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Would you ever
start producing
anything without
kKnowing the cost?



http://www.oliverfluck.com/2010/06/03/creating-something/

Software Effort Estimation (SEE)

Process of predicting the most realistic amount
of effort required to realise a software project

(effort usually quantified in person-hours/person-months)




Options for Estimation

»

fﬁﬁ;rntaem QQP Experts tend to under-estimate
What is the margin of error?
dAid 4-A 9

Predictions of project effort lie within 30%-40% of its true value

K. Molkken and M. Jorgensen. A review of surveys on software effort estimation. ISESE’0S.
S. McConnell. Software Estimation: Demystifying the Black Art. Microsoft Press, 2006
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Options for Estimation

Experts tend to under-estimate
within 30%-40% of the true value
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Options for Estimation

After ~30 years of research...

Linear Regression
Stepwise Regression
Support Vector Regression
Classification and
Regression Trees
Case-based Reasoning
K-Nearest Neighbours
Genetic Algorithms
Genetic Programming
Tabu Search

Simulated Annealing

Data Driven
Methods

... data-driven methods are still unable to beat
human-estimates!
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RQ4. Comparison to Industrial Practices

How does our approach, CoGEE, compare
to human-expert-based estimates?
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RQ4. Comparison to Industrial Practices

Human-expert-based predictions of project effort lie
within 30% and 40% of the true value (overrun)

The evidence for these thresholds comes from a survey of industry practices
by Molkken and Jergensen
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RQ4. Our Results are Human-Competitive

CoGEE provides effort estimates similar or better than
those provided by human-experts

Overrun
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RQ2. Comparison with State-of-the-Art Benchmark

CoGEE outperforms popular automated estimation methods
proposed over the last 30 years

Overrun

DESHARNAIS FINNISH MAXWELL MIYAZAKI
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CoGEE: Confidence Guided Effort Estimator

CoGEE is a multi-objective evolutionary approach

that builds robust estimation models

EstimatedEffort = ¢, op, f, op,... op,,_,c,o0p, _.,f, op, C
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CoGEE: Confidence Guided Effort Estimator

Bi-objective estimation
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RQ1. RQ2. State of the Art
Sanity Check Benchmark

RQ3. Benefits from Multi- RQ4. Comparison to
objective Formulation Industrial Practices




RQ3. Benefits from Multi-

objective Formulation

Does CoGEE provide more accurate estimates than
alternative single and multi-objective approaches’?




RQ3. Benefits from Multi-objective Formulation




RQ3. Benefits from Multi-objective Formulation
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Underestimates Overestimates
RealEffort - RealEffort -
EstimatedEffort >0  EstimatedEffort <0
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RQ3. Benefits from Multi-objective Formulation

NSGA-UO

Overeskimakbes

Underesktimates
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RQ3. Benefits from Multi-objective Formulation

Dataset Technique Icp Inv Ic
China CoGEE vs. GA-SAE 0.440 (0.49) 0.010 (0.60) 0.010 (0.42)
CoGEE vs. GA-CI 0.830 (0.71) 0.010 (0.66) 0.010 (0.71)
CoGEE vs. NSGAII-UO <0.001 (0.26) <0.001 (0.73) <0.001 (0.94)
Desharnais CoGEE vs. GA-SAE 0.010 (0.39) <0.001 (0.33) 0.997 (0.39)
CoGEE vs. GA-CI 0.005 (0.39) <0.001 (0.88) 0.040 (0.66)
CoGEE vs. NSGAII-UO 0.680 (0.56) 0.180 (0.56) 0.780 (0.44)
Finnish CoGEE vs. GA-SAE <0.001 (0.32) 0.130 (0.55) 0.640 (0.69)
CoGEE vs. GA-CI 0.430 (0.51) <0.001 (0.65) 0.920 (0.56)
CoGEE vs. NSGAII-UO <0.001 (0.70) <0.001 (0.82) <0.001 (0.71)
Maxwell CoGEE vs. GA-SAE <0.001 (0.08) <0.001 (0.63) <0.001 (0.98)
CoGEE vs. GA-CI <0.001 (0.25) <0.001 (0.70) <0.001 (0.92)
CoGEE vs. NSGAII-UO 0.094 (0.03) 0.700 (0.72) 0.470 (0.53)
Miazaky CoGEE vs. GA-SAE <0.001 (0.25) <0.001 (1.00) <0.001 (1.00)
CoGEE vs. GA-CI <0.001 (0.25) <0.001 (1.00) <0.001 (1.00)
CoGEE vs. NSGAII-UO <0.001 (0.26) <0.001 (0.95) <0.001 (0.95)

RQ3. Results of the Wilcoxon test (A12 effect size) which compare the quality
indicators (Iép , Inv, Ic) of CoGEE to the ones of the other evolutionary
approaches over 30 runs.
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Multi-objective Software Effort Estimation

F. Sarro, A. Petrozziello, M. Harman

Human-competitive results to Advances the
a long-standing and difficult problem state of the art

Estimation
Uncertainty o

~ Successful use _ Through Empirical Study
of EC in Software Engineering (724 real-word projects)

Breakthrough results published in ICSE’16 mjﬁ’
and awarded at the HUMIES-GECCO’16

W@f _sarro http://wwwO.cs.ucl.ac.uk/staff/F.Sarro/projects/ COGEE/ *UCL X~



http://www0.cs.ucl.ac.uk/staff/F.Sarro/projects/CoGEE/

Want to Know More about
Search-Based Software Effort Estimation?

Chapter 15
Software Project Search-Based Software Project Management

Management in a

Changing World

Filomena Ferrucci, Mark Harman, and Federica Sarro

== SB Software Project e SB Project Scheduling ess== SB Software Development
Management and Staffing Effort Estimation
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Mutation-Aware Fault Prediction

David Bowes", Tracy Hall', Mark Harman’, Yue Jia', Federica Sarro’, and Fan Wu’
“University of Hertfordshire, Hatfield, UK "Brunel University London, Uxbridge, UK
*University College London, London, UK

HIGHLIGHTS

Important gaps addressed:

ABSTRACT

We introduce mutation-aware fault prediction, which lever-
ages additional guidance from metrics constructed in terms
of mutants and the test cases that cover and detect them.
We report the results of 12 sets of experiments, applying
4 different predictive modelling techniques to 3 large real-
world systems (both open and closed source). The results
show that our proposal can significantly (p < 0.05) im-
prove fault prediction performance. Moreover, mutation-
based metrics lie in the top 5% most frequently relied upon
fault predictors in 10 of the 12 sets of experiments, and pro-
vide the majority of the top ten fault predictors in 9 of the
12 sets of experiments.

Testing information rarely used

Industrial data rarely used

Promising findings:

Adding mutation information
improves predictive performance

Worthwhile effect sizes occur
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SOftware EffOrt EStimation Confidence Guided Effort Estimation (CoGEE)

. . CoGEE is a multi-objective evolutionary approach
Process of predicting the most realistic amount ulti-obj lonary app

of effort required to realise a software project that builds robust estimation models

(effort usually quantified in person-hours/person-months)
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RQ4. Our Results are Human-Competitive

RQ2. Comparison with State-of-the-Art Benchmark

CoGEE provides effort estimates similar or better than CoGEE outperforms popular automated estimation methods
those provided by human-experts proposed over the last 30 years
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