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Overview of talk

● Developing a GI framework for Python programs

● Search granularity and program size

● Breaking and fixing small Python programs
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Motivation

● GI has already been successfully applied to large software, >50K LOC 
(Langdon et al. & Le Goues et al.)

● Pushing GI to its lower size limit for usefulness
● “The competent programmer hypothesis” for students
● Easier to analyse exactly what the GI is doing
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GI for Python
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GI for Python ----- Entities of the population

● Evolving Edit lists 
○ A single edit: < “Edit”, “Old code”, “New code”, “Location”>

● Available edits
○ Copy, Swap, Delete and Replace

● Movable code
○ Whole Lines
○ Boolean operators: 'or', 'and', 'not', '<=', '!=', etc.
○ Mathematical operators: '+', '*', '-', '%', etc
○ Incremental operators: '+=', '*=', '/=’, ‘-=’
○ Numerical constants

● Fitness function
○ Number of passed test cases
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GI for Python ----- Features of the evolution

● The usual customizable properties
○ Population size
○ Number of generations
○ Selection
○ Survival / Elitism

● Offspring entities made with mutation 
only

○ Grow: Append randomly generated edits
○ Prune: Shorten the list of edits
○ Single edit mutation: Randomly select 1 

edit and change it slightly.
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Search Granularity
Program Size
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Search Granularity
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Search Granularity ----- Experimental setup

Movable code

● Random line edits
● Like for like line edits
● Change operators: math, boolean 

and incremental.

Step size (mutation choices)

● Grow and prune only (variable 
size)

● Single edit mutations and Grow 
(single edit growth)

● Both above
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Program size
● Lines of Code

○ Ranging from 5 - 100

● Implemented from various online sources
○ “100+ python challenging programming exercises”
○ www.ActiveState.com -- code recipies
○ www.Cprogramming.com -- challenge

● Beginner level programs that contain common code elements
○ Simple numerical calculations: Factorial
○ Mathematical constants approximations: pi, e, sqrt(2)
○ Simple text input Calculator
○ etc.
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Breaking and Fixing
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Breaking and fixing, The breaking process
● Start with correct implementation

○ Used as an oracle to produce a test suite

● GI applied with reversed objectives.

○ Evaluated with unittest

● Evolution is stopped if a valid break is 

found.

● A program is broken if it:

○ Fails on at least 1 test case

○ Does not produce run time errors on at 

least half of the test suite
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Breaking and fixing, The fixing process
● Objectives are:

○ Number of test cases passed
○ Size of edit list, i.e. number of changes to 

the broken program
● Runs for 50 generations (population of 

20)
● Returns the overall best solution.

○ Fewest number of changes made to the 
program to pass the greatest number of 
test cases.
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Experiments, Line for line
Broken Fixed 100 experiments

Program Size 
LOC

Avg. size 
of breaker

Avg. evals -> 
fixed

Avg. proportion 
of error variants

Avg. size of fixer

count_digs_letters 9 1 15.2 75% 2.01

dict_square 5 1 6.3 68% 1.5

divisable_5 7 1 10.2 81% 3.7

even_digits 13 1 4 74% 1.2

factorial 5 N/A N/A 100% N/A

formula_this 8 1 6.2 72% 4.1



Experiments, Line for line
Broken Fixed

Program Size 
LOC

Avg. 
size of 
breaker

Avg. evals -> 
fixed

Avg. proportion of 
error variants

Avg. size of fixer

lines_2_list 12 1 10.9 67% 4.01

list_tuple 5 N/A N/A 100% N/A

make_multiMatrix 8 1 14.5 80% 3.4

sort_unique 5 1 13.2 45% 2.13

sort_words 5 1 8.4 51% 1.25



Experiments, Summary of line for line
● Breaking

○ Fitness is effectively binary: broken or not broken
■ pass all or no test cases

○ Highly unlikely programming errors.
■ e.g. forgetting a complete line?

○ Takes only one line out of place to break.
○ If a valid break exists it is found in first generation.

● Fixing
○ Takes longer to find the fix than the break
○ High proportion of variants do not run

■ and those that run are mostly semantically identical, i.e. loads of redundancy



Experiments, finer grained
Case example, Dictionary of squares

● Input: single integer n
● Output: dictionary of all the numbers 

squared from 0 to n
● 5 test cases which include boundary 

inputs, n = 0 and 1
● Program was broken by replacing the 

first occurrence of 1 with 2. 
○ <REPLACE, ‘1’, ‘2’, 2,15>

● Then the GI was run 100 times to fix.
○ No elitism
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def dict_squares(n)
    d=dict()
    for i in range(2,n+1):
        d[i]=i*i
    return d

def dict_squares(n)
    d=dict()
    for i in range(1,n+1):
        d[i]=i*i
    return d



Experiments, Finer grained: Dictionary of squares
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Case example: A simple text input calculator

● ~100 LOC
● Inserted bugs with 4 edits

○ Forced by increasing the required failed test cases
○ <REPLACE, ’*’, ’+’, 24, 4><REPLACE, ’-’, ’+’, 22, 4><REPLACE, ’/’, ’**’, 36, 4><REPLACE, ’+’, ’%’, 20, 4>

● Fails all test cases (19)
○ At least one test case for each function: +, -, *, and /
○ and the rest combines them

● Again: GI run 100 times to fix
○ Now with elitism
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Experiments, finer grained
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Experiments, finer grained



● Sometimes finds mutations that pass 
some test cases

○ Fitness is not always binary, rather a 
step: passes 1 or 2 boundary cases.

○ More bugs -> more needles
● Much more realistic programming 

errors
○ typing “=” instead of “+=” or “<” instead of 

“<=”
● Only one edit needed to break

Experiments, summary of finer grained
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● We can nearly always find a valid break
○ Syntactically correct programs
○ High proportion of variants run

● For such small programs the fix is  usually converting it back to the 
original.

○ No clever fixes, that weren’t foreseen.

● The fix is most often found in the first 5-10 generations.
● Still, finding the fix takes much longer than finding the break.

○ In practice “Needle/s in a haystack” fitness function that is largely level.

Experiments, summary of finer grained



Summary
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Summary
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● GI for Python programs is doable and promising
● Tested on multiple small programs
● Considered 2 dimensions of search granularity

○ Step size
○ Movable code

● Line based GI is not a realistic option for small programs
○ Where the boundary of size lies remains to be confirmed

● Smaller programs call for finer grained searches



Thanks for listening
 Questions?
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