Measuring and improving quality
of automated program repair

.
At A &

Ted Smith Yalin Ke Manish Motwani

.

Prem Devanbu Claire Le Goues René Just

Earl Barr

Automated Program Repair

* Given a software system with a bug

— (typically) a set of passing and a set of failing tests —

produce a variant of that software system
without the bug.

Given a system S that
passes tests T and fails tests T,,

automatically produce S' that
passes T, and T;

Exploration-based approaches

basic idea:

buggy program\ APR tool
. mutate / synthesize
passing tests evaluate candidates

/ repeat

—> patched program

failing tests

the many exploration-based repair tools

ClearView [Perkinds et al. 2009] GenProg [Weimer et al. 2009]

Prophet [Long and Rinard 2016] SPR [Long and Rinard 2015]
TDS [Perelman et al. 2014]

Par [Kim et al. 2013] AE [Weimer et al. 2013]
SemFix [Nguyen et al. 2013] AutoFix-E [Wei et al. 2010]

[Carzaniga et al. 2010] [Carzaniga et al. 2013]
[Jin et al. 2011] Coker and Hafiz et al. 2013]
[Debroy and Wong et al. 2010] [Lin and Ernst et al. 2004]

[Forrest et al. 2009] (Novark et al. 2007] [Demsky et al. 2006]

The automatic program repair story

e Early papers asked:
— What fraction of bugs can APR fix?
— How long does it take APR to fix bugs?
— How much does it cost for APR to fix bugs?
— Can humans maintain APR fixes?

The story was, APR produces a
patch that passes all tests

implies
problem solved

Cobra effect

Does exploration-based repair repair?

buggy program\ APR tool
_ mutate / synthesize
passing tests evaluate candidates

- / repeat
failing tests

—> patched program

The patch may break untested

or under-tested functionality

How can we know if APR repairs

* Look at the produced patches by hand
'Qi, Long, Achour, Rinard, ISSTA 2015]
Durieux, Martinez, Monperrus, Sommerard, Xuan, 2015]

* Have others look at the produced patches by hand
[Fry, Landau, Weimer, ISSTA 2012]
[Kim, Nam, Song, Kim, ICSE 2013]

* Produce patches with test suite T,

evaluate them on independent test suite T
[Brun, Barr, Xiao, Le Goues, Devanbu, 2013]

[Smith, Barr, Le Goues, Brun, ESEC/FSE 2015]

— objective

— repeatable

IntroClass Benchmark

Requires a large set of bugs
for programs with 2 independent test suites

and the test suites need to be good

* IntroClass:
998 bugs in very small, student-written C programes,
with a KLEE-generated test suite,
and a human-written test suite.

* http://repairbenchmarks.cs.umass.edu, [TSE 2015]

Do GenProg and TrpAutoRepair patches
pass kept-out tests?

$100%-

a

S 80%- . v

%

(/)]

O 60%-

X

O

< 40%-

S

S 20%-

S

C,\° Oo/of I .
(OQ 6‘\‘

Ge(\? ‘0?\69

More GenProg and TrpAutoRepair findings

evaluation suite passing

0% -

 The better the test suite coverage, the better
the patch S| W*
::.***-#*,

* APR causes harm to high-quality programs,
but is helpful for low-quality programs

* Human-written tests lead to better patches

More answers and details in

“Is the Cure Worse Than the Disease? Overfitting in Automated Program Repair”
by Smith, Barr, Le Goues, Brun, ESEC/FSE 2015

Can we improve the patch quality?

e Recent work:
— SPR [Long and Rinard, ESEC/FSE 2015]
— Prophet [Long and Rinard, POPL 2016]

* Both SPR and Prophet produce more correct
patches than GenProg, TrpAutoRepair, AE

* My vision: repair at a higher level

SearchRepair: Use existing code

Replace whole code blocks with code
from other projects (e.g., GitHub)

Imagine a program with a buggy sort method:

Option 1 Option 2
Mutate, synthesize, and Find a method on
tweak the sort method B GitHub that passes the

until a set of sorting sorting tests
tests pass

“Repairing Programs with Semantic Code Search” by Ke, Stolee, Le Goues, Brun, ASE 2015

SearchRepair: Use existing code

Replace whole code blocks with code
from other projects (e.g., GitHub)

,) N—
c C .C)

(" =| encoding =¥ Snippet
'e;'t Il:.. -~ DB 4

) ________4 Results
e
N patch
Profile/ = construction
Queries '

4 1
I
fault '

analysis

. R ——
localization @
+ .

CO~JoOUr kb WK

=
w N~ O W

Example: median

int main() {

}

int a, b, ¢, median = 0;
printf ("Please enter 3 numbers separated by spaces >");
scanf ("%d%d%d", &a, &b, &c);

if ((a<=b && a>=c) || (a>=b && a<=c))
median = a;

else if ((b<=a && b>=c) || (b>=a && b<=c))
median = b;

else if ((c<=b && a>=c) || (c>=b && a<=c))

median = c;
printf ("%d is the median", median);
return O;

t, 999
t, 023 N
t;, 010 vV
t, 201
t, 286 (Y

oY O s LW DN

Encoding
Given snippets of code, automatically

compute the SMT constraints between
snippet inputs and outputs. Store in DB.

if((x <=y && x >= z) || (x >= y && x <=z))
m = Xx;
else if((y <= x && y >=2z) || (y >= x && y <= z))
m =Yy,
else
m= z;
vars. LOCAL(int x, int y, int z, int m)
P1- ASSUME[(x <=y && X >= z) || (x >= y && x <=z)]
STMT[m = x]
P2 ASSUME[not((x <=y && x >= 2)|| (x >= y && x <=z))
&& ((y <= x && y >= z) || (y >= x && y <= 2))]
STMT[m = y]
P3. ASSUME[not((x <=y && x >= z)|| (x >= y && x <=2z))

&& not((y <= x && y >= z)|| (y >= x && y <= z))]
STMT[m = z]

Fault localization
ldentify the code lines that execute more

often on failing tests, the elevate these
lines to block level.

1 int main() {

2 int a, b, ¢, median = 0;

3 printf ("Please enter 3 numbers separated by spaces >");
4 scanf ("%d%d%d", &a, &b, &c);

S if ((a<=b && a>=c) || (a>=b && a<=c))

6 median = a;

L else if ((b<=a && b>=c) || (b>=a && b<=c))
8 median = b;

9 else if ((c<=b && a>=c) || (c>=b && a<=c))
10 median = c;
11 printf("%d is the median", median);
12 return 0;

—
W
L

Semantic search and context
ldentify input-output behavior on passing

tests, and use SMT solver to find satisfying
snippets in DB (potential patches).

1 int main() {

2 int a, b, ¢, median = 0;

3 printf("Please enter 3 numbers separated by spaces >");
4 scanf ("%$d%d%d", &a, &b, &c);

5 if ((a<=b && a>=c) || (a>=b && a<=c))

6 median = a;

7 else if ((b<=a && b>=c) || (b>=a && b<=c))

8 median = b;

9 else if ((c<=b && a>=c) || (c>=b && a<=c))
10

median = c;
11 printf("%$d is the median", median);
12 return 0;

.

13 1}
1 if((x <=y && x >= 2z) || (x >= y && x <=z))
2 m = x;
3 else if((y <= x && y >=2z) || (y >= x && y <= z))
4 m=y;
5 else
6 m= z;

Barr, Harman, Jia, Marginean, Petke, ISSTA 2015 could enable larger-scale transplantation

Validate potential patches

Rerun tests to select patches that repair

the bug.

SearchRepair: Use existing code

* Replace whole code blocks with code from

other projects (e.g., GitHub)

— R D
N—
c C .C)
L. "~ »E=| encoding |[= P Snippet
L EE o8
. - A
-
Profile/
Queries
t
fault
localization
+
- 7 analysis

Results

patch
construction

SearchRepair vs. Exploration

% of kept-out tests patches pass

SearchRepair TRPAutoRepair “

97.2% 68.7% 72.1% 64.2%

“Repairing Programs with Semantic Code Search” by Ke, Stolee, Le Goues, Brun, ASE 2015

Contributions

 Repeatable, automated, objective methodology
for evaluating automated repair quality
— including the IntroClass dataset

e SearchRepair: semantic-search-based repair

* A small-scale prototype of SearchRepair,
evaluated on IntroClass

— greatly improves repair quality over
GenProg, TrpAutoRepair, and AE

