
Fixing bugs in Python programs
with Genetic Improvement

Program size and search
granularity

Saemundur Haraldsson
John Woodward
Sandy Brownlee

Overview of talk

● Developing a GI framework for Python programs

● Search granularity and program size

● Breaking and fixing small Python programs

2

Motivation

● GI has already been successfully applied to large software, >50K LOC
(Langdon et al. & Le Goues et al.)

● Pushing GI to its lower size limit for usefulness
● “The competent programmer hypothesis” for students
● Easier to analyse exactly what the GI is doing

3

GI for Python

4

GI for Python ----- Entities of the population

● Evolving Edit lists
○ A single edit: < “Edit”, “Old code”, “New code”, “Location”>

● Available edits
○ Copy, Swap, Delete and Replace

● Movable code
○ Whole Lines
○ Boolean operators: 'or', 'and', 'not', '<=', '!=', etc.
○ Mathematical operators: '+', '*', '-', '%', etc
○ Incremental operators: '+=', '*=', '/=’, ‘-=’
○ Numerical constants

● Fitness function
○ Number of passed test cases

5

GI for Python ----- Features of the evolution

● The usual customizable properties
○ Population size
○ Number of generations
○ Selection
○ Survival / Elitism

● Offspring entities made with mutation
only

○ Grow: Append randomly generated edits
○ Prune: Shorten the list of edits
○ Single edit mutation: Randomly select 1

edit and change it slightly.

6

GI for Python ----- Features of the evolution

● The usual customizable properties
○ Population size
○ Number of generations
○ Selection
○ Survival / Elitism

● Offspring entities made with mutation
only

○ Grow: Append randomly generated edits
○ Prune: Shorten the list of edits
○ Single edit mutation: Randomly select 1

edit and change it slightly.

7

<REPLACE, ‘<’, ‘>’, 34, 12>

<REPLACE, ‘<’, ‘>’, 34, 12><REPLACE, ‘2’, ‘1’, 65, 20>

GI for Python ----- Features of the evolution

● The usual customizable properties
○ Population size
○ Number of generations
○ Selection
○ Survival / Elitism

● Offspring entities made with mutation
only

○ Grow: Append randomly generated edits
○ Prune: Shorten the list of edits
○ Single edit mutation: Randomly select 1

edit and change it slightly.

8

<REPLACE, ‘<’, ‘>’, 34, 12><REPLACE, ‘2’, ‘1’, 65, 20>

<REPLACE, ‘<’, ‘>’, 34, 12>

GI for Python ----- Features of the evolution

● The usual customizable properties
○ Population size
○ Number of generations
○ Selection
○ Survival / Elitism

● Offspring entities made with mutation
only

○ Grow: Append randomly generated edits
○ Prune: Shorten the list of edits
○ Single edit mutation: Randomly select 1

edit and change it

9

<REPLACE, ‘<’, ‘>’, 34, 12><REPLACE, ‘2’, ‘1’, 65, 20>

<REPLACE, ‘<’, ‘==’, 34, 12><REPLACE, ‘2’, ‘1’, 65, 20>

Search Granularity
Program Size

10

Search Granularity

11

Size of code chunks
being moved

Step size of search
algorithm

Characters Lines
Code blocks

Single point
mutations

Generation
restart

Variable
names

Operators
such as +-*/

Search Granularity ----- Experimental setup

Movable code

● Random line edits
● Like for like line edits
● Change operators: math, boolean

and incremental.

Step size (mutation choices)

● Grow and prune only (variable
size)

● Single edit mutations and Grow
(single edit growth)

● Both above

12

Movable code

Step size

All
available

Grow and
Prune

Single edit

Random lines X
Like for like lines X X X

Operators and
numbers X X X

Program size
● Lines of Code

○ Ranging from 5 - 100

● Implemented from various online sources
○ “100+ python challenging programming exercises”
○ www.ActiveState.com -- code recipies
○ www.Cprogramming.com -- challenge

● Beginner level programs that contain common code elements
○ Simple numerical calculations: Factorial
○ Mathematical constants approximations: pi, e, sqrt(2)
○ Simple text input Calculator
○ etc.

13

http://www.activestate.com
http://www.activestate.com

Breaking and Fixing

14

Breaking and fixing, The breaking process
● Start with correct implementation

○ Used as an oracle to produce a test suite

● GI applied with reversed objectives.

○ Evaluated with unittest

● Evolution is stopped if a valid break is

found.

● A program is broken if it:

○ Fails on at least 1 test case

○ Does not produce run time errors on at

least half of the test suite

15

Breaking and fixing, The fixing process
● Objectives are:

○ Number of test cases passed
○ Size of edit list, i.e. number of changes to

the broken program
● Runs for 50 generations (population of

20)
● Returns the overall best solution.

○ Fewest number of changes made to the
program to pass the greatest number of
test cases.

16

Experiments, Line for line
Broken Fixed 100 experiments

Program Size
LOC

Avg. size
of breaker

Avg. evals ->
fixed

Avg. proportion
of error variants

Avg. size of fixer

count_digs_letters 9 1 15.2 75% 2.01

dict_square 5 1 6.3 68% 1.5

divisable_5 7 1 10.2 81% 3.7

even_digits 13 1 4 74% 1.2

factorial 5 N/A N/A 100% N/A

formula_this 8 1 6.2 72% 4.1

Experiments, Line for line
Broken Fixed

Program Size
LOC

Avg.
size of
breaker

Avg. evals ->
fixed

Avg. proportion of
error variants

Avg. size of fixer

lines_2_list 12 1 10.9 67% 4.01

list_tuple 5 N/A N/A 100% N/A

make_multiMatrix 8 1 14.5 80% 3.4

sort_unique 5 1 13.2 45% 2.13

sort_words 5 1 8.4 51% 1.25

Experiments, Summary of line for line
● Breaking

○ Fitness is effectively binary: broken or not broken
■ pass all or no test cases

○ Highly unlikely programming errors.
■ e.g. forgetting a complete line?

○ Takes only one line out of place to break.
○ If a valid break exists it is found in first generation.

● Fixing
○ Takes longer to find the fix than the break
○ High proportion of variants do not run

■ and those that run are mostly semantically identical, i.e. loads of redundancy

Experiments, finer grained
Case example, Dictionary of squares

● Input: single integer n
● Output: dictionary of all the numbers

squared from 0 to n
● 5 test cases which include boundary

inputs, n = 0 and 1
● Program was broken by replacing the

first occurrence of 1 with 2.
○ <REPLACE, ‘1’, ‘2’, 2,15>

● Then the GI was run 100 times to fix.
○ No elitism

20

def dict_squares(n)
 d=dict()
 for i in range(2,n+1):
 d[i]=i*i
 return d

def dict_squares(n)
 d=dict()
 for i in range(1,n+1):
 d[i]=i*i
 return d

Experiments, Finer grained: Dictionary of squares

Experiments, finer grained: Dictionary of squares

Case example: A simple text input calculator

● ~100 LOC
● Inserted bugs with 4 edits

○ Forced by increasing the required failed test cases
○ <REPLACE, ’*’, ’+’, 24, 4><REPLACE, ’-’, ’+’, 22, 4><REPLACE, ’/’, ’**’, 36, 4><REPLACE, ’+’, ’%’, 20, 4>

● Fails all test cases (19)
○ At least one test case for each function: +, -, *, and /
○ and the rest combines them

● Again: GI run 100 times to fix
○ Now with elitism

23

Experiments, finer grained

24

Experiments, finer grained

● Sometimes finds mutations that pass
some test cases

○ Fitness is not always binary, rather a
step: passes 1 or 2 boundary cases.

○ More bugs -> more needles
● Much more realistic programming

errors
○ typing “=” instead of “+=” or “<” instead of

“<=”
● Only one edit needed to break

Experiments, summary of finer grained

25

Gen.

Fitness

● We can nearly always find a valid break
○ Syntactically correct programs
○ High proportion of variants run

● For such small programs the fix is usually converting it back to the
original.

○ No clever fixes, that weren’t foreseen.

● The fix is most often found in the first 5-10 generations.
● Still, finding the fix takes much longer than finding the break.

○ In practice “Needle/s in a haystack” fitness function that is largely level.

Experiments, summary of finer grained

Summary

27

Summary

28

● GI for Python programs is doable and promising
● Tested on multiple small programs
● Considered 2 dimensions of search granularity

○ Step size
○ Movable code

● Line based GI is not a realistic option for small programs
○ Where the boundary of size lies remains to be confirmed

● Smaller programs call for finer grained searches

Thanks for listening
 Questions?

29

