From Programs to Program Spaces:
Programming by Optimisation

Holger H. Hoos

BETA Lab
Department of Computer Science
University of British Columbia
Canada

45th CREST Open Workshop on Genetic Improvement
London, UK, 2016/01/26
“As soon as an Analytical Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will then arise – by what course of calculation can these results be arrived at by the machine in the shortest time?”

(Charles Babbage, 1864)
The age of computation

“The maths that computers use to decide stuff [is] infiltrating every aspect of our lives.”

- financial markets
- social interactions
- cultural preferences
- artistic production
- . . .
Performance matters ...

- computation speed (time is money!)
- energy consumption (battery life, ...)
- quality of results (cost, profit, weight, ...)

... increasingly:

- globalised markets
- just-in-time production & services
- tighter resource constraints
solver[·]

solver[p1]
application context 1

solver[p2]
application context 2

solver[p3]
application context 3
Algorithm configuration

Observation: Many algorithms have parameters (sometimes hidden / hardwired) whose settings affect performance

Challenge: Find parameter settings that achieve good / optimal performance on given type of input data

Example: IBM ILOG CPLEX

- widely used industrial optimisation software
- exact solver, based on sophisticated branch & cut algorithm and numerous heuristics
- 135 parameters that directly control search process
- find parameter settings that solve MIP-encoded wildlife corridor construction problems as fast as possible
CPLEX on Wildlife Corridor Design

\[\approx 52.3 \times \text{speedup on average!} \]
The algorithm configuration problem (AC)

Given:

- parameterised target algorithm \(A \) with configuration space \(C \)
- set of (training) inputs \(I \)
- performance metric \(m \) (w.l.o.g. to be minimised)

Want: \(c^* \in \arg\min_{c \in C} m(A[c], I) \)
What if ... we could solve AC effectively?

1. Less fiddling / hand-tuning.
2. Better performing algorithms.
4. More expert time spent on ideas, high-level design choices.
5. More broadly applicable software.
6. Automatically customised software.
7. Automatic parallelisation.
8. Partial automation of programming.
9. Fairer evaluation of algorithms and ideas.
Algorithm configuration is challenging:

- size of configuration space
- parameter interactions
- discrete / categorical parameters
- conditional parameters
- performance varies across inputs (problem instances)
- evaluating poor configurations can be very costly
- censored algorithm runs

⇒ standard optimisation methods are insufficient
Sequential Model-based Optimisation
e.g., Jones (1998), Bartz-Beielstein (2006)

- **Key idea:**
 use predictive performance model (response surface model) to find good configurations

- perform runs for selected configurations (initial design) and fit model (e.g., noise-free Gaussian process model)

- iteratively select promising configuration, perform run and update model
Sequential Model-based Optimisation

(parameter response)

(measured)
Sequential Model-based Optimisation

- parameter response
- measured
- model
Sequential Model-based Optimisation

- parameter response
- measured
- model
- predicted best
Sequential Model-based Optimisation

- Parameter response
- Measured
- Model
- Predicted best
Sequential Model-based Optimisation
Sequential Model-based Optimisation

- parameter response
- measured
- model
- predicted best

new incumbent found!
Sequential Model-based Algorithm Configuration (SMAC)
Hutter, HH, Leyton-Brown (2011)

- uses *random forest model* to predict performance of parameter configurations
- predictions based on algorithm parameters and instance features, aggregated across instances
- finds promising configurations based on *expected improvement criterion*, using multi-start local search and random sampling
- initialisation with single configuration (algorithm default or randomly chosen)
Key idea:

- program \(\rightsquigarrow \) (large) space of programs
- encourage software developers to
 - avoid premature commitment to design choices
 - seek & maintain design alternatives
- automatically find performance-optimising designs for given use context(s)
Software development in the PbO paradigm

PbO-<L> source(s) → PbO-<L> weaver → parametric <L> source(s) → PbO design optimiser → instantiated <L> source(s)

design space description

benchmark inputs

deployed executable

use context
Levels of PbO:

Level 4: Make no design choice prematurely that cannot be justified compellingly.

Level 3: Strive to provide design choices and alternatives.

Level 2: Keep and expose design choices considered during software development.

Level 1: Expose design choices hardwired into existing code (magic constants, hidden parameters, abandoned design alternatives).

Level 0: Optimise settings of parameters exposed by existing software.
Success in optimising speed:

<table>
<thead>
<tr>
<th>Application, Design choices</th>
<th>Speedup</th>
<th>PbO level</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAT-based software verification ((\text{SPEAR}), 26) Hutter, Babić, HH, Hu (2007)</td>
<td>4.5–500 \times</td>
<td>2–3</td>
</tr>
<tr>
<td>AI Planning ((\text{LPG}), 62) Vallati, Fawcett, Gerevini, HH, Saetti (2011)</td>
<td>3–118 \times</td>
<td>1</td>
</tr>
<tr>
<td>Mixed integer programming ((\text{CPLEX}), 76) Hutter, HH, Leyton-Brown (2010)</td>
<td>2–52 \times</td>
<td>0</td>
</tr>
</tbody>
</table>

... and solution quality:

University timetabling, 18 design choices, PbO level 2–3
\(\leadsto\) new state of the art; UBC exam scheduling
Fawcett, Chiarandini, HH (2009)

Machine learning / Classification, 786 design choices, PbO level 0–1
\(\leadsto\) outperforms specialised model selection & hyper-parameter optimisation methods from machine learning
Thornton, Hutter, HH, Leyton-Brown (2012)
Median running time of EAX (state-of-the-art TSP solver)
Mu, Hoos, Stützle (under review)

EAX (default): $0.086 \times 1.144 \sqrt{n}$
EAX (optimised): $1.62 \times 10^{-8} \times n^{2.836}$
Further successful applications:

- macro learning in planning (Alhossaini & Beck 2012)
- garbage collection in Java (Lengauer & Mössenböck 2014)
- kidney exchange (Dickerson et al. 2012)
solver

design space of solvers
solver

design space of solvers

optimised solver

application context
solver

design space of solvers

parallel portfolio

instance-based selector

optimised solver

application context

Holger Hoos: Programming by Optimisation
application context
planner
optimised solver
parallel portfolio
instance-based selector
design space of solvers
application context
Programming by Optimisation ...

- leverages computational power to construct better software
- enables creative thinking about design alternatives
- produces better performing, more flexible software
- facilitates scientific insights into
 - efficacy of algorithms and their components
 - empirical complexity of computational problems

... changes how we build and use high-performance software
Gli uomini hanno idee [...]
– Le idee, se sono allo stato puro, sono belle. Ma sono un meraviglioso casino. Sono apparizioni provvisorie di infinito.

People have ideas [...]
– Ideas, in their pure state, are beautiful. But they are an amazing mess. They are fleeting apparitions of the infinite.

(Prof. Mondrian Kilroy in Alessandro Baricco: City)