◮ the metric:

d2 =

v

u

u

tH(
2

X

i=1

w
(i)
1 P

(i)
1) −

2
X

i=1

w
(i)
1 H(P

(i)
1)

= (H(0.048, 0.032, 0.12, 0.2, 0.1, 0.1, 0.1, 0.09, 0.21) −

0.5H(0.056, 0.024, 0.12, 0.2, 0.1, 0.1, 0.1, 0.09, 0.21) −

0.5H(0.04, 0.04, 0.12, 0.2, 0.1, 0.1, 0.1, 0.09, 0.21))
1
2

.
= 0.049

◮ The leakage upper bound:

L ≤ (d1 + d2)
2 .

= 0.36

48 / 50

Outline

The Problem

Information Theory and Measures

Related work

Automating Leakage Computation for Simple Programs

An Approximation on Exact Leakage Computation

Measuring Information Flow in Reactive Processes

Conclusions

49 / 50

Conclusions

◮ We present an automatic analysis for measuring information
flow within software systems.

◮ We quantify leakage in terms of information theory and
incorporate this computation into probabilistic semantics.

◮ An abstraction on the exact leakage analysis

◮ An approach for leakage analysis in reactive processes

50 / 50

	The Problem
	Information Theory and Measures
	Related work
	Automating Leakage Computation for Simple Programs
	An Approximation on Exact Leakage Computation
	Measuring Information Flow in Reactive Processes
	Conclusions

