
Automated Software
Transplantation

Alexandru Marginean — Automated Software Transplantation

Alexandru Marginean

CREST, University College London

CREST 10th
Anniversary

People from CREST

Yue JiaMark Harman

William B. Langdon

Earl T. Barr

Justyna Petke

Alexandru Marginean — Automated Software Transplantation

VLC

Why Autotransplantation?

Alexandru Marginean — Automated Software Transplantation

VLC

Why Autotransplantation?

Alexandru Marginean — Automated Software Transplantation

VLC

Why Autotransplantation?

Why not
handle
 H.264?

Alexandru Marginean — Automated Software Transplantation

VLC

Why Autotransplantation?

Why not
handle
 H.264?

Alexandru Marginean — Automated Software Transplantation

VLC

Why Autotransplantation?

Why not
handle
 H.264?

Alexandru Marginean — Automated Software Transplantation

VLC

Start from
scratch

Why Autotransplantation?

Why not
handle
 H.264?

Alexandru Marginean — Automated Software Transplantation

VLC

Start from
scratch

Why Autotransplantation?

Why not
handle
 H.264?

Alexandru Marginean — Automated Software Transplantation

VLC

Start from
scratch

Why Autotransplantation?
Check open

source repositories
Why not
handle
 H.264?

Alexandru Marginean — Automated Software Transplantation

VLC

Start from
scratch

Why Autotransplantation?
Check open

source repositories
Why not
handle
 H.264?

Alexandru Marginean — Automated Software Transplantation

VLC

Start from
scratch

Why Autotransplantation?
Check open

source repositories
Why not
handle
 H.264?

Alexandru Marginean — Automated Software Transplantation

VLC

Start from
scratch

Why Autotransplantation?
Check open

source repositories
Why not
handle
 H.264?

Alexandru Marginean — Automated Software Transplantation

VLC

Start from
scratch

Why Autotransplantation?
Check open

source repositories
Why not
handle
 H.264?

~100 players

Alexandru Marginean — Automated Software Transplantation

Code Transplants

2013 — Harman et al. 2014 — Petke et al.

Genetic Programming
for Reverse Engineering

Using Genetic Improvement and
Code Transplants to Specialise a
C++ Program to a Problem Class

Genetic Programming for Reverse Engineering
Mark Harman⇤, William B. Langdon⇤ and Westley Weimer†

⇤University College London, CREST centre, UK
†University of Virginia, Virginia, USA

Abstract—This paper overviews the application of Search
Based Software Engineering (SBSE) to reverse engineering with
a particular emphasis on the growing importance of recent
developments in genetic programming and genetic improvement
for reverse engineering. This includes work on SBSE for re-
modularisation, refactoring, regression testing, syntax-preserving
slicing and dependence analysis, concept assignment and feature
location, bug fixing, and code migration. We also explore the
possibilities for new directions in research using GP and GI
for partial evaluation, amorphous slicing, and product lines,
with a particular focus on code transplantation. This paper
accompanies the keynote given by Mark Harman at the 20th

Working Conference on Reverse Engineering (WCRE 2013).

I. INTRODUCTION

The term ‘search based software engineering’ was intro-
duced in 2001 [42] to capture the (then emerging) interest
in the use of computational search as a means of optimising
software engineering problems. The motivation was that search
based optimisation was ideal for the multiple conflicting and
competing objectives with which software engineers routinely
contend. The algorithms used to conduct search based optimi-
sation are also known to perform well in the presence of par-
tial, noisy and missing data. This makes them attractive tools
with which to approach the complex, noisy and incomplete
world in which the software engineer has to find engineering
solutions.

Since 2001, SBSE has been applied to almost every aspect
of software engineering activity. A more detailed survey of
the entire field of SBSE can be found elsewhere [44], while
a tutorial introduction is also available [46] that assumes no
prior knowledge of computational search techniques. However
in this paper, we focus on reverse engineering and the consid-
erable potential for the development of new forms of Genetic
Programming (GP) and Genetic Improvement (GI) to reverse
engineering. Section II presents a summary of the application
of SBSE to reverse engineering. Section III briefly reviews
the relationship between the SBSE and RE publication venues
and trends. Section IV sets out some directions for future
work that form part of a ‘GP4RE’ research agenda; genetic
programming applications for reverse engineering.

II. APPLICATIONS OF SBSE TO REVERSE ENGINEERING

A large number of problems in reverse engineering are
amenable to SBSE. In this section we highlight some of
the many existing approaches, focusing on the application of
SSBSE to the problems of re-modularisation, refactoring, re-
gression testing, slicing, and concept assignment in particular.

We also discuss the general applicability of genetic pro-
gramming to reverse engineering problems. Our overall con-
clusion is that these are vibrant and active areas of research
with multiple open problems remaining to be tackled.

A. Re-Modularisation
Software structure degrades making periodic re-

modularisation important [8]. The search based modularisation
approaches discussed in this section assume that we start
with some form of module dependence graph, from which
we seek to construct suitable module boundaries.

Mancoridis et al. were the first to address the problem of
software modularisation using SBSE leading to the develop-
ment of a tool called Bunch [69] for module clustering. They
experimented with several search based algorithms including
genetic algorithms, hill climbing and simulated annealing. Hill
climbing tended to produce the best results for the single
objective of improving the Module Quality (MQ) metric.

MQ was introduced in 1998 [65], and refined in subsequent
papers. All versions of MQ are combinations of cohesion
and coupling into a single weighted fitness function, used to
guide the search. Other authors explored other ways to capture
cohesion and coupling in different metrics [47]. The choice of
the cohesion and coupling metric has a critical impact on the
results obtained.

Search based clustering has also been applied to package
coupling [1], to reduce overall package size [17] and to explore
the relationship between design and code level software struc-
ture [49]. The same overall search based clustering approach
can also be adapted for clustering heap allocation [22] and for
reducing memory fragmentation [23].

There were many attempts to find algorithms that produced
better modularisation results (in terms of cohesion, coupling
and faithfulness to some ‘gold standard’ modularisation).
Many of the earlier attempts to improve on hill climbing,
simply provided further evidence to suggest that it was a
simple, fast and effective algorithm for module clustering [39],
[64], [68].

In 2003, Mahdavi et al. [64] introduced a multiple hill
climbing approach, which performs repeated hill climbing and
combines the best results found to reduce the search space
size for subsequent hill climbs. Mahdavi et al. also used
parallelisation to improve the performance of the multiple
clustering, something first explored by Mitchell et al. [70] who
used parallel computing to distribute the task of computing
module clusters (but did not combine results to reduce the
search space).

978-1-4799-2931-3/13 c� 2013 IEEE

WCRE 2013, Koblenz, Germany

Invited Paper

Accepted for publication by IEEE. c� 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/

republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

1

Using Genetic Improvement & Code Transplants

to Specialise a C++ Program to a Problem Class

Justyna Petke1, Mark Harman1, William B. Langdon1, and Westley Weimer2

1 University College London, London, United Kingdom
j.petke@ucl.ac.uk

2 University of Virginia, Charlottesville, Virginia, United States

Abstract. Genetic Improvement (GI) is a form of Genetic Program-
ming that improves an existing program. We use GI to evolve a faster
version of a C++ program, a Boolean satisfiability (SAT) solver called
MiniSAT, specialising it for a particular problem class, namely Combi-
natorial Interaction Testing (CIT), using automated code transplanta-
tion. Our GI-evolved solver achieves overall 17% improvement, making it
comparable with average expert human performance. Additionally, this
automatically evolved solver is faster than any of the human-improved
solvers for the CIT problem.

Keywords: genetic improvement, code transplants, code specialisation, Boolean
satisfiability

1 Introduction

Genetic improvement (GI) [14], [17, 18, 19], [23], [28, 29] seeks to automatically
improve an existing program using genetic programming. Typically, genetic im-
provement has focussed on changes using parts of the existing system. We de-
velop the idea of software transplantation [15] and introduce the idea of GI as a
means to specialise software.

To investigate and experiment with GI for a particularly challenging problem,
we selected the goal of using it to improve the execution performance of the
popular Boolean satisfiability (SAT) solver MiniSAT [9]. MiniSAT is a well-
known open-source C++ SAT solver. It implements the core technologies of
modern SAT solving, including unit propagation, conflict-driven clause learning
and watched literals [26].

Improving MiniSAT is challenging because MiniSAT has been iteratively im-
proved over many years by expert human programmers. They have addressed
the demand for more e�cient SAT solvers and also responded to repeated calls
for competition entries to the MiniSAT-hack track of SAT competitions [1]. We
use the version of the solver from the first MiniSAT-hack track competition,
MiniSAT2-0707211, as our host system to be improved by GI with transplanta-
tion. Furthermore, this competition, in which humans provide modifications to
a baseline MiniSAT solver, provides a natural baseline for evaluation and source
of evolutionary material (which we call the code bank).

1 Solver available at: http://minisat.se/MiniSat.html.

Code Transplants

2013 — Harman et al. 2014 — Petke et al.

Genetic Programming
for Reverse Engineering

Using Genetic Improvement and
Code Transplants to Specialise a
C++ Program to a Problem Class

Genetic Programming for Reverse Engineering
Mark Harman⇤, William B. Langdon⇤ and Westley Weimer†

⇤University College London, CREST centre, UK
†University of Virginia, Virginia, USA

Abstract—This paper overviews the application of Search
Based Software Engineering (SBSE) to reverse engineering with
a particular emphasis on the growing importance of recent
developments in genetic programming and genetic improvement
for reverse engineering. This includes work on SBSE for re-
modularisation, refactoring, regression testing, syntax-preserving
slicing and dependence analysis, concept assignment and feature
location, bug fixing, and code migration. We also explore the
possibilities for new directions in research using GP and GI
for partial evaluation, amorphous slicing, and product lines,
with a particular focus on code transplantation. This paper
accompanies the keynote given by Mark Harman at the 20th

Working Conference on Reverse Engineering (WCRE 2013).

I. INTRODUCTION

The term ‘search based software engineering’ was intro-
duced in 2001 [42] to capture the (then emerging) interest
in the use of computational search as a means of optimising
software engineering problems. The motivation was that search
based optimisation was ideal for the multiple conflicting and
competing objectives with which software engineers routinely
contend. The algorithms used to conduct search based optimi-
sation are also known to perform well in the presence of par-
tial, noisy and missing data. This makes them attractive tools
with which to approach the complex, noisy and incomplete
world in which the software engineer has to find engineering
solutions.

Since 2001, SBSE has been applied to almost every aspect
of software engineering activity. A more detailed survey of
the entire field of SBSE can be found elsewhere [44], while
a tutorial introduction is also available [46] that assumes no
prior knowledge of computational search techniques. However
in this paper, we focus on reverse engineering and the consid-
erable potential for the development of new forms of Genetic
Programming (GP) and Genetic Improvement (GI) to reverse
engineering. Section II presents a summary of the application
of SBSE to reverse engineering. Section III briefly reviews
the relationship between the SBSE and RE publication venues
and trends. Section IV sets out some directions for future
work that form part of a ‘GP4RE’ research agenda; genetic
programming applications for reverse engineering.

II. APPLICATIONS OF SBSE TO REVERSE ENGINEERING

A large number of problems in reverse engineering are
amenable to SBSE. In this section we highlight some of
the many existing approaches, focusing on the application of
SSBSE to the problems of re-modularisation, refactoring, re-
gression testing, slicing, and concept assignment in particular.

We also discuss the general applicability of genetic pro-
gramming to reverse engineering problems. Our overall con-
clusion is that these are vibrant and active areas of research
with multiple open problems remaining to be tackled.

A. Re-Modularisation
Software structure degrades making periodic re-

modularisation important [8]. The search based modularisation
approaches discussed in this section assume that we start
with some form of module dependence graph, from which
we seek to construct suitable module boundaries.

Mancoridis et al. were the first to address the problem of
software modularisation using SBSE leading to the develop-
ment of a tool called Bunch [69] for module clustering. They
experimented with several search based algorithms including
genetic algorithms, hill climbing and simulated annealing. Hill
climbing tended to produce the best results for the single
objective of improving the Module Quality (MQ) metric.

MQ was introduced in 1998 [65], and refined in subsequent
papers. All versions of MQ are combinations of cohesion
and coupling into a single weighted fitness function, used to
guide the search. Other authors explored other ways to capture
cohesion and coupling in different metrics [47]. The choice of
the cohesion and coupling metric has a critical impact on the
results obtained.

Search based clustering has also been applied to package
coupling [1], to reduce overall package size [17] and to explore
the relationship between design and code level software struc-
ture [49]. The same overall search based clustering approach
can also be adapted for clustering heap allocation [22] and for
reducing memory fragmentation [23].

There were many attempts to find algorithms that produced
better modularisation results (in terms of cohesion, coupling
and faithfulness to some ‘gold standard’ modularisation).
Many of the earlier attempts to improve on hill climbing,
simply provided further evidence to suggest that it was a
simple, fast and effective algorithm for module clustering [39],
[64], [68].

In 2003, Mahdavi et al. [64] introduced a multiple hill
climbing approach, which performs repeated hill climbing and
combines the best results found to reduce the search space
size for subsequent hill climbs. Mahdavi et al. also used
parallelisation to improve the performance of the multiple
clustering, something first explored by Mitchell et al. [70] who
used parallel computing to distribute the task of computing
module clusters (but did not combine results to reduce the
search space).

978-1-4799-2931-3/13 c� 2013 IEEE

WCRE 2013, Koblenz, Germany

Invited Paper

Accepted for publication by IEEE. c� 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/

republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

1

Using Genetic Improvement & Code Transplants

to Specialise a C++ Program to a Problem Class

Justyna Petke1, Mark Harman1, William B. Langdon1, and Westley Weimer2

1 University College London, London, United Kingdom
j.petke@ucl.ac.uk

2 University of Virginia, Charlottesville, Virginia, United States

Abstract. Genetic Improvement (GI) is a form of Genetic Program-
ming that improves an existing program. We use GI to evolve a faster
version of a C++ program, a Boolean satisfiability (SAT) solver called
MiniSAT, specialising it for a particular problem class, namely Combi-
natorial Interaction Testing (CIT), using automated code transplanta-
tion. Our GI-evolved solver achieves overall 17% improvement, making it
comparable with average expert human performance. Additionally, this
automatically evolved solver is faster than any of the human-improved
solvers for the CIT problem.

Keywords: genetic improvement, code transplants, code specialisation, Boolean
satisfiability

1 Introduction

Genetic improvement (GI) [14], [17, 18, 19], [23], [28, 29] seeks to automatically
improve an existing program using genetic programming. Typically, genetic im-
provement has focussed on changes using parts of the existing system. We de-
velop the idea of software transplantation [15] and introduce the idea of GI as a
means to specialise software.

To investigate and experiment with GI for a particularly challenging problem,
we selected the goal of using it to improve the execution performance of the
popular Boolean satisfiability (SAT) solver MiniSAT [9]. MiniSAT is a well-
known open-source C++ SAT solver. It implements the core technologies of
modern SAT solving, including unit propagation, conflict-driven clause learning
and watched literals [26].

Improving MiniSAT is challenging because MiniSAT has been iteratively im-
proved over many years by expert human programmers. They have addressed
the demand for more e�cient SAT solvers and also responded to repeated calls
for competition entries to the MiniSAT-hack track of SAT competitions [1]. We
use the version of the solver from the first MiniSAT-hack track competition,
MiniSAT2-0707211, as our host system to be improved by GI with transplanta-
tion. Furthermore, this competition, in which humans provide modifications to
a baseline MiniSAT solver, provides a natural baseline for evaluation and source
of evolutionary material (which we call the code bank).

1 Solver available at: http://minisat.se/MiniSat.html.

Introduced the
idea of using GP for
autotransplantation

Code Transplants

2013 — Harman et al. 2014 — Petke et al. 2014 — Harman et al.

Genetic Programming
for Reverse Engineering

Using Genetic Improvement and
Code Transplants to Specialise a
C++ Program to a Problem Class

Using Genetic Improvement & Code Transplants

to Specialise a C++ Program to a Problem Class

Justyna Petke1, Mark Harman1, William B. Langdon1, and Westley Weimer2

1 University College London, London, United Kingdom
j.petke@ucl.ac.uk

2 University of Virginia, Charlottesville, Virginia, United States

Abstract. Genetic Improvement (GI) is a form of Genetic Program-
ming that improves an existing program. We use GI to evolve a faster
version of a C++ program, a Boolean satisfiability (SAT) solver called
MiniSAT, specialising it for a particular problem class, namely Combi-
natorial Interaction Testing (CIT), using automated code transplanta-
tion. Our GI-evolved solver achieves overall 17% improvement, making it
comparable with average expert human performance. Additionally, this
automatically evolved solver is faster than any of the human-improved
solvers for the CIT problem.

Keywords: genetic improvement, code transplants, code specialisation, Boolean
satisfiability

1 Introduction

Genetic improvement (GI) [14], [17, 18, 19], [23], [28, 29] seeks to automatically
improve an existing program using genetic programming. Typically, genetic im-
provement has focussed on changes using parts of the existing system. We de-
velop the idea of software transplantation [15] and introduce the idea of GI as a
means to specialise software.

To investigate and experiment with GI for a particularly challenging problem,
we selected the goal of using it to improve the execution performance of the
popular Boolean satisfiability (SAT) solver MiniSAT [9]. MiniSAT is a well-
known open-source C++ SAT solver. It implements the core technologies of
modern SAT solving, including unit propagation, conflict-driven clause learning
and watched literals [26].

Improving MiniSAT is challenging because MiniSAT has been iteratively im-
proved over many years by expert human programmers. They have addressed
the demand for more e�cient SAT solvers and also responded to repeated calls
for competition entries to the MiniSAT-hack track of SAT competitions [1]. We
use the version of the solver from the first MiniSAT-hack track competition,
MiniSAT2-0707211, as our host system to be improved by GI with transplanta-
tion. Furthermore, this competition, in which humans provide modifications to
a baseline MiniSAT solver, provides a natural baseline for evaluation and source
of evolutionary material (which we call the code bank).

1 Solver available at: http://minisat.se/MiniSat.html.

Babel Pidgin: SBSE Can Grow and
Graft Entirely New Functionality

into a Real World System

Babel Pidgin: SBSE Can Grow and Graft Entirely
New Functionality into a Real World System

Mark Harman, Yue Jia, and William B. Langdon

University College London, CREST centre, UK

Abstract. Adding new functionality to an existing, large, and perhaps
poorly-understood system is a challenge, even for the most competent hu-
man programmer. We introduce a ‘grow and graft’ approach to Genetic
Improvement (GI) that transplants new functionality into an existing
system. We report on the trade offs between varying degrees of human
guidance to the GI transplantation process. Using our approach, we suc-
cessfully grew and transplanted a new ‘Babel Fish’ linguistic translation
feature into the Pidgin instant messaging system, creating a genetically
improved system we call ‘Babel Pidgin’. This is the first time that SBSE
has been used to evolve and transplant entirely novel functionality into
an existing system. Our results indicate that our grow and graft approach
requires surprisingly little human guidance.

1 Introduction and Backgroud

Despite much progress in software development environments, programming still
includes many human activities that are dull, unproductive and tedious. In this
paper we propose a new SBSE approach to software development: Grow and
Graft, in which a new feature is grown (using genetic programming) and sub-
sequently grafted into an existing system. This grow and graft development
approach aims to reduce the amount of tedious effort required by human pro-
grammer in order to develop and add new functionality into an existing system.

Our approach is inspired by the recent trend in Search Based Software Engi-
neering (SBSE) called ‘genetic improvement’ [2,8,10,11,14,15]. Genetic
Improvement (GI) uses existing code as ‘genetic material’ that helps to au-
tomatically improve existing software systems. It has been used to repair broken
functionality [10,14], and to achieve dramatic scale-ups for sets of small bench-
marks [11,15], and also for a 50k LoC genome matching system [8], for graphic
shaders [14] and for a CUDA stereo image processing system [7]. Related work
on loop perforation has also reported dramatic speed-ups [13]. GI has also been
used to port one system to a new version on a different platform [6].

Recently, it has been demonstrated [12] that GI can be used to transplant code
[3] from one version of a system to another. In this previous transplantation work
[12], code from several versions of MiniSAT (the ‘donor’) were transplanted into
a specific version of MiniSAT using GI. The aim of this transplantation was to
improve execution time for a specific task (Combinatorial Interaction Testing).

C. Le Goues and S. Yoo (Eds.): SSBSE 2014, LNCS 8636, pp. 247–252, 2014.
c⃝ Springer International Publishing Switzerland 2014

Introduced the
idea of using GP for
autotransplantation

Code Transplants

2013 — Harman et al. 2014 — Petke et al. 2014 — Harman et al.

Genetic Programming
for Reverse Engineering

Using Genetic Improvement and
Code Transplants to Specialise a
C++ Program to a Problem Class

Using Genetic Improvement & Code Transplants

to Specialise a C++ Program to a Problem Class

Justyna Petke1, Mark Harman1, William B. Langdon1, and Westley Weimer2

1 University College London, London, United Kingdom
j.petke@ucl.ac.uk

2 University of Virginia, Charlottesville, Virginia, United States

Abstract. Genetic Improvement (GI) is a form of Genetic Program-
ming that improves an existing program. We use GI to evolve a faster
version of a C++ program, a Boolean satisfiability (SAT) solver called
MiniSAT, specialising it for a particular problem class, namely Combi-
natorial Interaction Testing (CIT), using automated code transplanta-
tion. Our GI-evolved solver achieves overall 17% improvement, making it
comparable with average expert human performance. Additionally, this
automatically evolved solver is faster than any of the human-improved
solvers for the CIT problem.

Keywords: genetic improvement, code transplants, code specialisation, Boolean
satisfiability

1 Introduction

Genetic improvement (GI) [14], [17, 18, 19], [23], [28, 29] seeks to automatically
improve an existing program using genetic programming. Typically, genetic im-
provement has focussed on changes using parts of the existing system. We de-
velop the idea of software transplantation [15] and introduce the idea of GI as a
means to specialise software.

To investigate and experiment with GI for a particularly challenging problem,
we selected the goal of using it to improve the execution performance of the
popular Boolean satisfiability (SAT) solver MiniSAT [9]. MiniSAT is a well-
known open-source C++ SAT solver. It implements the core technologies of
modern SAT solving, including unit propagation, conflict-driven clause learning
and watched literals [26].

Improving MiniSAT is challenging because MiniSAT has been iteratively im-
proved over many years by expert human programmers. They have addressed
the demand for more e�cient SAT solvers and also responded to repeated calls
for competition entries to the MiniSAT-hack track of SAT competitions [1]. We
use the version of the solver from the first MiniSAT-hack track competition,
MiniSAT2-0707211, as our host system to be improved by GI with transplanta-
tion. Furthermore, this competition, in which humans provide modifications to
a baseline MiniSAT solver, provides a natural baseline for evaluation and source
of evolutionary material (which we call the code bank).

1 Solver available at: http://minisat.se/MiniSat.html.

Humies 2014

Most cited
paper

Babel Pidgin: SBSE Can Grow and
Graft Entirely New Functionality

into a Real World System

Babel Pidgin: SBSE Can Grow and Graft Entirely
New Functionality into a Real World System

Mark Harman, Yue Jia, and William B. Langdon

University College London, CREST centre, UK

Abstract. Adding new functionality to an existing, large, and perhaps
poorly-understood system is a challenge, even for the most competent hu-
man programmer. We introduce a ‘grow and graft’ approach to Genetic
Improvement (GI) that transplants new functionality into an existing
system. We report on the trade offs between varying degrees of human
guidance to the GI transplantation process. Using our approach, we suc-
cessfully grew and transplanted a new ‘Babel Fish’ linguistic translation
feature into the Pidgin instant messaging system, creating a genetically
improved system we call ‘Babel Pidgin’. This is the first time that SBSE
has been used to evolve and transplant entirely novel functionality into
an existing system. Our results indicate that our grow and graft approach
requires surprisingly little human guidance.

1 Introduction and Backgroud

Despite much progress in software development environments, programming still
includes many human activities that are dull, unproductive and tedious. In this
paper we propose a new SBSE approach to software development: Grow and
Graft, in which a new feature is grown (using genetic programming) and sub-
sequently grafted into an existing system. This grow and graft development
approach aims to reduce the amount of tedious effort required by human pro-
grammer in order to develop and add new functionality into an existing system.

Our approach is inspired by the recent trend in Search Based Software Engi-
neering (SBSE) called ‘genetic improvement’ [2,8,10,11,14,15]. Genetic
Improvement (GI) uses existing code as ‘genetic material’ that helps to au-
tomatically improve existing software systems. It has been used to repair broken
functionality [10,14], and to achieve dramatic scale-ups for sets of small bench-
marks [11,15], and also for a 50k LoC genome matching system [8], for graphic
shaders [14] and for a CUDA stereo image processing system [7]. Related work
on loop perforation has also reported dramatic speed-ups [13]. GI has also been
used to port one system to a new version on a different platform [6].

Recently, it has been demonstrated [12] that GI can be used to transplant code
[3] from one version of a system to another. In this previous transplantation work
[12], code from several versions of MiniSAT (the ‘donor’) were transplanted into
a specific version of MiniSAT using GI. The aim of this transplantation was to
improve execution time for a specific task (Combinatorial Interaction Testing).

C. Le Goues and S. Yoo (Eds.): SSBSE 2014, LNCS 8636, pp. 247–252, 2014.
c⃝ Springer International Publishing Switzerland 2014

Introduced the
idea of using GP for
autotransplantation

Code Transplants

2014 — Harman et al.

Using Genetic Improvement and
Code Transplants to Specialise a
C++ Program to a Problem Class

Humies 2014

Most cited
paper

Babel Pidgin: SBSE Can Grow and
Graft Entirely New Functionality

into a Real World System

Babel Pidgin: SBSE Can Grow and Graft Entirely
New Functionality into a Real World System

Mark Harman, Yue Jia, and William B. Langdon

University College London, CREST centre, UK

Abstract. Adding new functionality to an existing, large, and perhaps
poorly-understood system is a challenge, even for the most competent hu-
man programmer. We introduce a ‘grow and graft’ approach to Genetic
Improvement (GI) that transplants new functionality into an existing
system. We report on the trade offs between varying degrees of human
guidance to the GI transplantation process. Using our approach, we suc-
cessfully grew and transplanted a new ‘Babel Fish’ linguistic translation
feature into the Pidgin instant messaging system, creating a genetically
improved system we call ‘Babel Pidgin’. This is the first time that SBSE
has been used to evolve and transplant entirely novel functionality into
an existing system. Our results indicate that our grow and graft approach
requires surprisingly little human guidance.

1 Introduction and Backgroud

Despite much progress in software development environments, programming still
includes many human activities that are dull, unproductive and tedious. In this
paper we propose a new SBSE approach to software development: Grow and
Graft, in which a new feature is grown (using genetic programming) and sub-
sequently grafted into an existing system. This grow and graft development
approach aims to reduce the amount of tedious effort required by human pro-
grammer in order to develop and add new functionality into an existing system.

Our approach is inspired by the recent trend in Search Based Software Engi-
neering (SBSE) called ‘genetic improvement’ [2,8,10,11,14,15]. Genetic
Improvement (GI) uses existing code as ‘genetic material’ that helps to au-
tomatically improve existing software systems. It has been used to repair broken
functionality [10,14], and to achieve dramatic scale-ups for sets of small bench-
marks [11,15], and also for a 50k LoC genome matching system [8], for graphic
shaders [14] and for a CUDA stereo image processing system [7]. Related work
on loop perforation has also reported dramatic speed-ups [13]. GI has also been
used to port one system to a new version on a different platform [6].

Recently, it has been demonstrated [12] that GI can be used to transplant code
[3] from one version of a system to another. In this previous transplantation work
[12], code from several versions of MiniSAT (the ‘donor’) were transplanted into
a specific version of MiniSAT using GI. The aim of this transplantation was to
improve execution time for a specific task (Combinatorial Interaction Testing).

C. Le Goues and S. Yoo (Eds.): SSBSE 2014, LNCS 8636, pp. 247–252, 2014.
c⃝ Springer International Publishing Switzerland 2014

2015 — Barr et al.

Automated Software
Transplantation

Automated Software Transplantation

Earl T. Barr Mark Harman Yue Jia Alexandru Marginean Justyna Petke
CREST, University College London, Malet Place, London, WC1E 6BT, UK

{e.barr,m.harman,yue.jia,alexandru.marginean.13,j.petke}@ucl.ac.uk

ABSTRACT
Automated transplantation would open many exciting av-
enues for software development: suppose we could autotrans-
plant code from one system into another, entirely unrelated,
system. This paper introduces a theory, an algorithm, and
a tool that achieve this. Leveraging lightweight annotation,
program analysis identifies an organ (interesting behavior to
transplant); testing validates that the organ exhibits the de-
sired behavior during its extraction and after its implantation
into a host. While we do not claim automated transplanta-
tion is now a solved problem, our results are encouraging:
we report that in 12 of 15 experiments, involving 5 donors
and 3 hosts (all popular real-world systems), we successfully
autotransplanted new functionality and passed all regression
tests. Autotransplantation is also already useful: in 26 hours
computation time we successfully autotransplanted the H.264
video encoding functionality from the x264 system to the
VLC media player; compare this to upgrading x264 within
VLC, a task that we estimate, from VLC’s version history,
took human programmers an average of 20 days of elapsed,
as opposed to dedicated, time.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software; D.2.5
[Software Engineering]: Testing and Debugging

Keywords
Automated software transplantation, autotransplantation,
genetic improvement

1. INTRODUCTION
Software engineers spend a great deal of time extracting,

porting, and rewriting existing code to extend the function-
ality of existing software systems. Currently, this is tedious,
laborious, and slow [15]. The research community has pro-
vided analyses and partial support for such manual code
reuse: for example, clone detection [5, 32, 36, 60], code
migration [38, 58], code salvaging [12], reuse [13, 14, 16],

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA
Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

dependence analysis [3, 22, 29, 30] and feature extraction
techniques [24, 33, 44]. However, the overall process remains
largely unautomated, particularly the critical transplantation
of code that implements useful functionality from a donor
into a target system, which we call the host.

What if we could automate the process of extracting func-
tionality from one system and transplanting it into another?
This is the goal we set ourselves in this paper. That is, we are
the first to develop and evaluate techniques to implement au-
tomated software transplantation from one system to another,
which one of the authors proposed (hitherto unimplemented
and unevaluated) in the keynote of the 2013 WCRE [28].
A programmer must first identify the entry point of code

that implements a feature of interest. Given an entry point
in the donor and a target implantation point in the host
program, the goal of automated transplantation is to identify
and extract an organ, all code associated with the feature
of interest, then transform it to be compatible with the
name space and context of its target site in the host. The
programmer also supplies test suites that guide the search for
donor code modifications required to make it fully executable
(and pass all test cases) when deployed in the host.

This is a challenging vision of transplantation, because
code from one system is unlikely to even compile when it is
re-located into an unrelated foreign system without extensive
modification, let alone execute and pass test cases. The ex-
traction of the code also involves identifying all semantically
required code and the successful insertion of the code organ
into the host requires nontrivial modifications to the organ to
ensure it adds the required feature without breaking existing
functionality. In this paper, we present results that demon-
strate that this vision of automated software transplantation
is indeed achievable, e�cient and potentially useful.

Feature identification is well studied [14, 16, 58]. Extract-
ing a component of a system, given the identification of a
suitable feature is also well studied, through work on slicing
and dependence analysis [22, 24, 29, 33, 44]. The challenges
of automatically extracting a feature from one system, trans-
planting it into an entirely di↵erent system, and usefully
executing it in the organ beneficiary, however, have not pre-
viously been studied in the literature.

We developed µTrans, an algorithm for automated software
transplantation, based on a new kind of genetic program-
ming, augmented by a novel form of program slicing. µTrans
synergizes analysis and testing: analysis extracts an ‘organ’,
an executable slice from a donor; testing guides all phases
of autotransplantation — identifying the organ in the donor,
minimizing and placing the organ into an ice-box, and fi-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

ISSTA’15, July 12–17, 2015, Baltimore, MD, USA
ACM. 978-1-4503-3620-8/15/07
http://dx.doi.org/10.1145/2771783.2771796

257

Code Transplants

2014 — Harman et al.

Using Genetic Improvement and
Code Transplants to Specialise a
C++ Program to a Problem Class

Humies 2014

Most cited
paper

Babel Pidgin: SBSE Can Grow and
Graft Entirely New Functionality

into a Real World System

Babel Pidgin: SBSE Can Grow and Graft Entirely
New Functionality into a Real World System

Mark Harman, Yue Jia, and William B. Langdon

University College London, CREST centre, UK

Abstract. Adding new functionality to an existing, large, and perhaps
poorly-understood system is a challenge, even for the most competent hu-
man programmer. We introduce a ‘grow and graft’ approach to Genetic
Improvement (GI) that transplants new functionality into an existing
system. We report on the trade offs between varying degrees of human
guidance to the GI transplantation process. Using our approach, we suc-
cessfully grew and transplanted a new ‘Babel Fish’ linguistic translation
feature into the Pidgin instant messaging system, creating a genetically
improved system we call ‘Babel Pidgin’. This is the first time that SBSE
has been used to evolve and transplant entirely novel functionality into
an existing system. Our results indicate that our grow and graft approach
requires surprisingly little human guidance.

1 Introduction and Backgroud

Despite much progress in software development environments, programming still
includes many human activities that are dull, unproductive and tedious. In this
paper we propose a new SBSE approach to software development: Grow and
Graft, in which a new feature is grown (using genetic programming) and sub-
sequently grafted into an existing system. This grow and graft development
approach aims to reduce the amount of tedious effort required by human pro-
grammer in order to develop and add new functionality into an existing system.

Our approach is inspired by the recent trend in Search Based Software Engi-
neering (SBSE) called ‘genetic improvement’ [2,8,10,11,14,15]. Genetic
Improvement (GI) uses existing code as ‘genetic material’ that helps to au-
tomatically improve existing software systems. It has been used to repair broken
functionality [10,14], and to achieve dramatic scale-ups for sets of small bench-
marks [11,15], and also for a 50k LoC genome matching system [8], for graphic
shaders [14] and for a CUDA stereo image processing system [7]. Related work
on loop perforation has also reported dramatic speed-ups [13]. GI has also been
used to port one system to a new version on a different platform [6].

Recently, it has been demonstrated [12] that GI can be used to transplant code
[3] from one version of a system to another. In this previous transplantation work
[12], code from several versions of MiniSAT (the ‘donor’) were transplanted into
a specific version of MiniSAT using GI. The aim of this transplantation was to
improve execution time for a specific task (Combinatorial Interaction Testing).

C. Le Goues and S. Yoo (Eds.): SSBSE 2014, LNCS 8636, pp. 247–252, 2014.
c⃝ Springer International Publishing Switzerland 2014

2015 — Barr et al.

Automated Software
Transplantation

Automated Software Transplantation

Earl T. Barr Mark Harman Yue Jia Alexandru Marginean Justyna Petke
CREST, University College London, Malet Place, London, WC1E 6BT, UK

{e.barr,m.harman,yue.jia,alexandru.marginean.13,j.petke}@ucl.ac.uk

ABSTRACT
Automated transplantation would open many exciting av-
enues for software development: suppose we could autotrans-
plant code from one system into another, entirely unrelated,
system. This paper introduces a theory, an algorithm, and
a tool that achieve this. Leveraging lightweight annotation,
program analysis identifies an organ (interesting behavior to
transplant); testing validates that the organ exhibits the de-
sired behavior during its extraction and after its implantation
into a host. While we do not claim automated transplanta-
tion is now a solved problem, our results are encouraging:
we report that in 12 of 15 experiments, involving 5 donors
and 3 hosts (all popular real-world systems), we successfully
autotransplanted new functionality and passed all regression
tests. Autotransplantation is also already useful: in 26 hours
computation time we successfully autotransplanted the H.264
video encoding functionality from the x264 system to the
VLC media player; compare this to upgrading x264 within
VLC, a task that we estimate, from VLC’s version history,
took human programmers an average of 20 days of elapsed,
as opposed to dedicated, time.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software; D.2.5
[Software Engineering]: Testing and Debugging

Keywords
Automated software transplantation, autotransplantation,
genetic improvement

1. INTRODUCTION
Software engineers spend a great deal of time extracting,

porting, and rewriting existing code to extend the function-
ality of existing software systems. Currently, this is tedious,
laborious, and slow [15]. The research community has pro-
vided analyses and partial support for such manual code
reuse: for example, clone detection [5, 32, 36, 60], code
migration [38, 58], code salvaging [12], reuse [13, 14, 16],

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA
Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

dependence analysis [3, 22, 29, 30] and feature extraction
techniques [24, 33, 44]. However, the overall process remains
largely unautomated, particularly the critical transplantation
of code that implements useful functionality from a donor
into a target system, which we call the host.

What if we could automate the process of extracting func-
tionality from one system and transplanting it into another?
This is the goal we set ourselves in this paper. That is, we are
the first to develop and evaluate techniques to implement au-
tomated software transplantation from one system to another,
which one of the authors proposed (hitherto unimplemented
and unevaluated) in the keynote of the 2013 WCRE [28].
A programmer must first identify the entry point of code

that implements a feature of interest. Given an entry point
in the donor and a target implantation point in the host
program, the goal of automated transplantation is to identify
and extract an organ, all code associated with the feature
of interest, then transform it to be compatible with the
name space and context of its target site in the host. The
programmer also supplies test suites that guide the search for
donor code modifications required to make it fully executable
(and pass all test cases) when deployed in the host.

This is a challenging vision of transplantation, because
code from one system is unlikely to even compile when it is
re-located into an unrelated foreign system without extensive
modification, let alone execute and pass test cases. The ex-
traction of the code also involves identifying all semantically
required code and the successful insertion of the code organ
into the host requires nontrivial modifications to the organ to
ensure it adds the required feature without breaking existing
functionality. In this paper, we present results that demon-
strate that this vision of automated software transplantation
is indeed achievable, e�cient and potentially useful.

Feature identification is well studied [14, 16, 58]. Extract-
ing a component of a system, given the identification of a
suitable feature is also well studied, through work on slicing
and dependence analysis [22, 24, 29, 33, 44]. The challenges
of automatically extracting a feature from one system, trans-
planting it into an entirely di↵erent system, and usefully
executing it in the organ beneficiary, however, have not pre-
viously been studied in the literature.

We developed µTrans, an algorithm for automated software
transplantation, based on a new kind of genetic program-
ming, augmented by a novel form of program slicing. µTrans
synergizes analysis and testing: analysis extracts an ‘organ’,
an executable slice from a donor; testing guides all phases
of autotransplantation — identifying the organ in the donor,
minimizing and placing the organ into an ice-box, and fi-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

ISSTA’15, July 12–17, 2015, Baltimore, MD, USA
ACM. 978-1-4503-3620-8/15/07
http://dx.doi.org/10.1145/2771783.2771796

257

Code Transplants

2014 — Harman et al.

Babel Pidgin: SBSE Can Grow and
Graft Entirely New Functionality

into a Real World System

Babel Pidgin: SBSE Can Grow and Graft Entirely
New Functionality into a Real World System

Mark Harman, Yue Jia, and William B. Langdon

University College London, CREST centre, UK

Abstract. Adding new functionality to an existing, large, and perhaps
poorly-understood system is a challenge, even for the most competent hu-
man programmer. We introduce a ‘grow and graft’ approach to Genetic
Improvement (GI) that transplants new functionality into an existing
system. We report on the trade offs between varying degrees of human
guidance to the GI transplantation process. Using our approach, we suc-
cessfully grew and transplanted a new ‘Babel Fish’ linguistic translation
feature into the Pidgin instant messaging system, creating a genetically
improved system we call ‘Babel Pidgin’. This is the first time that SBSE
has been used to evolve and transplant entirely novel functionality into
an existing system. Our results indicate that our grow and graft approach
requires surprisingly little human guidance.

1 Introduction and Backgroud

Despite much progress in software development environments, programming still
includes many human activities that are dull, unproductive and tedious. In this
paper we propose a new SBSE approach to software development: Grow and
Graft, in which a new feature is grown (using genetic programming) and sub-
sequently grafted into an existing system. This grow and graft development
approach aims to reduce the amount of tedious effort required by human pro-
grammer in order to develop and add new functionality into an existing system.

Our approach is inspired by the recent trend in Search Based Software Engi-
neering (SBSE) called ‘genetic improvement’ [2,8,10,11,14,15]. Genetic
Improvement (GI) uses existing code as ‘genetic material’ that helps to au-
tomatically improve existing software systems. It has been used to repair broken
functionality [10,14], and to achieve dramatic scale-ups for sets of small bench-
marks [11,15], and also for a 50k LoC genome matching system [8], for graphic
shaders [14] and for a CUDA stereo image processing system [7]. Related work
on loop perforation has also reported dramatic speed-ups [13]. GI has also been
used to port one system to a new version on a different platform [6].

Recently, it has been demonstrated [12] that GI can be used to transplant code
[3] from one version of a system to another. In this previous transplantation work
[12], code from several versions of MiniSAT (the ‘donor’) were transplanted into
a specific version of MiniSAT using GI. The aim of this transplantation was to
improve execution time for a specific task (Combinatorial Interaction Testing).

C. Le Goues and S. Yoo (Eds.): SSBSE 2014, LNCS 8636, pp. 247–252, 2014.
c⃝ Springer International Publishing Switzerland 2014

2015 — Barr et al.

Automated Software
Transplantation

Automated Software Transplantation

Earl T. Barr Mark Harman Yue Jia Alexandru Marginean Justyna Petke
CREST, University College London, Malet Place, London, WC1E 6BT, UK

{e.barr,m.harman,yue.jia,alexandru.marginean.13,j.petke}@ucl.ac.uk

ABSTRACT
Automated transplantation would open many exciting av-
enues for software development: suppose we could autotrans-
plant code from one system into another, entirely unrelated,
system. This paper introduces a theory, an algorithm, and
a tool that achieve this. Leveraging lightweight annotation,
program analysis identifies an organ (interesting behavior to
transplant); testing validates that the organ exhibits the de-
sired behavior during its extraction and after its implantation
into a host. While we do not claim automated transplanta-
tion is now a solved problem, our results are encouraging:
we report that in 12 of 15 experiments, involving 5 donors
and 3 hosts (all popular real-world systems), we successfully
autotransplanted new functionality and passed all regression
tests. Autotransplantation is also already useful: in 26 hours
computation time we successfully autotransplanted the H.264
video encoding functionality from the x264 system to the
VLC media player; compare this to upgrading x264 within
VLC, a task that we estimate, from VLC’s version history,
took human programmers an average of 20 days of elapsed,
as opposed to dedicated, time.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software; D.2.5
[Software Engineering]: Testing and Debugging

Keywords
Automated software transplantation, autotransplantation,
genetic improvement

1. INTRODUCTION
Software engineers spend a great deal of time extracting,

porting, and rewriting existing code to extend the function-
ality of existing software systems. Currently, this is tedious,
laborious, and slow [15]. The research community has pro-
vided analyses and partial support for such manual code
reuse: for example, clone detection [5, 32, 36, 60], code
migration [38, 58], code salvaging [12], reuse [13, 14, 16],

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA
Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

dependence analysis [3, 22, 29, 30] and feature extraction
techniques [24, 33, 44]. However, the overall process remains
largely unautomated, particularly the critical transplantation
of code that implements useful functionality from a donor
into a target system, which we call the host.

What if we could automate the process of extracting func-
tionality from one system and transplanting it into another?
This is the goal we set ourselves in this paper. That is, we are
the first to develop and evaluate techniques to implement au-
tomated software transplantation from one system to another,
which one of the authors proposed (hitherto unimplemented
and unevaluated) in the keynote of the 2013 WCRE [28].
A programmer must first identify the entry point of code

that implements a feature of interest. Given an entry point
in the donor and a target implantation point in the host
program, the goal of automated transplantation is to identify
and extract an organ, all code associated with the feature
of interest, then transform it to be compatible with the
name space and context of its target site in the host. The
programmer also supplies test suites that guide the search for
donor code modifications required to make it fully executable
(and pass all test cases) when deployed in the host.

This is a challenging vision of transplantation, because
code from one system is unlikely to even compile when it is
re-located into an unrelated foreign system without extensive
modification, let alone execute and pass test cases. The ex-
traction of the code also involves identifying all semantically
required code and the successful insertion of the code organ
into the host requires nontrivial modifications to the organ to
ensure it adds the required feature without breaking existing
functionality. In this paper, we present results that demon-
strate that this vision of automated software transplantation
is indeed achievable, e�cient and potentially useful.

Feature identification is well studied [14, 16, 58]. Extract-
ing a component of a system, given the identification of a
suitable feature is also well studied, through work on slicing
and dependence analysis [22, 24, 29, 33, 44]. The challenges
of automatically extracting a feature from one system, trans-
planting it into an entirely di↵erent system, and usefully
executing it in the organ beneficiary, however, have not pre-
viously been studied in the literature.

We developed µTrans, an algorithm for automated software
transplantation, based on a new kind of genetic program-
ming, augmented by a novel form of program slicing. µTrans
synergizes analysis and testing: analysis extracts an ‘organ’,
an executable slice from a donor; testing guides all phases
of autotransplantation — identifying the organ in the donor,
minimizing and placing the organ into an ice-box, and fi-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

ISSTA’15, July 12–17, 2015, Baltimore, MD, USA
ACM. 978-1-4503-3620-8/15/07
http://dx.doi.org/10.1145/2771783.2771796

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
IS
S
TA
*
Ar

tifact *

A
E
C

257

Automatic Error Elimination
by Horizontal Code Transfer
Across Multiple Applications

2015 — Sidiroglou-Douskos
et al.

Code Transplants

2015 — Barr et al.

Automated Software
Transplantation

Automated Software Transplantation

Earl T. Barr Mark Harman Yue Jia Alexandru Marginean Justyna Petke
CREST, University College London, Malet Place, London, WC1E 6BT, UK

{e.barr,m.harman,yue.jia,alexandru.marginean.13,j.petke}@ucl.ac.uk

ABSTRACT
Automated transplantation would open many exciting av-
enues for software development: suppose we could autotrans-
plant code from one system into another, entirely unrelated,
system. This paper introduces a theory, an algorithm, and
a tool that achieve this. Leveraging lightweight annotation,
program analysis identifies an organ (interesting behavior to
transplant); testing validates that the organ exhibits the de-
sired behavior during its extraction and after its implantation
into a host. While we do not claim automated transplanta-
tion is now a solved problem, our results are encouraging:
we report that in 12 of 15 experiments, involving 5 donors
and 3 hosts (all popular real-world systems), we successfully
autotransplanted new functionality and passed all regression
tests. Autotransplantation is also already useful: in 26 hours
computation time we successfully autotransplanted the H.264
video encoding functionality from the x264 system to the
VLC media player; compare this to upgrading x264 within
VLC, a task that we estimate, from VLC’s version history,
took human programmers an average of 20 days of elapsed,
as opposed to dedicated, time.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software; D.2.5
[Software Engineering]: Testing and Debugging

Keywords
Automated software transplantation, autotransplantation,
genetic improvement

1. INTRODUCTION
Software engineers spend a great deal of time extracting,

porting, and rewriting existing code to extend the function-
ality of existing software systems. Currently, this is tedious,
laborious, and slow [15]. The research community has pro-
vided analyses and partial support for such manual code
reuse: for example, clone detection [5, 32, 36, 60], code
migration [38, 58], code salvaging [12], reuse [13, 14, 16],

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA
Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

dependence analysis [3, 22, 29, 30] and feature extraction
techniques [24, 33, 44]. However, the overall process remains
largely unautomated, particularly the critical transplantation
of code that implements useful functionality from a donor
into a target system, which we call the host.

What if we could automate the process of extracting func-
tionality from one system and transplanting it into another?
This is the goal we set ourselves in this paper. That is, we are
the first to develop and evaluate techniques to implement au-
tomated software transplantation from one system to another,
which one of the authors proposed (hitherto unimplemented
and unevaluated) in the keynote of the 2013 WCRE [28].
A programmer must first identify the entry point of code

that implements a feature of interest. Given an entry point
in the donor and a target implantation point in the host
program, the goal of automated transplantation is to identify
and extract an organ, all code associated with the feature
of interest, then transform it to be compatible with the
name space and context of its target site in the host. The
programmer also supplies test suites that guide the search for
donor code modifications required to make it fully executable
(and pass all test cases) when deployed in the host.

This is a challenging vision of transplantation, because
code from one system is unlikely to even compile when it is
re-located into an unrelated foreign system without extensive
modification, let alone execute and pass test cases. The ex-
traction of the code also involves identifying all semantically
required code and the successful insertion of the code organ
into the host requires nontrivial modifications to the organ to
ensure it adds the required feature without breaking existing
functionality. In this paper, we present results that demon-
strate that this vision of automated software transplantation
is indeed achievable, e�cient and potentially useful.

Feature identification is well studied [14, 16, 58]. Extract-
ing a component of a system, given the identification of a
suitable feature is also well studied, through work on slicing
and dependence analysis [22, 24, 29, 33, 44]. The challenges
of automatically extracting a feature from one system, trans-
planting it into an entirely di↵erent system, and usefully
executing it in the organ beneficiary, however, have not pre-
viously been studied in the literature.

We developed µTrans, an algorithm for automated software
transplantation, based on a new kind of genetic program-
ming, augmented by a novel form of program slicing. µTrans
synergizes analysis and testing: analysis extracts an ‘organ’,
an executable slice from a donor; testing guides all phases
of autotransplantation — identifying the organ in the donor,
minimizing and placing the organ into an ice-box, and fi-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

ISSTA’15, July 12–17, 2015, Baltimore, MD, USA
ACM. 978-1-4503-3620-8/15/07
http://dx.doi.org/10.1145/2771783.2771796

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
IS
S
TA
*
Ar

tifact *

A
E
C

257

2015 — Marginean et al.

Automated transplantation
of call graph and layout

features into Kate

Automatic Error Elimination
by Horizontal Code Transfer
Across Multiple Applications

2015 — Sidiroglou-Douskos
et al.

Automatic Error Elimination
by Horizontal Code Transfer across Multiple Applications

Stelios Sidiroglou-Douskos Eric Lahtinen Fan Long Martin Rinard
{stelios,elahtinen,fanl,rinard}@csail.mit.edu

MIT CSAIL, Cambridge, MA, USA

Abstract
We present Code Phage (CP), a system for automatically transferring
correct code from donor applications into recipient applications
that process the same inputs to successfully eliminate errors in the
recipient. Experimental results using seven donor applications to
eliminate ten errors in seven recipient applications highlight the
ability of CP to transfer code across applications to eliminate out of
bounds access, integer overflow, and divide by zero errors. Because
CP works with binary donors with no need for source code or
symbolic information, it supports a wide range of use cases. To the
best of our knowledge, CP is the first system to automatically transfer
code across multiple applications.

Categories and Subject Descriptors D.2.5 [Testing and Debug-
ging]: Error handling and recovery; D.2.7 [Distribution, Mainte-
nance, and Enhancement]: Corrections

Keywords automatic code transfer, program repair, data structure
translation

1. Introduction
Horizontal gene transfer is the transfer of genetic material between
cells in different organisms. Examples include plasmid transfer
(which plays a major role in acquired antibiotic resistance [17]),
virally-mediated gene therapy [28], and the transfer of insect toxin
genes from bacteria to fungal symbionts [16]. Because of its ability
to directly transfer functionality evolved and refined in one organism
into another, horizontal gene transfer is recognized as a significant
factor in the development of many forms of life [29].

Like biological organisms, software applications often face chal-
lenges and threats from the environment in which they operate. De-
spite significant software development effort, errors and security
vulnerabilities still remain a important concern. Many of these errors
are caused by an uncommon case that the developers of one (or more)
of the applications did not anticipate. But in many cases, the devel-
opers of another application did anticipate the uncommon case and
wrote correct code to handle it.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLDI’15, , June 13–17, 2015, Portland, OR, USA.
Copyright © 2015 ACM 978-1-4503-3468-6/15/06. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

1.1 The Code Phage (CP) Code Transfer System
We present Code Phage (CP), a novel horizontal code transfer system
that automatically eliminates errors in recipient software applications
by finding correct code in donor applications, then transferring that
code from the donor into the recipient. The result is a software
hybrid that productively combines beneficial code from multiple
applications:

• Donor Selection: CP starts with an application and two inputs: an
input that triggers an error and a seed input that does not trigger the
error. Working with a database of applications that can read these
inputs, it locates a donor that processes both inputs successfully.
The hypothesis is that the donor contains a check, missing in
the recipient, that enables it to process the error-triggering input
correctly. The goal is to transfer that check from the donor into
the recipient (and eliminate the error in the recipient).

• Candidate Check Discovery: To identify the check that enables
the donor to survive the error-triggering input, CP analyzes the
executed conditional branches in the donor to find branches that
take different directions for the seed and error-triggering inputs.
The hypothesis is that if the check eliminates the error, the seed
input will pass the check but the error-triggering input will fail
the check (and therefore change the branch direction).

• Patch Excision: CP performs an instrumented execution of
the donor on the error-triggering input to obtain a symbolic
expression tree that expresses the check as a function of the
input fields that determine its value. This execution translates the
check from the data structures and name space of the donor into
an application-independent representation suitable for insertion
into another application.

• Patch Insertion: CP next uses an instrumented execution of the
recipient on the seed input to find candidate insertion points at
which all of the input fields in the excised check are available as
recipient program expressions. At each such point, it is possible to
translate the check from the application-independent representa-
tion into the data structures and name space of the recipient. This
translation, in effect, inserts the excised check into the recipient.

• Patch Validation: CP inserts the translated check into the recip-
ient at each candidate insertion point in turn, then attempts to
validate the patch. It recompiles the application, uses regression
testing to verify that the patch preserves correct behavior on the
regression suite, and checks that the patch enables the patched
recipient to correctly process the error-triggering input. As avail-
able, CP also reruns error detecting tools to generate additional
error-triggering inputs, which it then uses to recursively eliminate
any residual or newly discovered errors.
As appropriate, CP can also exploit the semantics of specific
classes of errors (such as divide by zero or integer overflow) to
perform additional validation steps. For integer overflow errors,
for example, CP analyzes the check, the expression that overflows,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

PLDI’15, June 13–17, 2015, Portland, OR, USA
ACM. 978-1-4503-3468-6/15/06
http://dx.doi.org/10.1145/2737924.2737988

43

Code Transplants

2015 — Marginean et al.

Automated transplantation
of call graph and layout

features into Kate

Automated Transplantation of Call Graph and

Layout Features into Kate

Alexandru Marginean, Earl T. Barr, Mark Harman, and Yue Jia

UCL, Department of Computer Science, CREST Centre

Abstract. We report the automated transplantation of two features
currently missing from Kate: call graph generation and automatic layout
for C programs, which have been requested by users on the Kate devel-
opment forum. Our approach uses a lightweight annotation system with
Search Based techniques augmented by static analysis for automated
transplantation. The results are promising: on average, our tool requires
101 minutes of standard desktop machine time to transplant the call
graph feature, and 31 minutes to transplant the layout feature. We re-
peated each experiment 20 times and validated the resulting transplants
using unit, regression and acceptance test suites. In 34 of 40 experiments
conducted our search-based autotransplantation tool, µScalpel, was
able to successfully transplant the new functionality, passing all tests.

1 Introduction

We recently introduced a search based technique for automated software trans-
plantation [2,7]. Guided by dependence analysis and testing, our approach uses a
variant of genetic programming to identify and extract useful functionality from a
donor program, and transplant it into a (possibly unrelated) host program. We im-
plemented our approach as a tool called µScalpel, which is publicly available [1].

In this challenge paper, we illustrate the way in which realistic, scalable, and
useful real-world transplantation can be achieved using µScalpel. We apply our
tool to the SSBSE 2015 Challenge program Kate1, a popular text editor based on
KDE. Its rich feature set and available plugins make it a popular, lightweight IDE
for C developers. We perform two automated transplantations using µScalpel.
In the first one, we transplant call graph drawing ability from the GNU utility pro-
gram cflow, to augment Kate with the ability to construct and display call graphs.

This is a useful feature for a lightweight IDE, like Kate, and would clearly be
nontrivial to implement from scratch. Using our search based autotransplantation,
µScalpel, the developer merely needs to identify the entry point of the source
code in the donor program (cflow in this case) and the tool will do the rest; ex-
tracting the relevant code, matching names spaces between host and donor and ex-
ecuting regressions, unit and acceptance tests. Like much previous work on genetic
programming [12], our approach relies critically on the availability of high quality
test suites. We do not directly address this issue in the present paper, but believe
1
http://kate-editor.org

Automatic Error Elimination
by Horizontal Code Transfer
Across Multiple Applications

2015 — Sidiroglou-Douskos
et al.

Automatic Error Elimination
by Horizontal Code Transfer across Multiple Applications

Stelios Sidiroglou-Douskos Eric Lahtinen Fan Long Martin Rinard
{stelios,elahtinen,fanl,rinard}@csail.mit.edu

MIT CSAIL, Cambridge, MA, USA

Abstract
We present Code Phage (CP), a system for automatically transferring
correct code from donor applications into recipient applications
that process the same inputs to successfully eliminate errors in the
recipient. Experimental results using seven donor applications to
eliminate ten errors in seven recipient applications highlight the
ability of CP to transfer code across applications to eliminate out of
bounds access, integer overflow, and divide by zero errors. Because
CP works with binary donors with no need for source code or
symbolic information, it supports a wide range of use cases. To the
best of our knowledge, CP is the first system to automatically transfer
code across multiple applications.

Categories and Subject Descriptors D.2.5 [Testing and Debug-
ging]: Error handling and recovery; D.2.7 [Distribution, Mainte-
nance, and Enhancement]: Corrections

Keywords automatic code transfer, program repair, data structure
translation

1. Introduction
Horizontal gene transfer is the transfer of genetic material between
cells in different organisms. Examples include plasmid transfer
(which plays a major role in acquired antibiotic resistance [17]),
virally-mediated gene therapy [28], and the transfer of insect toxin
genes from bacteria to fungal symbionts [16]. Because of its ability
to directly transfer functionality evolved and refined in one organism
into another, horizontal gene transfer is recognized as a significant
factor in the development of many forms of life [29].

Like biological organisms, software applications often face chal-
lenges and threats from the environment in which they operate. De-
spite significant software development effort, errors and security
vulnerabilities still remain a important concern. Many of these errors
are caused by an uncommon case that the developers of one (or more)
of the applications did not anticipate. But in many cases, the devel-
opers of another application did anticipate the uncommon case and
wrote correct code to handle it.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLDI’15, , June 13–17, 2015, Portland, OR, USA.
Copyright © 2015 ACM 978-1-4503-3468-6/15/06. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

1.1 The Code Phage (CP) Code Transfer System
We present Code Phage (CP), a novel horizontal code transfer system
that automatically eliminates errors in recipient software applications
by finding correct code in donor applications, then transferring that
code from the donor into the recipient. The result is a software
hybrid that productively combines beneficial code from multiple
applications:

• Donor Selection: CP starts with an application and two inputs: an
input that triggers an error and a seed input that does not trigger the
error. Working with a database of applications that can read these
inputs, it locates a donor that processes both inputs successfully.
The hypothesis is that the donor contains a check, missing in
the recipient, that enables it to process the error-triggering input
correctly. The goal is to transfer that check from the donor into
the recipient (and eliminate the error in the recipient).

• Candidate Check Discovery: To identify the check that enables
the donor to survive the error-triggering input, CP analyzes the
executed conditional branches in the donor to find branches that
take different directions for the seed and error-triggering inputs.
The hypothesis is that if the check eliminates the error, the seed
input will pass the check but the error-triggering input will fail
the check (and therefore change the branch direction).

• Patch Excision: CP performs an instrumented execution of
the donor on the error-triggering input to obtain a symbolic
expression tree that expresses the check as a function of the
input fields that determine its value. This execution translates the
check from the data structures and name space of the donor into
an application-independent representation suitable for insertion
into another application.

• Patch Insertion: CP next uses an instrumented execution of the
recipient on the seed input to find candidate insertion points at
which all of the input fields in the excised check are available as
recipient program expressions. At each such point, it is possible to
translate the check from the application-independent representa-
tion into the data structures and name space of the recipient. This
translation, in effect, inserts the excised check into the recipient.

• Patch Validation: CP inserts the translated check into the recip-
ient at each candidate insertion point in turn, then attempts to
validate the patch. It recompiles the application, uses regression
testing to verify that the patch preserves correct behavior on the
regression suite, and checks that the patch enables the patched
recipient to correctly process the error-triggering input. As avail-
able, CP also reruns error detecting tools to generate additional
error-triggering inputs, which it then uses to recursively eliminate
any residual or newly discovered errors.
As appropriate, CP can also exploit the semantics of specific
classes of errors (such as divide by zero or integer overflow) to
perform additional validation steps. For integer overflow errors,
for example, CP analyzes the check, the expression that overflows,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

PLDI’15, June 13–17, 2015, Portland, OR, USA
ACM. 978-1-4503-3468-6/15/06
http://dx.doi.org/10.1145/2737924.2737988

43

Code Transplants

2015 — Marginean et al.

Automated transplantation
of call graph and layout

features into Kate

Automated Transplantation of Call Graph and

Layout Features into Kate

Alexandru Marginean, Earl T. Barr, Mark Harman, and Yue Jia

UCL, Department of Computer Science, CREST Centre

Abstract. We report the automated transplantation of two features
currently missing from Kate: call graph generation and automatic layout
for C programs, which have been requested by users on the Kate devel-
opment forum. Our approach uses a lightweight annotation system with
Search Based techniques augmented by static analysis for automated
transplantation. The results are promising: on average, our tool requires
101 minutes of standard desktop machine time to transplant the call
graph feature, and 31 minutes to transplant the layout feature. We re-
peated each experiment 20 times and validated the resulting transplants
using unit, regression and acceptance test suites. In 34 of 40 experiments
conducted our search-based autotransplantation tool, µScalpel, was
able to successfully transplant the new functionality, passing all tests.

1 Introduction

We recently introduced a search based technique for automated software trans-
plantation [2,7]. Guided by dependence analysis and testing, our approach uses a
variant of genetic programming to identify and extract useful functionality from a
donor program, and transplant it into a (possibly unrelated) host program. We im-
plemented our approach as a tool called µScalpel, which is publicly available [1].

In this challenge paper, we illustrate the way in which realistic, scalable, and
useful real-world transplantation can be achieved using µScalpel. We apply our
tool to the SSBSE 2015 Challenge program Kate1, a popular text editor based on
KDE. Its rich feature set and available plugins make it a popular, lightweight IDE
for C developers. We perform two automated transplantations using µScalpel.
In the first one, we transplant call graph drawing ability from the GNU utility pro-
gram cflow, to augment Kate with the ability to construct and display call graphs.

This is a useful feature for a lightweight IDE, like Kate, and would clearly be
nontrivial to implement from scratch. Using our search based autotransplantation,
µScalpel, the developer merely needs to identify the entry point of the source
code in the donor program (cflow in this case) and the tool will do the rest; ex-
tracting the relevant code, matching names spaces between host and donor and ex-
ecuting regressions, unit and acceptance tests. Like much previous work on genetic
programming [12], our approach relies critically on the availability of high quality
test suites. We do not directly address this issue in the present paper, but believe
1
http://kate-editor.org

Automatic Error Elimination
by Horizontal Code Transfer
Across Multiple Applications

2015 — Sidiroglou-Douskos
et al.

Automatic Error Elimination
by Horizontal Code Transfer across Multiple Applications

Stelios Sidiroglou-Douskos Eric Lahtinen Fan Long Martin Rinard
{stelios,elahtinen,fanl,rinard}@csail.mit.edu

MIT CSAIL, Cambridge, MA, USA

Abstract
We present Code Phage (CP), a system for automatically transferring
correct code from donor applications into recipient applications
that process the same inputs to successfully eliminate errors in the
recipient. Experimental results using seven donor applications to
eliminate ten errors in seven recipient applications highlight the
ability of CP to transfer code across applications to eliminate out of
bounds access, integer overflow, and divide by zero errors. Because
CP works with binary donors with no need for source code or
symbolic information, it supports a wide range of use cases. To the
best of our knowledge, CP is the first system to automatically transfer
code across multiple applications.

Categories and Subject Descriptors D.2.5 [Testing and Debug-
ging]: Error handling and recovery; D.2.7 [Distribution, Mainte-
nance, and Enhancement]: Corrections

Keywords automatic code transfer, program repair, data structure
translation

1. Introduction
Horizontal gene transfer is the transfer of genetic material between
cells in different organisms. Examples include plasmid transfer
(which plays a major role in acquired antibiotic resistance [17]),
virally-mediated gene therapy [28], and the transfer of insect toxin
genes from bacteria to fungal symbionts [16]. Because of its ability
to directly transfer functionality evolved and refined in one organism
into another, horizontal gene transfer is recognized as a significant
factor in the development of many forms of life [29].

Like biological organisms, software applications often face chal-
lenges and threats from the environment in which they operate. De-
spite significant software development effort, errors and security
vulnerabilities still remain a important concern. Many of these errors
are caused by an uncommon case that the developers of one (or more)
of the applications did not anticipate. But in many cases, the devel-
opers of another application did anticipate the uncommon case and
wrote correct code to handle it.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLDI’15, , June 13–17, 2015, Portland, OR, USA.
Copyright © 2015 ACM 978-1-4503-3468-6/15/06. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

1.1 The Code Phage (CP) Code Transfer System
We present Code Phage (CP), a novel horizontal code transfer system
that automatically eliminates errors in recipient software applications
by finding correct code in donor applications, then transferring that
code from the donor into the recipient. The result is a software
hybrid that productively combines beneficial code from multiple
applications:

• Donor Selection: CP starts with an application and two inputs: an
input that triggers an error and a seed input that does not trigger the
error. Working with a database of applications that can read these
inputs, it locates a donor that processes both inputs successfully.
The hypothesis is that the donor contains a check, missing in
the recipient, that enables it to process the error-triggering input
correctly. The goal is to transfer that check from the donor into
the recipient (and eliminate the error in the recipient).

• Candidate Check Discovery: To identify the check that enables
the donor to survive the error-triggering input, CP analyzes the
executed conditional branches in the donor to find branches that
take different directions for the seed and error-triggering inputs.
The hypothesis is that if the check eliminates the error, the seed
input will pass the check but the error-triggering input will fail
the check (and therefore change the branch direction).

• Patch Excision: CP performs an instrumented execution of
the donor on the error-triggering input to obtain a symbolic
expression tree that expresses the check as a function of the
input fields that determine its value. This execution translates the
check from the data structures and name space of the donor into
an application-independent representation suitable for insertion
into another application.

• Patch Insertion: CP next uses an instrumented execution of the
recipient on the seed input to find candidate insertion points at
which all of the input fields in the excised check are available as
recipient program expressions. At each such point, it is possible to
translate the check from the application-independent representa-
tion into the data structures and name space of the recipient. This
translation, in effect, inserts the excised check into the recipient.

• Patch Validation: CP inserts the translated check into the recip-
ient at each candidate insertion point in turn, then attempts to
validate the patch. It recompiles the application, uses regression
testing to verify that the patch preserves correct behavior on the
regression suite, and checks that the patch enables the patched
recipient to correctly process the error-triggering input. As avail-
able, CP also reruns error detecting tools to generate additional
error-triggering inputs, which it then uses to recursively eliminate
any residual or newly discovered errors.
As appropriate, CP can also exploit the semantics of specific
classes of errors (such as divide by zero or integer overflow) to
perform additional validation steps. For integer overflow errors,
for example, CP analyzes the check, the expression that overflows,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

PLDI’15, June 13–17, 2015, Portland, OR, USA
ACM. 978-1-4503-3468-6/15/06
http://dx.doi.org/10.1145/2737924.2737988

43

CREST published the bulk of
transplantation papers

Interest from other groups

Mark Harman, Yue Jia, William B. Langdon

Babel Pidgin: SBSE can grow and graft
entirely new functionality into a real world

system

Alexandru Marginean — Automated Software Transplantation

Yue Jia

Thank you!

Babel Pidgin

Can we “grow” a software component and “graft”
it to existing system automatically?

Alexandru Marginean — Automated Software Transplantation

Babel Pidgin

Can we “grow” a software component and “graft”
it to existing system automatically?

Reduce the amount of tedious effort required
by human programmer in order to develop and
add new functionality into an existing system.

Alexandru Marginean — Automated Software Transplantation

? GI ProgramsProgramsProgramsSoftware

Donor Host

Code Transplants

Alexandru Marginean — Automated Software Transplantation

? GI ProgramsProgramsProgramsSoftware

What if we want to transplant a new functionality,
which we could not find it in any existing donors?

Donor Host

Code Transplants

Alexandru Marginean — Automated Software Transplantation

GGGI Grow and Graft for Genetic Improvements

GGGI ProgramsProgramsProgramsSoftware

Grow

Host

Graft

Grow code for new functionality, rather than to improve
existing non-functional properties of the system.

Alexandru Marginean — Automated Software Transplantation

GGGI Grow and Graft for Genetic Improvements

GGGI ProgramsProgramsProgramsSoftware

Grow

Host

Graft

Grow code for new functionality, rather than to improve
existing non-functional properties of the system.

Alexandru Marginean — Automated Software Transplantation

Pidgin

Version 2.10.9
C/C++ Instant message
client used by million users
worldwide

Alexandru Marginean — Automated Software Transplantation

hello

…
…

……

안녕하세요

……

Olá

…
…

Babel Pidgin
…

…

Alexandru Marginean — Automated Software Transplantation

Awards

Alexandru Marginean — Automated Software Transplantation

Awards

Alexandru Marginean — Automated Software Transplantation

Best SBSE Challenge
Paper

400 USD Amazon gift card plus
1,000 USD cash prize

Awards

Alexandru Marginean — Automated Software Transplantation

Best SBSE Challenge
Paper

400 USD Amazon gift card plus
1,000 USD cash prize

Awards

Alexandru Marginean — Automated Software Transplantation

Best SBSE Challenge
Paper

400 USD Amazon gift card plus
1,000 USD cash prize

Awards

£581,560 Grant
28 October 2015 — 27 October 2019

Microsoft, Visa Europe

Alexandru Marginean — Automated Software Transplantation

Earl T. Barr, Mark Harman, Yue Jia, Alexandru Marginean, Justyna Petke

Automated Software Transplantation

Alexandru Marginean, Earl T. Barr, Mark Harman, Yue Jia

Automated Transplantation of Call Graph
and Layout Features into Kate

Alexandru Marginean — Automated Software Transplantation

Human Transplantation

char	*vF;	
vF	=	getFile();	
initCodec(vF);

Stream	*ds	=	decodeFile(vF);	
encodeStream(ds,	out);

char	*	iF	=	getInputFile();	
char	*	oF	=	getOutputFile();

Donor Host

Alexandru Marginean — Automated Software Transplantation

Human Transplantation

char	*vF;	
vF	=	getFile();	
initCodec(vF);

Stream	*ds	=	decodeFile(vF);	
encodeStream(ds,	out);

char	*	iF	=	getInputFile();	
char	*	oF	=	getOutputFile();

Donor Host

Alexandru Marginean — Automated Software Transplantation

Human Transplantation

char	*vF;	
vF	=	getFile();	
initCodec(vF);

Stream	*ds	=	decodeFile(vF);	
encodeStream(ds,	out);

char	*	iF	=	getInputFile();	
char	*	oF	=	getOutputFile();

Donor Host

Alexandru Marginean — Automated Software Transplantation

Human Transplantation

char	*vF;	
vF	=	getFile();	
initCodec(vF);

Stream	*ds	=	decodeFile(vF);	
encodeStream(ds,	out);

char	*	iF	=	getInputFile();	
char	*	oF	=	getOutputFile();

Donor Host

Alexandru Marginean — Automated Software Transplantation

Human Transplantation

char	*vF;	
vF	=	getFile();	
initCodec(vF);

Stream	*ds	=	decodeFile(vF);	
encodeStream(ds,	out);

char	*	iF	=	getInputFile();	
char	*	oF	=	getOutputFile();

Stream	*ds	=	decodeFile(iF);	
encodeStream(ds,	oF);

Donor Host

Alexandru Marginean — Automated Software Transplantation

Human Transplantation

char	*vF;	
vF	=	getFile();	
initCodec(vF);

Stream	*ds	=	decodeFile(vF);	
encodeStream(ds,	out);

char	*	iF	=	getInputFile();	
char	*	oF	=	getOutputFile();

Stream	*ds	=	decodeFile(iF);	
encodeStream(ds,	oF);

Donor Host

Alexandru Marginean — Automated Software Transplantation

Human Transplantation

char	*vF;	
vF	=	getFile();	
initCodec(vF);

Stream	*ds	=	decodeFile(vF);	
encodeStream(ds,	out);

char	*	iF	=	getInputFile();	
char	*	oF	=	getOutputFile();

Stream	*ds	=	decodeFile(iF);	
encodeStream(ds,	oF);

Donor Host

Alexandru Marginean — Automated Software Transplantation

Human Transplantation

char	*vF;	
vF	=	getFile();	
initCodec(vF);

Stream	*ds	=	decodeFile(vF);	
encodeStream(ds,	out);

char	*	iF	=	getInputFile();	
char	*	oF	=	getOutputFile();

Stream	*ds	=	decodeFile(iF);	
encodeStream(ds,	oF);

Donor Host

Alexandru Marginean — Automated Software Transplantation

Human Transplantation

char	*vF;	
vF	=	getFile();	
initCodec(vF);

Stream	*ds	=	decodeFile(vF);	
encodeStream(ds,	out);

char	*	iF	=	getInputFile();	
char	*	oF	=	getOutputFile();

iF	=	getFile();	
initCodec(iF);

Stream	*ds	=	decodeFile(iF);	
encodeStream(ds,	oF);

Donor Host

Alexandru Marginean — Automated Software Transplantation

Human Transplantation

char	*vF;	
vF	=	getFile();	
initCodec(vF);

Stream	*ds	=	decodeFile(vF);	
encodeStream(ds,	out);

char	*	iF	=	getInputFile();	
char	*	oF	=	getOutputFile();

iF	=	getFile();	
initCodec(iF);

Stream	*ds	=	decodeFile(iF);	
encodeStream(ds,	oF);

Donor Host

Alexandru Marginean — Automated Software Transplantation

Human Transplantation

char	*vF;	
vF	=	getFile();	
initCodec(vF);

Stream	*ds	=	decodeFile(vF);	
encodeStream(ds,	out);

char	*	iF	=	getInputFile();	
char	*	oF	=	getOutputFile();

iF	=	getFile();	
initCodec(iF);

Stream	*ds	=	decodeFile(iF);	
encodeStream(ds,	oF);

Donor Host

Alexandru Marginean — Automated Software Transplantation

Human Transplantation

char	*vF;	
vF	=	getFile();	
initCodec(vF);

Stream	*ds	=	decodeFile(vF);	
encodeStream(ds,	out);

char	*	iF	=	getInputFile();	
char	*	oF	=	getOutputFile();

iF	=	getFile();	
initCodec(iF);

Stream	*ds	=	decodeFile(iF);	
encodeStream(ds,	oF);

Donor Host

Alexandru Marginean — Automated Software Transplantation

Human Transplantation

char	*vF;	
vF	=	getFile();	
initCodec(vF);

Stream	*ds	=	decodeFile(vF);	
encodeStream(ds,	out);

char	*	iF	=	getInputFile();	
char	*	oF	=	getOutputFile();

iF	=	getFile();	
initCodec(iF);

Stream	*ds	=	decodeFile(iF);	
encodeStream(ds,	oF);

Donor Host

Alexandru Marginean — Automated Software Transplantation

Human Organ
Transplantation

Alexandru Marginean — Automated Software Transplantation

OrganOrgan

Donor Host

ENTRY Implantation Point

Veins

Organ Test Suite

Autotransplantation

Alexandru Marginean — Automated Software Transplantation

OrganOrgan

Donor Host

ENTRY Implantation Point

Veins

Organ Test Suite

Autotransplantation

Alexandru Marginean — Automated Software Transplantation

μSCALPE
L

Feedback-Controlled Random Test

Generation

Kohsuke Yatoh1⇤, Kazunori Sakamoto2, Fuyuki Ishikawa2, Shinichi Honiden12

1University of Tokyo, Japan,
2National Institute of Informatics, Japan

{k-yatoh, exkazuu, f-ishikawa, honiden}@nii.ac.jp

ABSTRACT
Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and e↵ectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight di↵erent, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Algorithms, Reliability, Verification

Keywords
Random testing, Test generation, Diversity

⇤The author is currently a�liated with Google Inc., Japan,
and can be reached at kyatoh@google.com.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA

Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

1. INTRODUCTION
Feedback-directed random testing [17] is a promising tech-

nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5, 25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11, 12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].
Despite its importance, characteristics of feedback-directed

random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14, 27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.
We address two research questions in this paper.

RQ1: Why does the test e↵ectiveness stop increasing at
di↵erent points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test e↵ectiveness of feedback-directed random
testing should di↵er because of its randomness. However,
the observed di↵erence is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.
There are three contributions in this paper.

• We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
e↵ectiveness improve by limiting the amount of feed-
back.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ISSTA’15, July 13–17, 2015, Baltimore, MD, USA

ACM. 978-1-4503-3620-8/15/07

http://dx.doi.org/10.1145/2771783.2771805

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
IS
S
TA
*
Ar

tifact *

A
E
C

316

Experimental Corpus
Subjects Type Size KLOC Reg. Tests

 Empirical Study
Idct Donor 2.3 -

Mytar Donor 0.4 -
Cflow Donor 25 -

Webserver Donor 1.7 -
TuxCrypt Donor 2.7 -

Pidgin Host 363 88
Cflow Host 25 21
SoX Host 43 157

 Case Studies
VLC Host 422 27
Kate Host 50 238
x264 Donor 63 -
Cflow Donor 22 -
Indent Donor 26 -

Alexandru Marginean — Automated Software Transplantation

Aggregate Statistics
(Size)

Minimum 0.4k

Maximum 422k

Donor
(Average) 16k

Host
(Average) 213k

Experimental Methodology
and Setup

μSCALPEL

Host

Implantation
Point

Donor

Organ EntryOrgan Test
Suite

64 bit Ubuntu 14.10
16 GB RAM
8 threads

Alexandru Marginean — Automated Software Transplantation

Experimental Methodology
and Setup

μSCALPEL
Host

Implantation
Point

Donor

Organ Entry

Organ Test
Suite

Alexandru Marginean — Automated Software Transplantation

Experimental Methodology
and Setup

μSCALPEL
Postoperative

Host
Implantation

Point

Organ

Alexandru Marginean — Automated Software Transplantation

Experimental Methodology
and Setup

μSCALPEL

Postoperative
Host

Implantation
Point

Organ
x 20

Alexandru Marginean — Automated Software Transplantation

Transplant Validation
Regression

Tests

Augmented
Regression

Tests

Donor
Acceptance

Tests

Acceptance
Tests

Postoperative
Host

Alexandru Marginean — Automated Software Transplantation

Transplant Validation
Regression

Tests

Augmented
Regression

Tests

Donor
Acceptance

Tests

Acceptance
Tests

Manual
Validation

Postoperative
Host

Alexandru Marginean — Automated Software Transplantation

Transplant Validation
Regression

Tests

Augmented
Regression

Tests

Donor
Acceptance

Tests

Acceptance
Tests

Manual
Validation

Postoperative
Host

Alexandru Marginean — Automated Software Transplantation

Empirical Study
Execution Time (minutes)

Donor Host Successful
Idct Pidgin 16 5 97

Mytar Pidgin 16 3 65
Web Pidgin 0 8 160
Cflow Pidgin 15 58 1151
Tux Pidgin 15 29 574
Idct Cflow 16 3 59

Mytar Cflow 17 3 53
Web Cflow 0 5 102
Cflow Cflow 20 44 872
Tux Cflow 14 31 623
Idct SoX 15 12 233

Mytar SoX 17 3 60
Web SoX 0 7 132
Cflow SoX 14 89 74
Tux SoX 13 34 94

TOTAL 188/300

Feedback-Controlled Random Test

Generation

Kohsuke Yatoh1⇤, Kazunori Sakamoto2, Fuyuki Ishikawa2, Shinichi Honiden12

1University of Tokyo, Japan,
2National Institute of Informatics, Japan

{k-yatoh, exkazuu, f-ishikawa, honiden}@nii.ac.jp

ABSTRACT
Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and e↵ectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight di↵erent, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Algorithms, Reliability, Verification

Keywords
Random testing, Test generation, Diversity

⇤The author is currently a�liated with Google Inc., Japan,
and can be reached at kyatoh@google.com.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA

Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

1. INTRODUCTION
Feedback-directed random testing [17] is a promising tech-

nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5, 25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11, 12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].
Despite its importance, characteristics of feedback-directed

random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14, 27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.
We address two research questions in this paper.

RQ1: Why does the test e↵ectiveness stop increasing at
di↵erent points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test e↵ectiveness of feedback-directed random
testing should di↵er because of its randomness. However,
the observed di↵erence is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.
There are three contributions in this paper.

• We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
e↵ectiveness improve by limiting the amount of feed-
back.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ISSTA’15, July 13–17, 2015, Baltimore, MD, USA

ACM. 978-1-4503-3620-8/15/07

http://dx.doi.org/10.1145/2771783.2771805

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
IS
S
TA
*
Ar

tifact *

A
E
C

316

Alexandru Marginean — Automated Software Transplantation

334 72

Average Total (hours)

Empirical Study
Execution Time (minutes)

Donor Host Successful
Idct Pidgin 16 5 97

Mytar Pidgin 16 3 65
Web Pidgin 0 8 160
Cflow Pidgin 15 58 1151
Tux Pidgin 15 29 574
Idct Cflow 16 3 59

Mytar Cflow 17 3 53
Web Cflow 0 5 102
Cflow Cflow 20 44 872
Tux Cflow 14 31 623
Idct SoX 15 12 233

Mytar SoX 17 3 60
Web SoX 0 7 132
Cflow SoX 14 89 74
Tux SoX 13 34 94

TOTAL 188/300

Feedback-Controlled Random Test

Generation

Kohsuke Yatoh1⇤, Kazunori Sakamoto2, Fuyuki Ishikawa2, Shinichi Honiden12

1University of Tokyo, Japan,
2National Institute of Informatics, Japan

{k-yatoh, exkazuu, f-ishikawa, honiden}@nii.ac.jp

ABSTRACT
Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and e↵ectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight di↵erent, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Algorithms, Reliability, Verification

Keywords
Random testing, Test generation, Diversity

⇤The author is currently a�liated with Google Inc., Japan,
and can be reached at kyatoh@google.com.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA

Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

1. INTRODUCTION
Feedback-directed random testing [17] is a promising tech-

nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5, 25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11, 12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].
Despite its importance, characteristics of feedback-directed

random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14, 27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.
We address two research questions in this paper.

RQ1: Why does the test e↵ectiveness stop increasing at
di↵erent points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test e↵ectiveness of feedback-directed random
testing should di↵er because of its randomness. However,
the observed di↵erence is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.
There are three contributions in this paper.

• We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
e↵ectiveness improve by limiting the amount of feed-
back.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ISSTA’15, July 13–17, 2015, Baltimore, MD, USA

ACM. 978-1-4503-3620-8/15/07

http://dx.doi.org/10.1145/2771783.2771805

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
IS
S
TA
*
Ar

tifact *

A
E
C

316

188/300
Alexandru Marginean — Automated Software Transplantation

334 72

Average Total (hours)Successful

Empirical Study
Execution Time (minutes)

Donor Host Successful
Idct Pidgin 16 5 97

Mytar Pidgin 16 3 65
Web Pidgin 0 8 160
Cflow Pidgin 15 58 1151
Tux Pidgin 15 29 574
Idct Cflow 16 3 59

Mytar Cflow 17 3 53
Web Cflow 0 5 102
Cflow Cflow 20 44 872
Tux Cflow 14 31 623
Idct SoX 15 12 233

Mytar SoX 17 3 60
Web SoX 0 7 132
Cflow SoX 14 89 74
Tux SoX 13 34 94

TOTAL 188/300

Feedback-Controlled Random Test

Generation

Kohsuke Yatoh1⇤, Kazunori Sakamoto2, Fuyuki Ishikawa2, Shinichi Honiden12

1University of Tokyo, Japan,
2National Institute of Informatics, Japan

{k-yatoh, exkazuu, f-ishikawa, honiden}@nii.ac.jp

ABSTRACT
Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and e↵ectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight di↵erent, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Algorithms, Reliability, Verification

Keywords
Random testing, Test generation, Diversity

⇤The author is currently a�liated with Google Inc., Japan,
and can be reached at kyatoh@google.com.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA

Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

1. INTRODUCTION
Feedback-directed random testing [17] is a promising tech-

nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5, 25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11, 12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].
Despite its importance, characteristics of feedback-directed

random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14, 27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.
We address two research questions in this paper.

RQ1: Why does the test e↵ectiveness stop increasing at
di↵erent points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test e↵ectiveness of feedback-directed random
testing should di↵er because of its randomness. However,
the observed di↵erence is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.
There are three contributions in this paper.

• We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
e↵ectiveness improve by limiting the amount of feed-
back.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ISSTA’15, July 13–17, 2015, Baltimore, MD, USA

ACM. 978-1-4503-3620-8/15/07

http://dx.doi.org/10.1145/2771783.2771805

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
IS
S
TA
*
Ar

tifact *

A
E
C

316

Alexandru Marginean — Automated Software Transplantation
334 72

Average Total (hours)

Empirical Study
Execution Time (minutes)

Donor Host Successful
Idct Pidgin 16 5 97

Mytar Pidgin 16 3 65
Web Pidgin 0 8 160
Cflow Pidgin 15 58 1151
Tux Pidgin 15 29 574
Idct Cflow 16 3 59

Mytar Cflow 17 3 53
Web Cflow 0 5 102
Cflow Cflow 20 44 872
Tux Cflow 14 31 623
Idct SoX 15 12 233

Mytar SoX 17 3 60
Web SoX 0 7 132
Cflow SoX 14 89 74
Tux SoX 13 34 94

TOTAL 188/300

Feedback-Controlled Random Test

Generation

Kohsuke Yatoh1⇤, Kazunori Sakamoto2, Fuyuki Ishikawa2, Shinichi Honiden12

1University of Tokyo, Japan,
2National Institute of Informatics, Japan

{k-yatoh, exkazuu, f-ishikawa, honiden}@nii.ac.jp

ABSTRACT
Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and e↵ectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight di↵erent, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Algorithms, Reliability, Verification

Keywords
Random testing, Test generation, Diversity

⇤The author is currently a�liated with Google Inc., Japan,
and can be reached at kyatoh@google.com.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA

Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

1. INTRODUCTION
Feedback-directed random testing [17] is a promising tech-

nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5, 25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11, 12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].
Despite its importance, characteristics of feedback-directed

random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14, 27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.
We address two research questions in this paper.

RQ1: Why does the test e↵ectiveness stop increasing at
di↵erent points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test e↵ectiveness of feedback-directed random
testing should di↵er because of its randomness. However,
the observed di↵erence is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.
There are three contributions in this paper.

• We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
e↵ectiveness improve by limiting the amount of feed-
back.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ISSTA’15, July 13–17, 2015, Baltimore, MD, USA

ACM. 978-1-4503-3620-8/15/07

http://dx.doi.org/10.1145/2771783.2771805

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
IS
S
TA
*
Ar

tifact *

A
E
C

316

Alexandru Marginean — Automated Software Transplantation

334 72

Average Total (hours)

μSCALPEL

Kate

Alexandru Marginean — Automated Software Transplantation

μSCALPEL

Kate
C Layout
Feature? C Call Graphs?

Alexandru Marginean — Automated Software Transplantation

μSCALPEL

Kate
C Layout
Feature? C Call Graphs?

Alexandru Marginean — Automated Software Transplantation

μSCALPEL

Kate

Alexandru Marginean — Automated Software Transplantation

μSCALPEL

Kate

Alexandru Marginean — Automated Software Transplantation

μSCALPEL

Kate

Alexandru Marginean — Automated Software Transplantation

μSCALPEL

Kate

Alexandru Marginean — Automated Software Transplantation

Execution Time (minutes)

Donor Host Successful Average Total (hours)

Cflow Kate 16 101 33
Indent Kate 18 31 11

TOTAL 34/40 132 44

Total (hours)

44

Case Study - Kate

Alexandru Marginean — Automated Software Transplantation

Execution Time (minutes)

Donor Host Successful Average Total (hours)

Cflow Kate 16 101 33
Indent Kate 18 31 11

TOTAL 34/40 132 44

Successful

34/40

Total (hours)

44

Case Study - Kate

Alexandru Marginean — Automated Software Transplantation

Execution Time (minutes)

Donor Host Successful Average Total (hours)

Cflow Kate 16 101 33
Indent Kate 18 31 11

TOTAL 34/40 132 44

Total (hours)

44

Average

132

Case Study - Kate

Alexandru Marginean — Automated Software Transplantation

Execution Time (minutes)

Donor Host Successful Average Total (hours)

Cflow Kate 16 101 33
Indent Kate 18 31 11

TOTAL 34/40 132 44

Total (hours)

44

Case Study - Kate

Alexandru Marginean — Automated Software Transplantation

Case Study: x264 & VLCFeedback-Controlled Random Test

Generation

Kohsuke Yatoh1⇤, Kazunori Sakamoto2, Fuyuki Ishikawa2, Shinichi Honiden12

1University of Tokyo, Japan,
2National Institute of Informatics, Japan

{k-yatoh, exkazuu, f-ishikawa, honiden}@nii.ac.jp

ABSTRACT
Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and e↵ectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight di↵erent, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Algorithms, Reliability, Verification

Keywords
Random testing, Test generation, Diversity

⇤The author is currently a�liated with Google Inc., Japan,
and can be reached at kyatoh@google.com.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA

Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

1. INTRODUCTION
Feedback-directed random testing [17] is a promising tech-

nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5, 25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11, 12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].
Despite its importance, characteristics of feedback-directed

random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14, 27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.
We address two research questions in this paper.

RQ1: Why does the test e↵ectiveness stop increasing at
di↵erent points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test e↵ectiveness of feedback-directed random
testing should di↵er because of its randomness. However,
the observed di↵erence is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.
There are three contributions in this paper.

• We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
e↵ectiveness improve by limiting the amount of feed-
back.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ISSTA’15, July 13–17, 2015, Baltimore, MD, USA

ACM. 978-1-4503-3620-8/15/07

http://dx.doi.org/10.1145/2771783.2771805

C
o
n
si
st

en
t *
Complete *
W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
IS
S
TA
*
Ar

tifact *

A
E
C

316

Donor Host

Alexandru Marginean — Automated Software Transplantation

Case Study: x264 & VLCFeedback-Controlled Random Test

Generation

Kohsuke Yatoh1⇤, Kazunori Sakamoto2, Fuyuki Ishikawa2, Shinichi Honiden12

1University of Tokyo, Japan,
2National Institute of Informatics, Japan

{k-yatoh, exkazuu, f-ishikawa, honiden}@nii.ac.jp

ABSTRACT
Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and e↵ectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight di↵erent, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Algorithms, Reliability, Verification

Keywords
Random testing, Test generation, Diversity

⇤The author is currently a�liated with Google Inc., Japan,
and can be reached at kyatoh@google.com.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA

Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

1. INTRODUCTION
Feedback-directed random testing [17] is a promising tech-

nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5, 25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11, 12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].
Despite its importance, characteristics of feedback-directed

random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14, 27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.
We address two research questions in this paper.

RQ1: Why does the test e↵ectiveness stop increasing at
di↵erent points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test e↵ectiveness of feedback-directed random
testing should di↵er because of its randomness. However,
the observed di↵erence is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.
There are three contributions in this paper.

• We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
e↵ectiveness improve by limiting the amount of feed-
back.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ISSTA’15, July 13–17, 2015, Baltimore, MD, USA

ACM. 978-1-4503-3620-8/15/07

http://dx.doi.org/10.1145/2771783.2771805

C
o
n
si
st

en
t *
Complete *
W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
IS
S
TA
*
Ar

tifact *

A
E
C

316

Donor Host

Award winning tool for H.264
encoding [2,3,4]

Alexandru Marginean — Automated Software Transplantation

Case Study: x264 & VLCFeedback-Controlled Random Test

Generation

Kohsuke Yatoh1⇤, Kazunori Sakamoto2, Fuyuki Ishikawa2, Shinichi Honiden12

1University of Tokyo, Japan,
2National Institute of Informatics, Japan

{k-yatoh, exkazuu, f-ishikawa, honiden}@nii.ac.jp

ABSTRACT
Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and e↵ectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight di↵erent, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Algorithms, Reliability, Verification

Keywords
Random testing, Test generation, Diversity

⇤The author is currently a�liated with Google Inc., Japan,
and can be reached at kyatoh@google.com.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA

Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

1. INTRODUCTION
Feedback-directed random testing [17] is a promising tech-

nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5, 25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11, 12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].
Despite its importance, characteristics of feedback-directed

random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14, 27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.
We address two research questions in this paper.

RQ1: Why does the test e↵ectiveness stop increasing at
di↵erent points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test e↵ectiveness of feedback-directed random
testing should di↵er because of its randomness. However,
the observed di↵erence is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.
There are three contributions in this paper.

• We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
e↵ectiveness improve by limiting the amount of feed-
back.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ISSTA’15, July 13–17, 2015, Baltimore, MD, USA

ACM. 978-1-4503-3620-8/15/07

http://dx.doi.org/10.1145/2771783.2771805

C
o
n
si
st

en
t *
Complete *
W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
IS
S
TA
*
Ar

tifact *

A
E
C

316

Donor Host

Award winning tool for H.264
encoding [2,3,4]

“Most popular desktop video
player” [1]

Alexandru Marginean — Automated Software Transplantation

Case Study: x264 & VLCFeedback-Controlled Random Test

Generation

Kohsuke Yatoh1⇤, Kazunori Sakamoto2, Fuyuki Ishikawa2, Shinichi Honiden12

1University of Tokyo, Japan,
2National Institute of Informatics, Japan

{k-yatoh, exkazuu, f-ishikawa, honiden}@nii.ac.jp

ABSTRACT
Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and e↵ectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight di↵erent, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Algorithms, Reliability, Verification

Keywords
Random testing, Test generation, Diversity

⇤The author is currently a�liated with Google Inc., Japan,
and can be reached at kyatoh@google.com.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA

Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

1. INTRODUCTION
Feedback-directed random testing [17] is a promising tech-

nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5, 25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11, 12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].
Despite its importance, characteristics of feedback-directed

random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14, 27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.
We address two research questions in this paper.

RQ1: Why does the test e↵ectiveness stop increasing at
di↵erent points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test e↵ectiveness of feedback-directed random
testing should di↵er because of its randomness. However,
the observed di↵erence is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.
There are three contributions in this paper.

• We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
e↵ectiveness improve by limiting the amount of feed-
back.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ISSTA’15, July 13–17, 2015, Baltimore, MD, USA

ACM. 978-1-4503-3620-8/15/07

http://dx.doi.org/10.1145/2771783.2771805

C
o
n
si
st

en
t *
Complete *
W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
IS
S
TA
*
Ar

tifact *

A
E
C

316

Donor Host

Award winning tool for H.264
encoding [2,3,4]

“Most popular desktop video
player” [1]

Organ: H264

Alexandru Marginean — Automated Software Transplantation

Case Study: x264 & VLCFeedback-Controlled Random Test

Generation

Kohsuke Yatoh1⇤, Kazunori Sakamoto2, Fuyuki Ishikawa2, Shinichi Honiden12

1University of Tokyo, Japan,
2National Institute of Informatics, Japan

{k-yatoh, exkazuu, f-ishikawa, honiden}@nii.ac.jp

ABSTRACT
Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and e↵ectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight di↵erent, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Algorithms, Reliability, Verification

Keywords
Random testing, Test generation, Diversity

⇤The author is currently a�liated with Google Inc., Japan,
and can be reached at kyatoh@google.com.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA

Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

1. INTRODUCTION
Feedback-directed random testing [17] is a promising tech-

nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5, 25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11, 12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].
Despite its importance, characteristics of feedback-directed

random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14, 27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.
We address two research questions in this paper.

RQ1: Why does the test e↵ectiveness stop increasing at
di↵erent points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test e↵ectiveness of feedback-directed random
testing should di↵er because of its randomness. However,
the observed di↵erence is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.
There are three contributions in this paper.

• We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
e↵ectiveness improve by limiting the amount of feed-
back.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ISSTA’15, July 13–17, 2015, Baltimore, MD, USA

ACM. 978-1-4503-3620-8/15/07

http://dx.doi.org/10.1145/2771783.2771805

C
o
n
si
st

en
t *
Complete *
W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
IS
S
TA
*
Ar

tifact *

A
E
C

316

Donor Host

Award winning tool for H.264
encoding [2,3,4]

“Most popular desktop video
player” [1]

Organ: H264

Alexandru Marginean — Automated Software Transplantation

Case Study: x264 & VLCFeedback-Controlled Random Test

Generation

Kohsuke Yatoh1⇤, Kazunori Sakamoto2, Fuyuki Ishikawa2, Shinichi Honiden12

1University of Tokyo, Japan,
2National Institute of Informatics, Japan

{k-yatoh, exkazuu, f-ishikawa, honiden}@nii.ac.jp

ABSTRACT
Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and e↵ectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight di↵erent, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Algorithms, Reliability, Verification

Keywords
Random testing, Test generation, Diversity

⇤The author is currently a�liated with Google Inc., Japan,
and can be reached at kyatoh@google.com.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA

Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

1. INTRODUCTION
Feedback-directed random testing [17] is a promising tech-

nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5, 25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11, 12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].
Despite its importance, characteristics of feedback-directed

random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14, 27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.
We address two research questions in this paper.

RQ1: Why does the test e↵ectiveness stop increasing at
di↵erent points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test e↵ectiveness of feedback-directed random
testing should di↵er because of its randomness. However,
the observed di↵erence is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.
There are three contributions in this paper.

• We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
e↵ectiveness improve by limiting the amount of feed-
back.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ISSTA’15, July 13–17, 2015, Baltimore, MD, USA

ACM. 978-1-4503-3620-8/15/07

http://dx.doi.org/10.1145/2771783.2771805

C
o
n
si
st

en
t *
Complete *
W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
IS
S
TA
*
Ar

tifact *

A
E
C

316

Donor Host Postoperative

Award winning tool for H.264
encoding [2,3,4]

“Most popular desktop video
player” [1]

Organ: H264

Alexandru Marginean — Automated Software Transplantation

Case Study: x264 & VLC
Automatic Transplantation of H264 Encoder

Time
(hours)

Regression
Tests

Manual
Tests

Acceptance
Tests

μSCALPEL 26 100% 100% 100%

Feedback-Controlled Random Test

Generation

Kohsuke Yatoh1⇤, Kazunori Sakamoto2, Fuyuki Ishikawa2, Shinichi Honiden12

1University of Tokyo, Japan,
2National Institute of Informatics, Japan

{k-yatoh, exkazuu, f-ishikawa, honiden}@nii.ac.jp

ABSTRACT
Feedback-directed random test generation is a widely used
technique to generate random method sequences. It lever-
ages feedback to guide generation. However, the validity of
feedback guidance has not been challenged yet. In this pa-
per, we investigate the characteristics of feedback-directed
random test generation and propose a method that exploits
the obtained knowledge that excessive feedback limits the
diversity of tests. First, we show that the feedback loop
of feedback-directed generation algorithm is a positive feed-
back loop and amplifies the bias that emerges in the candi-
date value pool. This over-directs the generation and limits
the diversity of generated tests. Thus, limiting the amount
of feedback can improve diversity and e↵ectiveness of gener-
ated tests. Second, we propose a method named feedback-
controlled random test generation, which aggressively con-
trols the feedback in order to promote diversity of generated
tests. Experiments on eight di↵erent, real-world application
libraries indicate that our method increases branch cover-
age by 78% to 204% over the original feedback-directed al-
gorithm on large-scale utility libraries.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Algorithms, Reliability, Verification

Keywords
Random testing, Test generation, Diversity

⇤The author is currently a�liated with Google Inc., Japan,
and can be reached at kyatoh@google.com.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA

Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

1. INTRODUCTION
Feedback-directed random testing [17] is a promising tech-

nique to automatically generate software tests. The tech-
nique can create random method sequences using public
methods from the classes of a system-under-test (SUT). It
is a general and test oracle independent technique to gen-
erate software tests. Due to its generality and flexibility,
many researchers have used feedback-directed random test-
ing. Some researchers leveraged feedback-directed random
testing as a part of their proposed methods [5, 25]. Others
used feedback-directed random testing to prove their the-
ories on random testing [11, 12]. There is an interesting
study that mined SUT specifications by analyzing the dy-
namic behavior of SUT observed during feedback-directed
random testing [18]. In addition, feedback-directed random
testing has already been adopted by industries and under-
gone intensive use [19].
Despite its importance, characteristics of feedback-directed

random testing have seldom been studied. To the best of
our knowledge, some studies have proposed extensions to
feedback-directed random testing [14, 27], but they failed
to analyze the nature of feedback-directed random testing.
Specifically, the idea of feedback guidance had never been
challenged. In this paper we investigate characteristics of
feedback-directed random testing by using a model SUT and
propose a new technique that exploits the obtained knowl-
edge that excessive feedback over-directs generation, ampli-
fies bias, and limits the diversity of generated tests.
We address two research questions in this paper.

RQ1: Why does the test e↵ectiveness stop increasing at
di↵erent points depending on random seeds?

RQ2: Can our proposed technique lessen the dependency
on random seeds and improve the overall performance
of test generation?

The resulting test e↵ectiveness of feedback-directed random
testing should di↵er because of its randomness. However,
the observed di↵erence is much larger than expected. For
example, the interquartile range marks 10% in our prelim-
inary experiment on the model SUT. This spoils the credi-
bility of feedback-directed random testing.
There are three contributions in this paper.

• We hypothesize that feedback guidance over-directs the
generation and limits the diversity of generated tests
and show that both average score and variance of test
e↵ectiveness improve by limiting the amount of feed-
back.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ISSTA’15, July 13–17, 2015, Baltimore, MD, USA

ACM. 978-1-4503-3620-8/15/07

http://dx.doi.org/10.1145/2771783.2771805

C
o
n
si
st

en
t *
Complete *
W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
IS
S
TA
*
Ar

tifact *

A
E
C

316

Donor Host Postoperative

Organ: H264

Alexandru Marginean — Automated Software Transplantation

Autotransplantation is Human Competitive!

Alexandru Marginean — Automated Software Transplantation

Autotransplantation vs
Human Transplantation

Alexandru Marginean — Automated Software Transplantation

Autotransplantation vs
Human Transplantation

Alexandru Marginean — Automated Software Transplantation

Autotransplantation vs
Human Transplantation

μSCALPE
L

Alexandru Marginean — Automated Software Transplantation

Autotransplantation vs
Human Transplantation

26 hours of cheap
machine time

Upgrade of x264 within
VLC: average of 20 days of

elapsed time [6]

μSCALPE
L

Alexandru Marginean — Automated Software Transplantation

Autotransplantation vs
Human Transplantation

26 hours of cheap
machine time

Upgrade of x264 within
VLC: average of 20 days of

elapsed time [6]

μSCALPE
L

Alexandru Marginean — Automated Software Transplantation

Best Human Implementation

Alexandru Marginean — Automated Software Transplantation

Best Human Implementation

MSU Sixth MPEG-4 AVC/H.264
 Video Codecs Comparison [4]

Alexandru Marginean — Automated Software Transplantation

Best Human Implementation

MSU Sixth MPEG-4 AVC/H.264
 Video Codecs Comparison [4]

Alexandru Marginean — Automated Software Transplantation

Best Human Implementation

MSU Sixth MPEG-4 AVC/H.264
 Video Codecs Comparison [4]

x264 won with ~24% better encoding
than second place

Alexandru Marginean — Automated Software Transplantation

Best Human Implementation

MSU Sixth MPEG-4 AVC/H.264
 Video Codecs Comparison [4]

Alexandru Marginean — Automated Software Transplantation

Best Human Implementation

MSU Sixth MPEG-4 AVC/H.264
 Video Codecs Comparison [4]

Alexandru Marginean — Automated Software Transplantation

Best Human Implementation

2.4% faster

MSU Sixth MPEG-4 AVC/H.264
 Video Codecs Comparison [4]

Alexandru Marginean — Automated Software Transplantation

Best Human Implementation

2.4% faster
We automatically transplanted

new functionality!

MSU Sixth MPEG-4 AVC/H.264
 Video Codecs Comparison [4]

Alexandru Marginean — Automated Software Transplantation

Best Human Implementation

2.4% faster

MSU Sixth MPEG-4 AVC/H.264
 Video Codecs Comparison [4]

Alexandru Marginean — Automated Software Transplantation

Social Media Reactions: “Am I
Obsolete?”

Social Media Reactions: “Am I
Obsolete?”

UK
Contractor
Forum [7]

Social Media Reactions: “Am I
Obsolete?”

UK
Contractor
Forum [7]

Public Recognition

Alexandru Marginean — Automated Software Transplantation

Public Recognition

article, with more than 2000 shares

Alexandru Marginean — Automated Software Transplantation

Public Recognition

article, with more than 2000 shares

Alexandru Marginean — Automated Software Transplantation

Public Recognition

article, with more than 2000 shares

“the BBC’s biggest global
brand with sales of the TV show, DVDs,

books, live shows and other merchandise
worth more than £50m a year” [5]

Alexandru Marginean — Automated Software Transplantation

Public Recognition

article, with more than 2000 shares

Alexandru Marginean — Automated Software Transplantation

Public Recognition

article, with more than 2000 shares

Alexandru Marginean — Automated Software Transplantation

Public Recognition

article, with more than 2000 shares

More shares for
Autotransplantation!

Alexandru Marginean — Automated Software Transplantation

Public Recognition

ACM Distinguished Paper Award at
ISSTA ‘15

Public Recognition

ACM Distinguished Paper Award at
ISSTA ‘15

Featured on:

Public Recognition

Humies 2016

Alexandru Marginean — Automated Software Transplantation

Humies 2016

Alexandru Marginean — Automated Software Transplantation

cash awards for human-
competitive results that were

produced by any form of genetic
and evolutionary computation

Humies 2016

$10.000

Alexandru Marginean — Automated Software Transplantation

cash awards for human-
competitive results that were

produced by any form of genetic
and evolutionary computation

“it has been won for the past five
years by games - except one where
the gold medal was shared but still

with a game” [8]

Humies 2016 Gold
Medal

Alexandru Marginean — Automated Software Transplantation

“it has been won for the past five
years by games - except one where
the gold medal was shared but still

with a game” [8]

μSCALPE
L

Humies 2016 Gold
Medal

Alexandru Marginean — Automated Software Transplantation

“it has been won for the past five
years by games - except one where
the gold medal was shared but still

with a game” [8]

μSCALPE
L

$5000

Humies 2016 Gold
Medal

Alexandru Marginean — Automated Software Transplantation

CREST Transplantation Awards

Alexandru Marginean — Automated Software Transplantation

Silver Medal at Humies 2014

CREST Transplantation Awards

Alexandru Marginean — Automated Software Transplantation

Silver Medal at Humies 2014

SSBSE 2014 Challenge Track Winner

CREST Transplantation Awards

Alexandru Marginean — Automated Software Transplantation

Silver Medal at Humies 2014

SSBSE 2014 Challenge Track Winner

CREST Transplantation Awards

ISSTA 2015 Distinguish Paper Award

Alexandru Marginean — Automated Software Transplantation

Silver Medal at Humies 2014

SSBSE 2014 Challenge Track Winner

CREST Transplantation Awards

ISSTA 2015 Distinguish Paper Award

Gold Medal at Humies 2016

Alexandru Marginean — Automated Software Transplantation

Silver Medal at Humies 2014

SSBSE 2014 Challenge Track Winner

CREST Transplantation Awards

ISSTA 2015 Distinguish Paper Award

Gold Medal at Humies 2016

Alexandru Marginean — Automated Software Transplantation

CREST Research is World Leading in Code Transplants!

“it has been won for the past five
years by games - except one where
the gold medal was shared but still

with a game”

μSCALPE
L

$5000

Humies 2016 Gold
Medal

Alexandru Marginean — Automated Software Transplantation

Public Recognition
ACM Distinguished Paper Award at
ISSTA ‘15

Featured on:

Best SBSE Challenge
Paper

400 USD Amazon gift card plus
1,000 USD cash prize

Awards

£581,560 Grant
28 October 2015 — 27 October 2019

Microsoft, Visa Europe

Alexandru Marginean — Automated Software Transplantation

Code Transplants

2013 — Harman et al. 2014 — Petke et al. 2014 — Harman et al.

Genetic Programming
for Reverse Engineering

Using Genetic Improvement and
Code Transplants to Specialise a
C++ Program to a Problem Class

Using Genetic Improvement & Code Transplants

to Specialise a C++ Program to a Problem Class

Justyna Petke1, Mark Harman1, William B. Langdon1, and Westley Weimer2

1 University College London, London, United Kingdom
j.petke@ucl.ac.uk

2 University of Virginia, Charlottesville, Virginia, United States

Abstract. Genetic Improvement (GI) is a form of Genetic Program-
ming that improves an existing program. We use GI to evolve a faster
version of a C++ program, a Boolean satisfiability (SAT) solver called
MiniSAT, specialising it for a particular problem class, namely Combi-
natorial Interaction Testing (CIT), using automated code transplanta-
tion. Our GI-evolved solver achieves overall 17% improvement, making it
comparable with average expert human performance. Additionally, this
automatically evolved solver is faster than any of the human-improved
solvers for the CIT problem.

Keywords: genetic improvement, code transplants, code specialisation, Boolean
satisfiability

1 Introduction

Genetic improvement (GI) [14], [17, 18, 19], [23], [28, 29] seeks to automatically
improve an existing program using genetic programming. Typically, genetic im-
provement has focussed on changes using parts of the existing system. We de-
velop the idea of software transplantation [15] and introduce the idea of GI as a
means to specialise software.

To investigate and experiment with GI for a particularly challenging problem,
we selected the goal of using it to improve the execution performance of the
popular Boolean satisfiability (SAT) solver MiniSAT [9]. MiniSAT is a well-
known open-source C++ SAT solver. It implements the core technologies of
modern SAT solving, including unit propagation, conflict-driven clause learning
and watched literals [26].

Improving MiniSAT is challenging because MiniSAT has been iteratively im-
proved over many years by expert human programmers. They have addressed
the demand for more e�cient SAT solvers and also responded to repeated calls
for competition entries to the MiniSAT-hack track of SAT competitions [1]. We
use the version of the solver from the first MiniSAT-hack track competition,
MiniSAT2-0707211, as our host system to be improved by GI with transplanta-
tion. Furthermore, this competition, in which humans provide modifications to
a baseline MiniSAT solver, provides a natural baseline for evaluation and source
of evolutionary material (which we call the code bank).

1 Solver available at: http://minisat.se/MiniSat.html.

Humies 2014

Most cited
paper

Babel Pidgin: SBSE Can Grow and
Graft Entirely New Functionality

into a Real World System

Babel Pidgin: SBSE Can Grow and Graft Entirely
New Functionality into a Real World System

Mark Harman, Yue Jia, and William B. Langdon

University College London, CREST centre, UK

Abstract. Adding new functionality to an existing, large, and perhaps
poorly-understood system is a challenge, even for the most competent hu-
man programmer. We introduce a ‘grow and graft’ approach to Genetic
Improvement (GI) that transplants new functionality into an existing
system. We report on the trade offs between varying degrees of human
guidance to the GI transplantation process. Using our approach, we suc-
cessfully grew and transplanted a new ‘Babel Fish’ linguistic translation
feature into the Pidgin instant messaging system, creating a genetically
improved system we call ‘Babel Pidgin’. This is the first time that SBSE
has been used to evolve and transplant entirely novel functionality into
an existing system. Our results indicate that our grow and graft approach
requires surprisingly little human guidance.

1 Introduction and Backgroud

Despite much progress in software development environments, programming still
includes many human activities that are dull, unproductive and tedious. In this
paper we propose a new SBSE approach to software development: Grow and
Graft, in which a new feature is grown (using genetic programming) and sub-
sequently grafted into an existing system. This grow and graft development
approach aims to reduce the amount of tedious effort required by human pro-
grammer in order to develop and add new functionality into an existing system.

Our approach is inspired by the recent trend in Search Based Software Engi-
neering (SBSE) called ‘genetic improvement’ [2,8,10,11,14,15]. Genetic
Improvement (GI) uses existing code as ‘genetic material’ that helps to au-
tomatically improve existing software systems. It has been used to repair broken
functionality [10,14], and to achieve dramatic scale-ups for sets of small bench-
marks [11,15], and also for a 50k LoC genome matching system [8], for graphic
shaders [14] and for a CUDA stereo image processing system [7]. Related work
on loop perforation has also reported dramatic speed-ups [13]. GI has also been
used to port one system to a new version on a different platform [6].

Recently, it has been demonstrated [12] that GI can be used to transplant code
[3] from one version of a system to another. In this previous transplantation work
[12], code from several versions of MiniSAT (the ‘donor’) were transplanted into
a specific version of MiniSAT using GI. The aim of this transplantation was to
improve execution time for a specific task (Combinatorial Interaction Testing).

C. Le Goues and S. Yoo (Eds.): SSBSE 2014, LNCS 8636, pp. 247–252, 2014.
c⃝ Springer International Publishing Switzerland 2014

Introduced the
idea of using GP for
autotransplantation

People from CREST

Yue JiaMark Harman

William B. Langdon

Earl T. Barr

Justyna Petke

Alexandru Marginean — Automated Software Transplantation

Autotransplantation

Silver Medal at Humies 2014

SSBSE 2014 Challenge Track Winner

ISSTA 2015 Distinguish Paper Award

Gold Medal at Humies 2016

CREST Research is World Leading in Code
Transplants!

References
[1] http://lifehacker.com/five-best-desktop-video-players-1503859883/1506086048

[2] http://www.compression.ru/video/codec_comparison/h264_2012/

[3] http://www.streamingmedia.com/articles/editorial/featured-articles/first-look-h.
264-and-vp8-compared-67266.aspx

[4] http://www.compression.ru/video/codec_comparison/h264_2010/

[5] http://www.theguardian.com/media/2015/mar/11/top-gear-bbc-jeremy-clarkson

[6] Barr et al. Automated Software Transplantation

[7] UK Contractor Forum link

[8] https://www.facebook.com/mark.harman.794/posts/10155034911439838?
comment_id=10155035033384838&reply_comment_id=10155035041274838&co
mment_tracking=%7B%22tn%22%3A%22R%22%7D

Alexandru Marginean — Automated Software Transplantation

http://lifehacker.com/five-best-desktop-video-players-1503859883/1506086048
http://www.compression.ru/video/codec_comparison/h264_2012/
http://www.compression.ru/video/codec_comparison/h264_2010/
http://www.theguardian.com/media/2015/mar/11/top-gear-bbc-jeremy-clarkson
https://www.facebook.com/mark.harman.794/posts/10155034911439838?comment_id=10155035033384838&reply_comment_id=10155035041274838&comment_tracking=%7B%22tn%22%3A%22R%22%7D

