
An Unsystematic Review
of Genetic Improvement

David R. White
University of Glasgow

UCL Crest Open Workshop, Jan 2016

A Systematic Study of GI
…is currently under preparation.

This presentation is based on a “snapshot” of this work.

Justyna Petke Mark Harman Bill Langdon John Woodward Saemundur
Haraldsson

Review Unmethod
1. Working list of ~ 300 papers.

2. Reduced to 150 by eliminating those I didn’t think
would be relevant to my view of GI.

3. Cherry-picked meta-papers, significant papers for
my definition of significant, controversial papers.

4. Read. A lot.

5. Summary stats and observations.

Outline
1. Trends.

2. Progress in the field.

3. Challenges.

4. New Directions.

Outline
1. Trends.

2. Progress in the field.

3. Challenges.

4. New Directions.

GI Papers by Year

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

GI Workshop

Paragen

GenProg

SEBASE Project

Earliest GI
ParaGen System

Paul Walsh, Conor Ryan, ParGen1995.

Formally verifiable results.

Bug-Fixing vs Non-Functional

Other

Non-FunctionalBug-Fixing

Target Language

Other

Java
C++

C

No Language

Outline
1. Summary statistics.

2. Progress in the field.

3. Challenges.

4. New Directions.

Toy Problems
void sort(int* a, int length) {
for (; 0 < (length - 1); length--) {
for (int j = 0; j < (length - 1); j++) {
if (a[j] > a[1 + j]) {
k = a[j];
a[j] = a[j + 1];
a[1 + j] = k;
}

}
}

Evolutionary Improvement of Programs. White et al. IEEE TEC. vol.15, no.4,
pp.515-538, 2011

2009: The Zune Bug

A Genetic Programming Approach to Automated Software Repair. Forrest et al. GECCO 2009.

void year_from_days_since_1980(int days) {
 int year = 1980;
 while (days > 365) {
 if (isLeapYear(year)){
 if (days > 366) {
 days -= 366;
 year += 1;

} else {
}

} else {
 days -= 365;
 year += 1;

}
}

 printf("current year is %d\n", year);
}

Try input days = 366.

Drops into empty else.

2009: The Zune Bug

A Genetic Programming Approach to Automated Software Repair. Forrest et al. GECCO 2009.

void year_from_days_since_1980(int days) {
 int year = 1980;
 while (days > 365) {
 if (isLeapYear(year)){
 if (days > 366) {
 //days -= 366;
 year += 1;

} else {
}
days -= 366;

} else {
 days -= 365;
 year += 1;

}
}

 printf("current year is %d\n", year);
}

repair deletes

repair inserts

Awards
GECCO Human-Competitive Awards
A Genetic Programming Approach to Automated Software Repair. Forrest et al.
GECCO 2009. Gold award.
Using Genetic Improvement and Code Transplants to Specialize a C++ Program
to a Problem Class. Petke et al. EuroGP 2014. Silver award.
A Systematic Study of Automated Program Repair: Fixing 55 out of 105 bugs for
$8.00 each. Dewey-Vogt et al. ICSE 2012. Bronze award.

ICSE Distinguished Paper Award
Automatically Finding Patches Using Genetic Programming. Weimar et al.
Distinguished Paper Award. ICSE 2009.

http://www.cs.virginia.edu/~weimer/p/weimer-icse2009-genprog.pdf

Progress: Representation
Originally, GI directly manipulated the AST as with
traditional GP.

Most work uses a patch-based representation. [1, 2]

Empirical evidence that patches are more effective [3].

[1] Evolving Patches for Software Repair. Ackling et al. GECCO 2011.

[2] Automatically Finding Patches using Genetic Programming. Weimar et al. ICSE 2009.

[3] Representations and Operators for Improving Evolutionary Software Repair. Le Goues et al.
GECCO 2012.

Traditional GP Search Space

Patch Search Space

Progress: Fault Localisation
GenProg: simple statistical approach.

Reduce the value of k by focusing on instructions
executed by the failing test cases.

Other work has used program counter sampling with
Gaussian Convolution! [1]

[1] Automated Repair of Binary and Assembly Programs for Cooperating Embedded Devices.
Schulte et al. SIGARCH Comput. Archit. News 41:1 pp317-328.

Applications
Targeting GPGPU.

[1] Genetically Improved CUDA C++ Software. Langdon and Harman. EuroGP 2014.

[2] Improving 3D Medical Image Registration CUDA Software with Genetic Programming. Langdon et
al. GECCO 2014.

Objectives
Bug-fixing
Automatic Repair of Concurrency Bugs. Bradbury and Jalbert. SSBSE 2010.

Execution time
Evolutionary Improvement of Programs. White et al. TEC. 15:4. 2011.

Power consumption
Reducing Energy Consumption Using Genetic Improvement. Bruce et al. GECCO 2015.

Memory
A Methodology to Automatically Optimize Dynamic Memory Managers Applying Grammatical
evolution. Risco-Martína et al. JSS 91, 109-123.

Diversity.
Generating Diverse Software Versions with Genetic Programming: an Experimental Study. Feldt.
IEE Software 145:6. 1998.

Objectives Cont.
Parallelisation
Automatic conversion of programs from serial to parallel using Genetic Programming - The Paragen
System. Walsh and Ryan. ParCo ’95.

Translation
Evolving a CUDA kernel from an nVidia template. Langdon. CEC 2010.

Simplification
Genetic programming for shader simplification. Sitthi-amorn et al. SA ’11.

Extending Functionality
Automated Software Transplantation. Barr et al. ISSTA 2015.

Outline
1. Summary statistics.

2. Progress in the field.

3. Challenges.

4. New Directions.

Empirical Method
There has been criticism of existing work, including GenProg [1].

Biggest issue is overfitting.

Observation: Many papers focus on statistics rather than code. We
need more qualitative examination of results. There is not much
code in the papers!

Avoid “horse-race” [2] papers that add little of scientific value.

[1] An Analysis of Patch Plausibility and Correctness for Generate-and-Validate Patch Generation
Systems. Qi et al. ISSTA 2015.

[2] A Theoretician’s Guide to the Experimental Analysis of Programs Johnson. DIMACS
Implementation Challenges.2002.

Correctness
Generate and Validate Approaches have problems with
overfitting.

They may also break more functionality than they fix.

Is the Cure Worse Than the Disease? Overfitting in Automated Program
Repair. Smith et al. ESEC/FSE 2015.

Credibility
Also a wider issue for GP and EC.

Evolution is self-evidently a powerful general learning
method.

Are programs a suitable subject? Evidence they are
surprisingly robust [1], and neutral networks exist [2].

[1] Software is Not Fragile. Langdon and Petke. CS-DC 2015.
[2] Neutral Networks of Real-World Programs and their Application to
Automated Software Evolution. Schultz. PhD Thesis. Uni. New Mexico, 2014.

Theory
Limited work on the theoretical side.

Some work on “mutational robustness”.

Where is the landscape analysis?

Outline
1. Summary statistics.

2. Progress in the field.

3. Challenges.

4. New Directions.

Hardware Measurement
Simulators are out, physical measurements are in.

[1] Energy Optimisation via Genetic Improvement. Bruce. GECCO 2015.

Binaries
Bug-fixing and program thinning without source code.

Interesting problem: harder to intuit whether a patch is
“correct”.

Removing the Kitchen Sink from Software. Lanesborough et al. GECCO 2015.

Repairing COTS Router Firmware without Access to Source Code or Test
Suites: A Case Study in Evolutionary Software Repair. Schulte et al. GECCO
2015.

Automatic Error Elimination by Horizontal Code Transfer Across Multiple
Applications. Sadironglou-Douskos et al. PLDI 2015.

Deep Parameter Optimisation
Optimise parameters within code rather than code itself: thus
possess an oracle.

Use mutation testing to determine impact of parameters.

Transform non-functional properties. Target key components,
e.g. malloc [1].

Also a suitable target for Amortised Optimisation. [2]

[1] Deep Parameter Optimisation. Wu et al. GECCO 2015.

[2] Amortised Optimisation of Non-functional Properties in Production
Environments. Yoo. SSBSE 2015.

Code Transplantation
Extend functionality of existing code by importing
features from other codebases.

Process of locating a transplantation point; extracting
relevant code; finding correct bindings; minimisation;
passing regression tests.

Automated Software Transplantation. Barr et al. ISSTA 2015.

Semantic Search
Index and search large code repositories: it’s about
existing code.

Find patches with similar semantics expressed in
SMT.

Much higher success rate in producing repairs that
generalise.

Repairing Programs with Semantic Code Search. Ke et al. ASE 2015.

Summary
We’re at a crucial juncture for GI Research.

We must address empirical method problems.

Solid theory or systematic empirical methods
required. Qualitative, explanatory, evidence is key.

Wide range of possible avenues for work: many
circumvent objections and address challenging
problems.

