Saemundur Haraldsson
John Woodward
Sandy Brownlee

Fixing bugs in Python programs
with Genetic Improvement

—_— Program size and search —
granularity
DAASE UNIVERSITY of [EEE




Overview of talk

e Developing a Gl framework for Python programs
e Search granularity and program size

e Breaking and fixing small Python programs



Motivation

e Gl has already been successfully applied to large software, >50K LOC
(Langdon et al. & Le Goues et al.)

e Pushing Gl to its lower size limit for usefulness

e “The competent programmer hypothesis” for students

e Easier to analyse exactly what the Gl is doing



Gl for Python




Gl for Python ===== Entities of the population

e Evolving Edit lists

(@)

A single edit: < “Edit”, “Old code”, “New code”, “Location”>

e Available edits

(@)

Copy, Swap, Delete and Replace

e Movable code

O O O O

O

Whole Lines

Boolean operators: 'or', 'and’, 'not’, '<=', 'I=', etc.
Mathematical operators: '+', "*', '-', '%', etc
Incremental operators: '+=', '*=', /=, *-='
Numerical constants

e Fitness function

(@)

Number of passed test cases



Gl for PYthOI'I ===== Features of the evolution

-

Separate into
lines

Line 2
:indentation
:source
:line type
:content
symbols

e The usual customizable properties
o  Population size
o Number of generations
o  Selection
o Survival / Elitism
e Offspring entities made with mutation
only
o  Grow: Append randomly generated edits
o Prune: Shorten the list of edits
o  Single edit mutation: Randomly select 1
edit and change it slightly.

N generations
evaluated?

Produce
population of
Edit lists

Evaluate fitness

For each edit list
Apply edits

Unittest

line 4

E1,Ez. Eq

!
[



Gl for Python ===== Features of the evolution

e The usual customizable properties

(¢]

o

o

o

Population size
Number of generations
Selection

Survival / Elitism

e Offspring entities made with mutation

only
O

o

(©]

Grow: Append randomly generated edits
Prune: Shorten the list of edits

Single edit mutation: Randomly select 1
edit and change it slightly.

<REPLACE, ‘<, >, 34, 12>

V

<REPLACE, ‘<, >, 34, 12><REPLACE, '2', ‘1", 65, 20>



Gl for Python ===== Features of the evolution

e The usual customizable properties

(¢]

o

o

o

Population size
Number of generations
Selection

Survival / Elitism

e Offspring entities made with mutation

only
O

o

(©]

Grow: Append randomly generated edits
Prune: Shorten the list of edits

Single edit mutation: Randomly select 1
edit and change it slightly.

<REPLACE, ‘<, *>', 34, 12><REPLACE, ‘2', '1’, 65, 20>

V

<REPLACE, ‘<, >, 34, 12>



Gl for Python ===== Features of the evolution

e The usual customizable properties

(¢]

o

o

o

Population size
Number of generations
Selection

Survival / Elitism

e Offspring entities made with mutation

only
O

o

(©]

Grow: Append randomly generated edits
Prune: Shorten the list of edits

Single edit mutation: Randomly select 1
edit and change it

<REPLACE, ‘<, >', 34, 12><REPLACE, '2', '1’, 65, 20>

V

<REPLACE, ‘<, '==', 34, 12><REPLACE, ‘2', ‘1", 65, 20>



Search Granularity

Program Size




Search Granularity

Characters

Variable
names

L

Step size of search

algorithm

Generation
restart

Lines

Code blocks

Size of code chunks

<

\

Operators
such as +-*/

Single point
mutations

being moved

>

11




Search Granularity ===== Experimental setup

Movable code

e Random line edits

e Like for like line edits

e Change operators: math, boolean
and incremental.

Step size (mutation choices)

e Grow and prune only (variable
size)

e Single edit mutations and Grow
(single edit growth)

e Both above

Movable code

Step size

All
available

Grow and
Prune

Single edit

Random lines

Like for like lines

Operators and
numbers

12




Program size

e Lines of Code
o Ranging from 5- 100
e |Implemented from various online sources
o “100+ python challenging programming exercises”
o www.ActiveState.com -- code recipies
o www.Cprogramming.com -- challenge
e Beginner level programs that contain common code elements
o Simple numerical calculations: Factorial
Mathematical constants approximations: pi, e, sqrt(2)

O
o Simple text input Calculator
o etc

13


http://www.activestate.com
http://www.activestate.com

Breaking and Fixing




Breaking and fixing, The breaking process

e Start with correct implementation ez
_ I:,original ‘source Pbroken
o Used as an oracle to produce a test suite ‘line type

. . . . ‘content
e Gl applied with reversed objectives.

symbols

Yes

o  Evaluated with unittest

Separate into
lines

e Evolution is stopped if a valid break is i Broken? Fitneps

populaffon of luate fitness

found.

For each edit list

e Aprogram is broken if it:

Apply edits

Unittest

o  Fails on at least 1 test case E1,Ez En

o  Does not produce run time errors on at

least half of the test suite

last line

—__
15



Breaking and fixing, The fixing process

Line 2
P.: ‘indentation
original source
line type
:content
symbols

e Objectives are:
o Number of test cases passed

o  Size of edit list, i.e. number of changes to
the broken program

e Runs for 50 generations (population of
20)

e Returns the overall best solution.

o  Fewest number of changes made to the

Separate into
lines

program to pass the greatest number of
test cases.

ast line

Yes

N generations
evaluated?

Evlluate fitness

Replace

Cony E1E>. En

Swap

Delete

For each edit list

Apply edits

Unittest

16



Experiments, Line for line

Broken Fixed 100 experiments
Program Size Avg. size | Avg. evals -> | Avg. proportion Avg. size of fixer
LOC of breaker | fixed of error variants
count_digs_letters 9 1 15.2 75% 2.01
dict_square 5 1 6.3 68% 1.5
divisable_5 7 1 10.2 81% 3.7
even_digits 13 1 4 74% 1.2
factorial 5 N/A N/A 100% N/A
formula_this 8 1 6.2 72% 4.1




Experiments, Line for line

Broken Fixed
Program Size Avg. Avg. evals -> | Avg. proportion of Avg. size of fixer
LOC size of fixed error variants
breaker
lines_2_list 12 1 10.9 67% 4.01
list_tuple 5 N/A N/A 100% N/A
make_multiMatrix 8 1 14.5 80% 3.4
sort_unique 5 1 13.2 45% 213
sort_words 5 1 8.4 51% 1.25




Experiments, Summary of line for line

e Breaking
o Fitness is effectively binary: broken or not broken
m pass all or no test cases
o Highly unlikely programming errors.
m e.g forgetting a complete line?
o Takes only one line out of place to break.
o If avalid break exists it is found in first generation.
e Fixing
o Takes longer to find the fix than the break
o High proportion of variants do not run
m and those that run are mostly semantically identical, i.e. loads of redundancy



Experiments, finer grained

Case example, Dictionary of squares

Input: single integer n

Output: dictionary of all the numbers
squared from O ton

5 test cases which include boundary
inputs, n =0 and 1

Program was broken by replacing the

first occurrence of 1 with 2.
o  <REPLACE,"1",'2", 2,15>

Then the Gl was run 100 times to fix.
o  No elitism

def dict_squares(n)
d=dict()

foriin range(1,n+1):

dli]=i*i
return d

def dict_squares(n)
d=dict()

foriin range(2,n+1):

dli]=i*i
return d

20



—  Average
~— Maximum
~—— Minimum

_Recorded fitness for a single run

]

] &

EN

N

Number of test cases passed (max 5)
— w

0 5 10 15 20 25 30 35 40 45 50
Generation

Experiments, Finer grained: Dictionary of squares



Average fitness of fixes to dict_squares
a fix wag found - | | over 100 experiments

0.7}

o
o

—  Average
~— Maximum
~—— Minimum

o
[3)

Number of test cases passed (max 5)
© e e
e & =

e
N

0 5 10 15 20 25 30 35 40 45 50
Generation

Experiments, finer grained: Dictionary of squares



Experiments, finer grained

Case example: A simple text input calculator

e ~100LOC
e Inserted bugs with 4 edits

o Forced by increasing the required failed test cases

o  <REPLACE,"*, '+, 24, 4><REPLACE, -, '+, 22, 4><REPLACE, '/", "**', 36, 4><REPLACE, '+, '%’, 20, 4>
e Fails all test cases (19)

o At least one test case for each function: +, -, *, and /

o and the rest combines them
e Again: Gl run 100 times to fix

o Now with elitism

23



Experiments, finer grained

~—— Average
—  Maximum

Recorded fitness for a single run

sol = Minimum
in
>
[~
E
- 15}
()]
(7]
(1]
©
o
(7]
@D
()]
© 10}
)
(1]
(]
o]
[T
[«]
-
8 s
£
=
=
% 5 10 15 20 35 30 35 40 45 50

Generation

24



Experiments, summary of finer grained

Sometimes finds mutations that pass
some test cases

o  Fitness is not always binary, rather a

step: passes 1 or 2 boundary cases.
o  More bugs -> more needles

Much more realistic programming
errors

o  typing “="instead of “+=" or “<" instead of
ll<="

Only one edit needed to break

Fitness

Gen.

25



Experiments, summary of finer grained

e We can nearly always find a valid break

o Syntactically correct programs
o High proportion of variants run

e For such small programs the fix is usually converting it back to the

original.
o No clever fixes, that weren't foreseen.
e The fix is most often found in the first 5-10 generations.

e Still, finding the fix takes much longer than finding the break.
o In practice “Needle/s in a haystack” fitness function that is largely level.



27



Summary

e Gl for Python programs is doable and promising
Tested on multiple small programs

e Considered 2 dimensions of search granularity
o Stepsize
o Movable code

e Line based Gl is not a realistic option for small programs
o  Where the boundary of size lies remains to be confirmed

e Smaller programs call for finer grained searches

28



Decision-Support

Thanks for listening

Questions?




