
Information Theory and Software Testing

David Clark

David Clark IT and ST

Papers

Squeeziness: A Information Theoretic Measure for Avoiding Fault Masking. D.
Clark and R. Hierons. IPL. 2012.

Fault Localization Prioritization: Comparing Information Theoretic and Coverage
Based Approaches. S. Yoo, M. Harman and D. Clark. ToSEM. 2013.

An Analysis of the Relationship between Conditional Entropy and Failed Error
Propagation in Software Testing. K. Androutsopoulos, D. Clark, H. Dan, R.
Hierons, and M. Harman. ICSE. 2014.

Information Transformation: An Underpinning Theory for Software Engineering.
D. Clark, R.Feldt, S. Poulding and S. Yoo. ICSE. 2015.

Test Set Diameter: Quantifying the Diversity of Sets of Test Cases. R. Feldt, S.
Poulding, D. Clark and S. Yoo. ICST. 2016.

Test Oracle Assessment and Improvement. G. Jahangirova, D. Clark, M. Harman
and P. Tonella. ISSTA. 2016.

David Clark IT and ST

Problems

What is the test execution order that locates a software fault
as quickly as possible?

How can we choose tests that don’t suffer from coincidental
correctness?

How do we know that we have enough tests?

How do we know that our test suite is sufficiently diverse?

How can we measure how much a real oracle deviates from an
ideal oracle?

David Clark IT and ST

Shannon Entropy

Shannon Entropy

randomness of a
random variable

David Clark IT and ST

Kolmogorov ComplexityKolmogorov Complexity

The length of the shortest program that can produce a
given string from no inputs

Solomonoff Kolmogorov
Chaitin

randomness of a
string

David Clark IT and ST

Use Entropy to speed Fault Location

Program with m statements, S = {s0, s1, . . . , sm−1}
Test suite with n tests, T = {t0, t1, . . . , tn−1}
S contains a single fault

Random variable X models fault locality

p(X = sj) is the probability that sj is the faulty statement

H(X) −→ 0 as fast as possible

Estimate the change in entropy due to each test

Employ a greedy algorithm to select the next test

David Clark IT and ST

Localisation Metrics

AKA “suspiciousness” metrics: likelihood of statement
containing the fault

Tarantula, Ochiai, Jaccard etc.

Tarantula Metric

FLINT: Fault Localisation using Information Theory S. Yoo, M. Harman & D. Clark

The ideal choice of the priority function, f , would be one that would result in an ordering of tests with the
maximum rate of fault detection. Since this information is unavailable before the testing is finished, various
surrogates including code coverage [14,21], test execution history [17] and expert knowledge [23,25] have
been studied.

2.2 Fault Localisation Metrics

Fault location techniques aim to reduce the cost of debugging by automating the process of searching for
the location of the fault in the program. A widely studied approach to fault localisation is to assign to
each structural element in the program a suspiciousness value that corresponds to the relative likelihood
of the element containing the fault [1, 15, 19]. For example, the Tarantula suspiciousness metric [15] for a
statement s in a program is calculated as follows:

Tarantula metric ⌧(s) =

fail(s)
totalfail

pass(s)
totalpass + fail(s)

totalfail

(1)

In Equation 1, fail(s) and pass(s) represent the number of times the statement s was executed by fail-
ing and passing tests, respectively, whereas totalfail and totalpass represent the number of failing and
passing tests.

The highest possible value for ⌧ is 1 and the lowest is 0. If a statement s is executed by all tests, regardless
of their results, it gets assigned ⌧ = 0.5. A faulty statement s0 gets assigned ⌧ = 1 if and only if all failing
tests and none of the passing tests executes s0. However, it is possible that some statements other than s0

gets a higher ⌧ value than s0. Suppose that s0 causes a failure only for certain input values, whereas an
error handling routine s00 is executed whenever s0 fails: s00 will get assigned ⌧ = 1, whereas s0 might get
assigned ⌧ less than 1 depending on the test input.

2.3 Prioritising Tests for Fault Localisation

Existing work on fault localisation treated the calculation of suspiciousness metrics as a post hoc proce-
dure. That is, fault localisation was attempted only after the entire test suite was executed. However, this
contradicts the assumptions behind test case prioritisation, i.e. that there may not be enough time to execute
the entire test suite.

Suppose that the tester encounters a failing test while executing a test suite prioritised for maximum fault
detection capability. We argue that, after the initial failure, different tests contribute different amounts of
information regarding the location of the faulty structural element. It follows that, after the initial failure,
the tester should choose a test that would provide the most information as the next test case whenever
possible, followed by other tests in the order of decreasing amount of information provided.

Consider the motivating example in Table 1. Test t1 to t4 is prioritised based on the structural coverage
following the additional approach with resets [14]. The dots (•) show the coverage relation: for example,
structural element s1 is covered by test t1 and t3. The prioritised test suite detects the first fault with t2,
which covers the faulty element s7. Suppose that there is only time to execute one additional test: the next
two columns show what the final suspiciousness metric would look like if t3 or t4 is chosen to be executed.
According to the coverage-based prioritisation, the next test is t3 and the faulty element will get assigned
the suspiciousness of 0.67. However, this is misleading as s6 and s8 are assigned with higher suspiciousness
values. On the other hand, if t4 is executed, the faulty element is assigned the suspiciousness of 1.0 along
with other elements, which would be a more precise result. This shows that the choice of the next test case
can affect the accuracy of the suspiciousness metric if the testing is terminated at an arbitrary point.

In reality, it is impossible to predict whether a test would pass or fail. Therefore, it is also impossible to
make the ideal choice for fault location. However, it is possible to formulate a probabilistic approximation

RN/11/09 Page 3

David Clark IT and ST

Tarantula Metric illustration

FLINT: Fault Localization using Information Theory A:5

that some statements other than the faulty statement get a higher ⌧ value than s0. Suppose
that s0 causes a failure only for certain input values, whereas an error handling routine s00 is
executed whenever s0 fails: s00 will get assigned ⌧ = 1, whereas s0 might get assigned ⌧ less
than 1 depending on the test input.

Table I. Motivating Example: coverage-based prioritization would execute
t3 after the first failure (t2), resulting in sub-optimal suspiciousness metric
values. However, if t4 is executed after the first failure, the faulty s7 will get
assigned the optimal suspiciousness value.

Structural Test Test Test Tarantula Test Tarantula
Elements t1 t2 t3 Metric(⌧) t4 Metric(⌧)
s1 • • 0.00 0.00
s2 • • 0.00 0.00
s3 • • 0.00 0.00
s4 • 0.00 0.00
s5 • • 0.00 0.00
s6 • 1.00 • 1.00
s7 (faulty) • • 0.67 • 1.00
s8 • 1.00 • 1.00
s9 • • 0.67 • 0.50
Result P F P - F -

2.3. Prioritizing for Fault Localization
Existing work on fault localization treated the calculation of suspiciousness metrics as a post
hoc procedure. That is, fault localization was attempted only after the entire test suite was
executed. However, this contradicts the assumptions behind test case prioritization, i.e. that
there may not be enough time to execute the entire test suite.

Suppose that the tester encounters a failing test while executing a test suite prioritized for
maximum fault detection capability. We argue that, after the initial failure, different tests
contribute different amounts of information regarding the location of the faulty structural
element. It follows that, after the initial failure, the tester should choose a test that would
provide the most information as the next test case whenever possible, followed by other tests
in the order of a decreasing amount of information provided.

Consider the motivating example in Table I. Test t1 to t4 is prioritized based on the struc-
tural coverage following the additional approach with resets [Elbaum et al. 2000]. The dots (•)
show the coverage relation: for example, structural element s1 is covered by test t1 and t3. The
prioritized test suite detects the first fault with t2, which covers the faulty element s7. Sup-
pose that there is only time to execute one additional test: the next two columns show what
the final suspiciousness metric would look like if t3 or t4 is chosen to be executed. According to
the coverage-based prioritization, the next test is t3 and the faulty element will get assigned
the suspiciousness of 0.67. However, this is misleading as s6 and s8 are assigned with higher
suspiciousness values. On the other hand, if t4 is executed, the faulty element is assigned the
suspiciousness of 1.0 along with other elements, which would be a more precise result. This
shows that the choice of the next test case can affect the accuracy of the suspiciousness metric
if the testing is terminated at an arbitrary point.

In reality, it is impossible to predict whether a test would pass or fail. Therefore, it is also
impossible to make the ideal choice for fault location. However, it is possible to formulate a
probabilistic approximation that can be used as a surrogate, much in the same way as test
case prioritization techniques use structural coverage as a surrogate for the measure of fault
detection capability. We turn to Information Theory for this probabilistic approximation.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

David Clark IT and ST

B(sj) is the event that sj is faulty

Ti = Ti−1 ∪ {ti} is a set of tests

τ(s|Ti) is the suspiciousness of s after executing Ti

Tarantula induced Probability Distribution

A:6 Shin Yoo et al.

3. FAULT LOCALITY & ENTROPY
This section presents the formulation of fault localization as an entropy reduction process and
outlines the research questions.

3.1. Problem Formulation
3.1.1. Assumptions & Basic Notations. Let S = {s1, . . . , sm} be the set of structural elements in

the System Under Test (SUT); let T = {t1, . . . , tn} be the test suite with n tests. A single ele-
ment in S contains the fault. Let C : T ! 2S be the mapping from tests to executed structural
elements, i.e.:

C(t) = {s 2 S|t covers s when executed}
Finally, let F (t) be a boolean statement that says test t has failed. Similarly, let B(s) be a

boolean statement that says structural element s contains a fault and P be the mapping from
events to probabilities. We will make the following assumptions for our approximation:

(1) The results from all tests in T are deterministic, i.e. 8t 2 T : F (t) _ ¬F (t).
(2) The suspiciousness metric is competent and does reflect the likelihood of faultiness, i.e.

P(B(s)) ⇠ ⌧(s).
(3) The mapping between tests and structural elements, C, is known (we relax this assump-

tion in Section 6.2).

The first assumption underpins most existing work for software testing. The second as-
sumption states that the suspiciousness metric we use will work as expected, i.e. higher sus-
piciousness of si 2 S means a higher chance of si being faulty. This assumption is supported
by empirical evidence in the existing work [Jones and Harrold 2005; Abreu et al. 2007], the
findings of which the paper replicates. It is important to acknowledge that our approach will
only amplify the suspiciousness metric that is used for the parametric ⌧ : the better the sus-
piciousness metric is at localising faults, the better our approach will be at maximising early
fault localization. Regarding the third assumption, the empirical study in the paper considers
both the case when it holds and the case when it does not. The assumption about the knowl-
edge of coverage information may not be realistic in certain cases. However, when the exact
information C is not known, it is possible to approximate C with information from the testing
of the previous version, similar to the way in which test case prioritization techniques use the
coverage information from the previous version.

Now we describe the situation in which the ith test fails during testing. Without losing
generality, let Ti�1 be the set of the first i�1 tests, {t1, . . . , ti�1}, that have passed; let ti be the
first failing test. For the sake of brevity, let TPi and TFi be the total number of passing/failing
tests, respectively, after executing the tests in Ti. Similarly, let CPi(sj) and CFi(sj) be the
number of times sj has been covered by passing/failing tests, respectively, after executing the
tests in Ti.

3.1.2. Entropy of Fault Locality. Given a set of tests at least one of which fails, it is possible to
calculate the suspiciousness of each statement based on the tests executed up to and including
the first test that has failed. Given a set of tests Ti = Ti�1 [{ti}, let ⌧(s|Ti) denote the suspi-
ciousness of s calculated using the tests in Ti. Based on the Assumption 2, the approximated
probability that statement sj contains the fault, based on the information observed with Ti, is
calculated as the normalized suspiciousness metric for sj :

PTi(B(sj)) =
⌧(sj |Ti)Pm

j=1 ⌧(sj |Ti)
(2)

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.
Tarantula induced Entropy

FLINT: Fault Localization using Information Theory A:7

The normalization is required to convert the set of suspiciousness metric values into a prob-
ability distribution. Using this, Shannon’s entropy regarding the locality of the fault can now
be defined as follows:

HTi(S) = �
mX

j=1

PTi(B(sj)) · log PTi(B(sj)) (3)

Ideally, fault localization is complete when we add sufficient tests so as to arrive at some
TN with HTN

= 0: the probability P(B(s0)) will be 1 for the faulty statement s0 and 0 for the
remaining statements. Our aim is to minimize HTN

as much as possible. This means not only
increasing the suspiciousness of the faulty statement, but also decreasing the suspiciousness
of the non-faulty statements.

When locating a fault that can be detected deterministically (Assumption 1), it should be
noted that the entropy of fault locality, calculated following Equation 3, is identical for the
same set of tests, i.e. T = T 0 ! HT (S) = HT 0(S). That is, the same set of tests yields the same
amount of information regarding the locality of the fault. The aim of FLINT is not, and cannot
be, to increase the amount of information; rather, it is to order tests so that the maximum
information is extracted as early as possible. It follows that the next test to execute, ti+1,
should be the one that yields the smallest HTi+1(S).

3.1.3. Entropy Lookahead. To estimate HTi+1
(S) on the basis of what we know so far,

PTi+1
(B(sj)) needs to be approximated. Since it is not possible to predict whether ti+1 will

pass or fail, we use conditional probability to express both cases, based on the law of total
probability, as follows:

PTi+1
(B(sj)) = PTi+1

(B(sj)|F (ti+1)) · ↵ +

PTi+1(B(sj)|¬F (ti+1)) · (1� ↵)

(4)

where ↵ is the probability of ti+1 failing. The conditional probabilities PTi+1(B(sj)|F (ti+1))
and PTi+1(B(sj)|¬F (ti+1)) can be calculated using the Tarantula metric and Equation 2: we
simply consider two separate cases (ti+1 passes or fails) and calculate the lookahead suspi-
ciousness metric accordingly.

The remaining term, ↵, is the probability that the (i + 1)th test fails, i.e., PTi+1
(F (ti+1)).

Instead of using an arbitrarily fixed value, we use the observed feedback from the execution
of tests in Ti as follows:

↵ = PTi+1(F (ti+1)) ⇡
TFi

TPi + TFi
(5)

1� ↵ = PTi+1
(¬F (ti+1)) ⇡

TPi

TPi + TFi
(6)

Using the lookahead suspiciousness, Equations 5 and 6, it is possible to estimate Equation 4,
i.e. the lookahead probability of each statement containing the fault. Once normalized, the
lookahead probability distribution enables the calculation of the lookahead entropy that is
expected from the execution of each candidate test case for ti+1. For faster fault localization
after the detection of the first failing test, the tester should select the next test case that is
expected to yield the lowest entropy by the approximation.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

David Clark IT and ST

Entropy Lookahead

Lookahead Probability Distribution on Failure

FLINT: Fault Localization using Information Theory A:7

The normalization is required to convert the set of suspiciousness metric values into a prob-
ability distribution. Using this, Shannon’s entropy regarding the locality of the fault can now
be defined as follows:

HTi(S) = �
mX

j=1

PTi(B(sj)) · log PTi(B(sj)) (3)

Ideally, fault localization is complete when we add sufficient tests so as to arrive at some
TN with HTN

= 0: the probability P(B(s0)) will be 1 for the faulty statement s0 and 0 for the
remaining statements. Our aim is to minimize HTN

as much as possible. This means not only
increasing the suspiciousness of the faulty statement, but also decreasing the suspiciousness
of the non-faulty statements.

When locating a fault that can be detected deterministically (Assumption 1), it should be
noted that the entropy of fault locality, calculated following Equation 3, is identical for the
same set of tests, i.e. T = T 0 ! HT (S) = HT 0(S). That is, the same set of tests yields the same
amount of information regarding the locality of the fault. The aim of FLINT is not, and cannot
be, to increase the amount of information; rather, it is to order tests so that the maximum
information is extracted as early as possible. It follows that the next test to execute, ti+1,
should be the one that yields the smallest HTi+1(S).

3.1.3. Entropy Lookahead. To estimate HTi+1
(S) on the basis of what we know so far,

PTi+1
(B(sj)) needs to be approximated. Since it is not possible to predict whether ti+1 will

pass or fail, we use conditional probability to express both cases, based on the law of total
probability, as follows:

PTi+1
(B(sj)) = PTi+1

(B(sj)|F (ti+1)) · ↵ +

PTi+1(B(sj)|¬F (ti+1)) · (1� ↵)

(4)

where ↵ is the probability of ti+1 failing. The conditional probabilities PTi+1(B(sj)|F (ti+1))
and PTi+1(B(sj)|¬F (ti+1)) can be calculated using the Tarantula metric and Equation 2: we
simply consider two separate cases (ti+1 passes or fails) and calculate the lookahead suspi-
ciousness metric accordingly.

The remaining term, ↵, is the probability that the (i + 1)th test fails, i.e., PTi+1
(F (ti+1)).

Instead of using an arbitrarily fixed value, we use the observed feedback from the execution
of tests in Ti as follows:

↵ = PTi+1(F (ti+1)) ⇡
TFi

TPi + TFi
(5)

1� ↵ = PTi+1
(¬F (ti+1)) ⇡

TPi

TPi + TFi
(6)

Using the lookahead suspiciousness, Equations 5 and 6, it is possible to estimate Equation 4,
i.e. the lookahead probability of each statement containing the fault. Once normalized, the
lookahead probability distribution enables the calculation of the lookahead entropy that is
expected from the execution of each candidate test case for ti+1. For faster fault localization
after the detection of the first failing test, the tester should select the next test case that is
expected to yield the lowest entropy by the approximation.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Lookahead Probability Distribution on Fault location

FLINT: Fault Localization using Information Theory A:7

The normalization is required to convert the set of suspiciousness metric values into a prob-
ability distribution. Using this, Shannon’s entropy regarding the locality of the fault can now
be defined as follows:

HTi(S) = �
mX

j=1

PTi(B(sj)) · log PTi(B(sj)) (3)

Ideally, fault localization is complete when we add sufficient tests so as to arrive at some
TN with HTN

= 0: the probability P(B(s0)) will be 1 for the faulty statement s0 and 0 for the
remaining statements. Our aim is to minimize HTN

as much as possible. This means not only
increasing the suspiciousness of the faulty statement, but also decreasing the suspiciousness
of the non-faulty statements.

When locating a fault that can be detected deterministically (Assumption 1), it should be
noted that the entropy of fault locality, calculated following Equation 3, is identical for the
same set of tests, i.e. T = T 0 ! HT (S) = HT 0(S). That is, the same set of tests yields the same
amount of information regarding the locality of the fault. The aim of FLINT is not, and cannot
be, to increase the amount of information; rather, it is to order tests so that the maximum
information is extracted as early as possible. It follows that the next test to execute, ti+1,
should be the one that yields the smallest HTi+1(S).

3.1.3. Entropy Lookahead. To estimate HTi+1
(S) on the basis of what we know so far,

PTi+1
(B(sj)) needs to be approximated. Since it is not possible to predict whether ti+1 will

pass or fail, we use conditional probability to express both cases, based on the law of total
probability, as follows:

PTi+1
(B(sj)) = PTi+1

(B(sj)|F (ti+1)) · ↵ +

PTi+1(B(sj)|¬F (ti+1)) · (1� ↵)

(4)

where ↵ is the probability of ti+1 failing. The conditional probabilities PTi+1(B(sj)|F (ti+1))
and PTi+1(B(sj)|¬F (ti+1)) can be calculated using the Tarantula metric and Equation 2: we
simply consider two separate cases (ti+1 passes or fails) and calculate the lookahead suspi-
ciousness metric accordingly.

The remaining term, ↵, is the probability that the (i + 1)th test fails, i.e., PTi+1
(F (ti+1)).

Instead of using an arbitrarily fixed value, we use the observed feedback from the execution
of tests in Ti as follows:

↵ = PTi+1(F (ti+1)) ⇡
TFi

TPi + TFi
(5)

1� ↵ = PTi+1
(¬F (ti+1)) ⇡

TPi

TPi + TFi
(6)

Using the lookahead suspiciousness, Equations 5 and 6, it is possible to estimate Equation 4,
i.e. the lookahead probability of each statement containing the fault. Once normalized, the
lookahead probability distribution enables the calculation of the lookahead entropy that is
expected from the execution of each candidate test case for ti+1. For faster fault localization
after the detection of the first failing test, the tester should select the next test case that is
expected to yield the lowest entropy by the approximation.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

F (ti) is the event that ti is identified as a failing test

Use PTi+1
(B(sj)) to calculate HTi+1

(S), the estimated entropy
of B that results from adding the executionti+1

David Clark IT and ST

Outcomes

Approach is independent of the fault localisation method used

Experimental evidence from four SUTs plus their test suites
drawn from the Software Infrastructure Repository (SIR)

Increased the suspiciousness ranking and decreased the cost of
fault localisation for 70% of the faults examined

Paper

Fault Localization Prioritization: Comparing Information Theoretic
and Coverage Based Approaches. Yoo, Harman and Clark. ToSEM
2013.

David Clark IT and ST

Use Conditional Entropy to avoid Coincidental Correctness

x=x+2;
if(x>0)
 x=x%4;
 else x=x;

x=3*x;
if(x>0)
 x=x%4;
 else x=x;

Intended Unintended

input
t1:x==3
t2:x==-5

output
t1:x==1
t2:x==-3

output
t1:x==1
t2:x==-15

David Clark IT and ST

The Abstract View

t t

P’’P

A A’

C C’

pp pp’

QQ

o o

B
B’

Intended Unintended

David Clark IT and ST

Information Based View

f

. . .

.

. . .
o

p(o)

f�1o

H(f�1o)

David Clark IT and ST

The Maths

Loss of information from running program P

H(I) � H(O)

where [[P]]I = O

Conditional entropy of I given O:
Squeeziness.

Sq(f) = H(I) � H(O) =
X

o2O

p(o) H(f�1o)

via the partition property

deterministic case = H(I|O)

David Clark IT and ST

Example Hypothesis

t t

P’’P

A A’

C C’

pp pp’

QQ

o o

B
B’

Intended Unintended

[[⇡]]pa
pp0

⇡ = A0B0

⇡l = B0

David Clark IT and ST

Summary

30 SUTS

1,408 Mutants

7,140,00 test cases

Five different IT metrics experimentally investigated

Two metrics showed 0.95 Spearman rank correlation with the
probability of failed error propagation

10% of all 7,140,000 test inputs suffered from FEP

Paper

An Analysis of the Relationship between Conditional Entropy and
Failed Error Propagation in Software Testing. Androutsopoulos,
Clark, Dan, Hierons and Harman. ICSE 2014.

David Clark IT and ST

Use Kolmogorov Complexity to Measure Input Diversity

Normalised Information Distance

For two strings x and y ,

NID(x , y) =
max{K (x |y),K (y |x)}

max{K (x),K (y)}

Enables comparisons between strings of different lengths

NCD: The Normalised Compression Distance

For two strings x and y ,

NCD(x , y) =
C (xy)−min{C (x),C (y)}

max{C (x),C (y)}

Computable approximation using compressors such as 7zip, Bzip

David Clark IT and ST

Experiments

Use a version of NCD for multisets – calculate the set
“diameter”

Bigger diameter means more diversity

Purely consider sets of inputs – no information from
executions except in the course of evaluation

Inputs for three SUTs: JEuclid, NanoXML, ROME

Controlled for input size

Compared test sets using three fixed sizes: 10, 25 and 50

David Clark IT and ST

Outcomes for Higher Diameter Test Sets

On average higher code coverage

Higher code coverage than randomly selected test sets

Leads to higher code coverage even if we control for the size
of test inputs

May have better fault-finding ability

Selection scales quadratically in the size of the initial pool of
tests and linearly with the average length of the tests

Paper

Test Set Diameter: Quantifying the Diversity of Sets of Test
Cases. Feldt, Poulding, Clark and Yoo. ICST 2016.

David Clark IT and ST

Oracle Deficiencies

Oracle deficiencies

3

public class Subtract {
 public double value(double x, double y) {
 double result = x-y;
 assert (result != x);
 assert (result == x-y);
 return result;
 }
}

public class FastMath {
 public int max (int a, int b) {

int max;
if (a >= b) {

max = a;
} else {

 max = b; // max = a;
 }
 assert (max >= a);
 return max;

}
}False alarm

Oracles may be too strong (false alarms) or too weak (missed
faults)

Missed fault

David Clark IT and ST

Oracle Improvement Steps

Oracle improvement steps

10

Since E is fixed:
a + b = const
c + d = const
(repartitioning)

False negative reduction:
a’ = a + !
b’ = b - !

False positive reduction:
c’ = c + "
d’ = d - "

b

d

David Clark IT and ST

Oracle Improvement Modelling

Mutual information

13

I(X; Y) =
X

x2X

X

y2Y

p(x, y) log2
p(x, y)

p(x) p(y)

I(↵; G) =

8
<
:

�(b + c)log2(b + c) � (a + d)log2(a + d)
�(a + b)log2(a + b) � (c + d)log2(c + d)
+a log2 a + b log2 b + c log2 c + d log2 d

David Clark IT and ST

Bad Oracles Bad oracles

16

A bad oracle # is one for which ac < bd

!

I(↵; G)

� =
bd � ac

c + d

bad oracle good oracle

Paper

Test Oracle Assessment and Improvement. Jahangirova, Clark,
Harman and Tonella. ISSTA 2016.

David Clark IT and ST

In Conclusion

Looked at contributions both theoretical and practical to

oracle improvement
test set diversity
coincidental correctness
test set prioritisation

More to come:

InfoTestSS EPSRC funded project
Applying information theoretic ideas to test set selection and
exploring relationships with coverage and mutation testing
EPSRC contribution approx £900,000 shared between UCL
and Brunel
Industrial contribution approx £230,000 from J.P.Morgan and
Berner Mattner
Project collaborators include Rob Hierons, Mark Harman,
Robert Feldt, Michele Boreale, Paolo Tonella

David Clark IT and ST

