

Building on an unsound foundation:
How release pipelines can impact

our predictive models

Shane
McIntosh

shanemcintosh@acm.org
@shane_mcintosh
shanemcintosh.org

Bram
Adams

I’ve worn a lot of hats in the past

3

I’ve worn a lot of hats in the past
Researcher

Asst. Professor:
2015-Present

3

I’ve worn a lot of hats in the past
Researcher

PhD:
2012-2015

Asst. Professor:
2015-Present

3

I’ve worn a lot of hats in the past
Researcher Practitioner

PhD:
2012-2015

Asst. Professor:
2015-Present

SW Eng:
2010-2012

3

I’ve worn a lot of hats in the past
Researcher Practitioner Rockstar

PhD:
2012-2015

Asst. Professor:
2015-Present

SW Eng:
2010-2012

Drummer:
2003-2008

3

Our past
work on

predictive
modelling

ModelTrain Test

Cross-project modelling

Our past
work on

predictive
modelling

ModelTrain Test
Bug-introducing

changes
[MSR 2014] [EMSE 2015]

Cross-project modelling

Our past
work on

predictive
modelling

ModelTrain Test
Bug-introducing

changes
[MSR 2014] [EMSE 2015]

Build system
co-changes

[SANER 2015]

Cross-project modelling

Our past
work on

predictive
modelling

ModelTrain Test
Bug-introducing

changes
[MSR 2014] [EMSE 2015]

Build system
co-changes

[SANER 2015]

Cross-project modelling

Impact of modern code review
Our past
work on

predictive
modelling

ModelTrain Test
Bug-introducing

changes
[MSR 2014] [EMSE 2015]

Build system
co-changes

[SANER 2015]

Cross-project modelling

Impact of modern code review

Software release
quality

[MSR 2014, 2015] [EMSE 2015]

Our past
work on

predictive
modelling

ModelTrain Test
Bug-introducing

changes
[MSR 2014] [EMSE 2015]

Build system
co-changes

[SANER 2015]

Cross-project modelling

Impact of modern code review

Software release
quality

[MSR 2014, 2015] [EMSE 2015]

Software design
quality

[SANER 2015]

Our past
work on

predictive
modelling

5

Our models may be trained on
unsound data

5

Our models may be trained on
unsound data

Modelling
problems

ModelTrain Test
Bug-introducing

changes
[MSR 2014] [EMSE 2015]

Build system
co-changes

[SANER 2015]

Cross-project modelling

Impact of modern code review

Software release
quality

[MSR 2014, 2015] [EMSE 2015]

Software design
quality

[SANER 2015]

Our past
work on

predictive
modelling

ModelTrain Test
Bug-introducing

changes
[MSR 2014] [EMSE 2015]

Build system
co-changes

[SANER 2015]

Cross-project modelling

Impact of modern code review

Software release
quality

[MSR 2014, 2015] [EMSE 2015]

Software design
quality

[SANER 2015]

Impact of experimental setup

Our past
work on

predictive
modelling

ModelTrain Test
Bug-introducing

changes
[MSR 2014] [EMSE 2015]

Build system
co-changes

[SANER 2015]

Cross-project modelling

Impact of modern code review

Software release
quality

[MSR 2014, 2015] [EMSE 2015]

Software design
quality

[SANER 2015]

Impact of experimental setup

Classification
technique

[ICSE 2015]

Our past
work on

predictive
modelling

ModelTrain Test
Bug-introducing

changes
[MSR 2014] [EMSE 2015]

Build system
co-changes

[SANER 2015]

Cross-project modelling

Impact of modern code review

Software release
quality

[MSR 2014, 2015] [EMSE 2015]

Software design
quality

[SANER 2015]

Impact of experimental setup
Classification

technique
parameters

[201?]

Classification
technique

[ICSE 2015]

Our past
work on

predictive
modelling

7

Our models may be trained on
unsound data

Modelling
problems

7

Our models may be trained on
unsound data

Modelling
problems

Dataset
problems

8

There are bugs that are
relatively harmless

Non-Essential Changes in
Version Histories

D. Kawrykow and M. P. Robillard
[ICSE 2011]

It’s Not a Bug, It’s a Feature: How
Misclassification Impacts Bug Prediction

K. Herzig et al.
[ICSE 2013]

The Impact of Mislabelling on the Performance
and Interpretation of Defect Prediction Models

C. Tantithamthavorn
[ICSE 2015]

9

There are bugs that threaten the core
business of software organizations

High-Impact Defects: A Study of
Breakage and Surprise Defects

E. Shihab et al.
[ESEC/FSE 2011]

10

Our models may be trained on
unsound data

Modelling
problems

Dataset
problems

10

Our models may be trained on
unsound data

Modelling
problems

Incomplete understanding of
project release processes

Dataset
problems

Release pipelines:
How organizations deliver new content

11

Release pipelines:
How organizations deliver new content

Patch

+
+
-
-

11

Release pipelines:
How organizations deliver new content

 1. Integration
Patch

+
+
-
-

11

Release pipelines:
How organizations deliver new content

 1. Integration
Patch

+
+
-
-

 2. Build

11

Release pipelines:
How organizations deliver new content

 1. Integration
Patch

+
+
-
-

New!

 2. Build

 3. Deployment

11

Release pipelines:
How organizations deliver new content

 1. Integration
Patch

+
+
-
-

New!

 2. Build

 3. Deployment

11

Release pipelines impact
defect prediction datasets!

Harmful assumptions about release pipelines
that can impact predictive modelling

Harmful assumptions about release pipelines
that can impact predictive modelling

1. All releases are equal

13

Release cycles vary among
popular studied systems

Fig. 3: Integration delay is computed by counting the re-
leases that occur between when an issue status changes to
RESOLVED-FIXED and the the date of the release note that
lists that issue.

Fig. 4: Delays in days between releases of ArgoUML, Eclipse,
and Firefox. The number shown over each boxplot is the
median interval

project. For example, Figure 4, shows that Firefox releases
consistently every 42 days (six weeks), whereas the times
between ArgoUML releases vary from 50 to 220 days. The
consistency of Firefox releases may lead to more delayed
issues, since they rigidly adhere to a six-week release schedule
despite accumulating issues that could not be integrated.

34% to 60% of addressed issues in the traditional
release cycle systems were delayed by one or more releases.
Figure 2 shows that 98% of the addressed issues in Firefox
are delayed by one or more releases. Firefox is expected to
have delayed issues due its rapid release cycles. However,
98% is still a considerably large percentage. Furthermore, even
for the systems that adopt a more traditional release cycle,
34% (ArgoUML) to 60% (Eclipse) of the addressed issues are
delayed by one or more releases. This result indicates that even
though an issue is addressed, integration could be delayed by
one or more releases.

Many delayed issues were addressed well before releases
from which they were omitted. Addressed issues could be
delayed from integration because they were addressed late
in the release cycle, e.g., one day or one week before the
upcoming release date. In order to compare the rapid and
traditional release cycles regarding whether delayed issues
are addressed late in the release schedule, we computed the

Fig. 5: Distribution of days between when an issue was
addressed and the next missed release divided by the release
window time.

Addressing Stage metric (AS) for each issue. The AS metric
is calculated using the following equation: days to next release

release window

,
where days to next release is the number of days when an issue
is addressed before the next release (e.g., the time between t3
to t4 in Figure 3), and the release window is the time in days
between the next upcoming release and the respective previous
release (e.g., t4 to t2). An AS value close to 1 means that an
issue was addressed too close to the next release, whereas a
value close to 0 means that an issue was addressed at the
beginning of a release cycle. Figure 5 shows the distribution
of the AS metric for each project. The smallest AS median
is observed for Eclipse, which is 0.45. For ArgoUML and
Firefox, the median is 0.52 and 0.53, respectively. The AS
medians are roughly in the middle of the release. Moreover,
the boxes extend to cover between 0.25 and 0.75. The result
suggests that, in the studied projects, delayed issues are usually
addressed 1

4 to 3
4 of the way through a release. Hence, it is

unlikely that most addressed issues miss the next release solely
because they were addressed too close to an upcoming release
date.

The integration of 34% to 60% of the addressed issues
in the traditionally releasing systems and 98% in the
rapidly releasing system were delayed by one or more
releases. Furthermore, we find that many delayed issues
were addressed well before releases from which they were
omitted from.

RQ2: Can we accurately predict when an addressed issue
will be integrated?
Motivation. Several studies proposed approaches to inves-
tigate the time required to address an issue [2–7]. These
studies could help to estimate when an issue will be addressed.
However, we find that integration delays when an addressed
issue will be delivered to users. Even though several issues are
addressed well before the next release date, their integration is
delayed. For users and contributors, however, knowing the re-
lease in which an addressed issue will be integrated is of great

D
ay

s
be

tw
ee

n
re

le
as

es

An Empirical Study of Delays in the Integration of
Addressed Issues
D. A. da Costa et al.

[ICSME 2014]

14

Release cycles can even
vary within systems!

1.0
2.0
2.5
3.0
3.5
4.0
5.0
6.0
7.0
8.0
9.0

10.0
0 200 400 600 800

Fi
re

fo
x

re
le

as
e

Days since prior release

The rapid release cycle of modern
software systems

15

The rapid release cycle of modern
software systems

Often release several times
in one day!

15

1. All releases are equal

Harmful assumptions about release pipelines
that can impact predictive modelling

1. All releases are equal
2. All branches are equal

Harmful assumptions about release pipelines
that can impact predictive modelling

Handling the intricacies of a multi-
branch release pipeline

Development

Feature development
Defect repairing
Merge

Commit types

Stable

17

Handling the intricacies of a multi-
branch release pipeline

Development

Feature development
Defect repairing
Merge

Commit types

Stable

17

Handling the intricacies of a multi-
branch release pipeline

Development

Feature development
Defect repairing
Merge

Commit types

Stable

17

Handling the intricacies of a multi-
branch release pipeline

Development

Feature development
Defect repairing
Merge

Commit types

Stable

17

Handling the intricacies of a multi-
branch release pipeline

v1.0

Development

Feature development
Defect repairing
Merge

Commit types

Stable

17

Handling the intricacies of a multi-
branch release pipeline

v1.0

Development

Feature development
Defect repairing
Merge

Commit types

Stable

17

Handling the intricacies of a multi-
branch release pipeline

v1.0

Development

Feature development
Defect repairing
Merge

Commit types

Stable

17

Handling the intricacies of a multi-
branch release pipeline

v1.0

Development

Feature development
Defect repairing
Merge

Commit types

Stable

17

1. All releases are equal
2. All branches are equal

Harmful assumptions about release pipelines
that can impact predictive modelling

1. All releases are equal
2. All branches are equal

3. All files are equal

Harmful assumptions about release pipelines
that can impact predictive modelling

19

Many files are conditionally
included in deliverablesTable 2: Results of RQ1: CBDGs provide very high recall and precision.

Package Files False False Recall Precision
All Source files Excluded Included % Included Negatives Positives

Aterm 133 117 60 57 49% 1 0 98% 100%
Opkg 132 106 9 97 92% 1 3 99% 97%
Bash 1,111 1,086 806 280 26% 0 34 100% 88%
CUPS 1,398 1,079 213 866 80% 12 0 99% 100%
Xalan 1,334 1,334 379 955 72% 0 4 100% 99%
OpenSSL 2,105 2,027 1,180 847 42% 0 5 100% 99%
FFmpeg 2,267 2,239 986 1,253 56% 0 7 100% 99%

We use the build output and status to establish the ground
truth for our evaluation by executing a clean build after
removing each source file in the studied systems. We refer
to these builds as the removed builds. If the removed build
for a source file X executes without error, then the removal
of X had no impact on the build output, and X is recorded
as excluded from the build process. On the other hand, if the
removed build for file X has an error, then X had an impact
on the build output, and we mark X as being included in
the build process.

We measure the accuracy of a CBDG by comparing the
ground truth for each file to the files that appear in the
CBDG for each studied system. We use four metrics to
measure the accuracy of a CBDG:

False negatives – Files that are excluded from the CBDG,
but actually have an impact on the build process.

False positives – Files that are included in the CBDG, but
do not have an impact on the build process.

Recall – The proportion of the files that have an impact on
the build process that are included in the CBDG.

Precision – The proportion of false positives in the CBDG.

Results. CBDGs contain very few false negatives,
and hence have very high recall. Table 2 shows that we
only observe a total of 14 false negative in the seven studied
systems. We manually investigate the root cause of these
false negatives by inspecting the build specifications.

We find that files often appear as false negatives in the
CBDG due to errors in the build specifications. For example,
the build specifications of Aterm, Opkg, and CUPS check for
the existence of these files, yet they were never read (or
written) by any of the processes spawned during the build.
On the other hand, the number of false positives

was slightly larger. We again perform an inspection of
the build specifications in order to determine the root cause
for these false positives. The inspection revealed that these
false positive files are used only if they were present. If the
false positive files were not present, no error was issued, but
the output of the build is changed. For example, in Bash,
the number of false positives was higher than the other pack-
ages because Bash contains various localization files (i.e., .po
files) that translate the Bash deliverables into many di↵erent
languages. The build system of Bash processes any .po files
that are present.

CBDGs can accurately determine whether a source file
is included in or excluded from the build process with a
recall of 98%-100% and precision of 88%-100%.

Discussion. Although beyond the scope of this paper, the
results of our false negative analysis suggest that CBDGs
may also be useful for detecting errors in build specifica-
tions. If we use the CBDG as the ground truth to evalu-
ate the removed build results (the inverse of the experiment
performed above), we could detect errors in the build speci-
fications of studied systems. We expand upon this and other
uses of the CBDG in Section 8.

(RQ2) Does our approach reveal license mis-
match issues?
Approach. We aim to detect inconsistencies between the
license of the client deliverables and the external components
that are used to create it. A license of a deliverable is said
to be inconsistent with an external component that is used
to create it if the license of any file in an external component
contains terms that cannot be satisfied by the terms of the
license of the deliverable.
In recent work, we analyzed the Fedora 12 distribution

to understand how license auditing is performed [11]. One
of the challenges we faced was determining which files are
used to create a deliverable. This is particularly important
in systems that include files under di↵erent licenses that do
not allow for their composition. For example, one deliverable
that contains a file released under the BSD-4 license and
another file released under the GPLv2 license. This type of
inconsistency can be detected using the CBDG. Any file that
is a predecessor to a deliverable in the CBDG must have a
license that is compatible with the license of the deliverable.
Specifically, our license compliance assessment is performed

using the following five steps:

1. Extract the licenses of each file in each of the studied
systems using Ninka.

2. Identify the declared license of the client deliverables
by examining product documentation (i.e. the license
of the deliverables as stated by the authors of the soft-
ware).

3. Trace the build of each system and generate its CBDG.

4. Annotate the CBDG file nodes with license informa-
tion.

5. Traverse the CBDG to identify the sources that are
used to create the client deliverables.

6. Mark client deliverables that contain sources that are
released under incompatible licenses as inconsistencies.

In our prior study [11], we identified three systems that
appear to contain license incompatibilities.

Table 2: Results of RQ1: CBDGs provide very high recall and precision.

Package Files False False Recall Precision
All Source files Excluded Included % Included Negatives Positives

Aterm 133 117 60 57 49% 1 0 98% 100%
Opkg 132 106 9 97 92% 1 3 99% 97%
Bash 1,111 1,086 806 280 26% 0 34 100% 88%
CUPS 1,398 1,079 213 866 80% 12 0 99% 100%
Xalan 1,334 1,334 379 955 72% 0 4 100% 99%
OpenSSL 2,105 2,027 1,180 847 42% 0 5 100% 99%
FFmpeg 2,267 2,239 986 1,253 56% 0 7 100% 99%

We use the build output and status to establish the ground
truth for our evaluation by executing a clean build after
removing each source file in the studied systems. We refer
to these builds as the removed builds. If the removed build
for a source file X executes without error, then the removal
of X had no impact on the build output, and X is recorded
as excluded from the build process. On the other hand, if the
removed build for file X has an error, then X had an impact
on the build output, and we mark X as being included in
the build process.

We measure the accuracy of a CBDG by comparing the
ground truth for each file to the files that appear in the
CBDG for each studied system. We use four metrics to
measure the accuracy of a CBDG:

False negatives – Files that are excluded from the CBDG,
but actually have an impact on the build process.

False positives – Files that are included in the CBDG, but
do not have an impact on the build process.

Recall – The proportion of the files that have an impact on
the build process that are included in the CBDG.

Precision – The proportion of false positives in the CBDG.

Results. CBDGs contain very few false negatives,
and hence have very high recall. Table 2 shows that we
only observe a total of 14 false negative in the seven studied
systems. We manually investigate the root cause of these
false negatives by inspecting the build specifications.

We find that files often appear as false negatives in the
CBDG due to errors in the build specifications. For example,
the build specifications of Aterm, Opkg, and CUPS check for
the existence of these files, yet they were never read (or
written) by any of the processes spawned during the build.
On the other hand, the number of false positives

was slightly larger. We again perform an inspection of
the build specifications in order to determine the root cause
for these false positives. The inspection revealed that these
false positive files are used only if they were present. If the
false positive files were not present, no error was issued, but
the output of the build is changed. For example, in Bash,
the number of false positives was higher than the other pack-
ages because Bash contains various localization files (i.e., .po
files) that translate the Bash deliverables into many di↵erent
languages. The build system of Bash processes any .po files
that are present.

CBDGs can accurately determine whether a source file
is included in or excluded from the build process with a
recall of 98%-100% and precision of 88%-100%.

Discussion. Although beyond the scope of this paper, the
results of our false negative analysis suggest that CBDGs
may also be useful for detecting errors in build specifica-
tions. If we use the CBDG as the ground truth to evalu-
ate the removed build results (the inverse of the experiment
performed above), we could detect errors in the build speci-
fications of studied systems. We expand upon this and other
uses of the CBDG in Section 8.

(RQ2) Does our approach reveal license mis-
match issues?
Approach. We aim to detect inconsistencies between the
license of the client deliverables and the external components
that are used to create it. A license of a deliverable is said
to be inconsistent with an external component that is used
to create it if the license of any file in an external component
contains terms that cannot be satisfied by the terms of the
license of the deliverable.
In recent work, we analyzed the Fedora 12 distribution

to understand how license auditing is performed [11]. One
of the challenges we faced was determining which files are
used to create a deliverable. This is particularly important
in systems that include files under di↵erent licenses that do
not allow for their composition. For example, one deliverable
that contains a file released under the BSD-4 license and
another file released under the GPLv2 license. This type of
inconsistency can be detected using the CBDG. Any file that
is a predecessor to a deliverable in the CBDG must have a
license that is compatible with the license of the deliverable.
Specifically, our license compliance assessment is performed

using the following five steps:

1. Extract the licenses of each file in each of the studied
systems using Ninka.

2. Identify the declared license of the client deliverables
by examining product documentation (i.e. the license
of the deliverables as stated by the authors of the soft-
ware).

3. Trace the build of each system and generate its CBDG.

4. Annotate the CBDG file nodes with license informa-
tion.

5. Traverse the CBDG to identify the sources that are
used to create the client deliverables.

6. Mark client deliverables that contain sources that are
released under incompatible licenses as inconsistencies.

In our prior study [11], we identified three systems that
appear to contain license incompatibilities.

Linux x64

Tracing Software Build Processes to
Uncover License Compliance

Inconsistencies
S. van der Berg et al.

[ASE 2014]

19

Many files are conditionally
included in deliverablesTable 2: Results of RQ1: CBDGs provide very high recall and precision.

Package Files False False Recall Precision
All Source files Excluded Included % Included Negatives Positives

Aterm 133 117 60 57 49% 1 0 98% 100%
Opkg 132 106 9 97 92% 1 3 99% 97%
Bash 1,111 1,086 806 280 26% 0 34 100% 88%
CUPS 1,398 1,079 213 866 80% 12 0 99% 100%
Xalan 1,334 1,334 379 955 72% 0 4 100% 99%
OpenSSL 2,105 2,027 1,180 847 42% 0 5 100% 99%
FFmpeg 2,267 2,239 986 1,253 56% 0 7 100% 99%

We use the build output and status to establish the ground
truth for our evaluation by executing a clean build after
removing each source file in the studied systems. We refer
to these builds as the removed builds. If the removed build
for a source file X executes without error, then the removal
of X had no impact on the build output, and X is recorded
as excluded from the build process. On the other hand, if the
removed build for file X has an error, then X had an impact
on the build output, and we mark X as being included in
the build process.

We measure the accuracy of a CBDG by comparing the
ground truth for each file to the files that appear in the
CBDG for each studied system. We use four metrics to
measure the accuracy of a CBDG:

False negatives – Files that are excluded from the CBDG,
but actually have an impact on the build process.

False positives – Files that are included in the CBDG, but
do not have an impact on the build process.

Recall – The proportion of the files that have an impact on
the build process that are included in the CBDG.

Precision – The proportion of false positives in the CBDG.

Results. CBDGs contain very few false negatives,
and hence have very high recall. Table 2 shows that we
only observe a total of 14 false negative in the seven studied
systems. We manually investigate the root cause of these
false negatives by inspecting the build specifications.

We find that files often appear as false negatives in the
CBDG due to errors in the build specifications. For example,
the build specifications of Aterm, Opkg, and CUPS check for
the existence of these files, yet they were never read (or
written) by any of the processes spawned during the build.
On the other hand, the number of false positives

was slightly larger. We again perform an inspection of
the build specifications in order to determine the root cause
for these false positives. The inspection revealed that these
false positive files are used only if they were present. If the
false positive files were not present, no error was issued, but
the output of the build is changed. For example, in Bash,
the number of false positives was higher than the other pack-
ages because Bash contains various localization files (i.e., .po
files) that translate the Bash deliverables into many di↵erent
languages. The build system of Bash processes any .po files
that are present.

CBDGs can accurately determine whether a source file
is included in or excluded from the build process with a
recall of 98%-100% and precision of 88%-100%.

Discussion. Although beyond the scope of this paper, the
results of our false negative analysis suggest that CBDGs
may also be useful for detecting errors in build specifica-
tions. If we use the CBDG as the ground truth to evalu-
ate the removed build results (the inverse of the experiment
performed above), we could detect errors in the build speci-
fications of studied systems. We expand upon this and other
uses of the CBDG in Section 8.

(RQ2) Does our approach reveal license mis-
match issues?
Approach. We aim to detect inconsistencies between the
license of the client deliverables and the external components
that are used to create it. A license of a deliverable is said
to be inconsistent with an external component that is used
to create it if the license of any file in an external component
contains terms that cannot be satisfied by the terms of the
license of the deliverable.
In recent work, we analyzed the Fedora 12 distribution

to understand how license auditing is performed [11]. One
of the challenges we faced was determining which files are
used to create a deliverable. This is particularly important
in systems that include files under di↵erent licenses that do
not allow for their composition. For example, one deliverable
that contains a file released under the BSD-4 license and
another file released under the GPLv2 license. This type of
inconsistency can be detected using the CBDG. Any file that
is a predecessor to a deliverable in the CBDG must have a
license that is compatible with the license of the deliverable.
Specifically, our license compliance assessment is performed

using the following five steps:

1. Extract the licenses of each file in each of the studied
systems using Ninka.

2. Identify the declared license of the client deliverables
by examining product documentation (i.e. the license
of the deliverables as stated by the authors of the soft-
ware).

3. Trace the build of each system and generate its CBDG.

4. Annotate the CBDG file nodes with license informa-
tion.

5. Traverse the CBDG to identify the sources that are
used to create the client deliverables.

6. Mark client deliverables that contain sources that are
released under incompatible licenses as inconsistencies.

In our prior study [11], we identified three systems that
appear to contain license incompatibilities.

Table 2: Results of RQ1: CBDGs provide very high recall and precision.

Package Files False False Recall Precision
All Source files Excluded Included % Included Negatives Positives

Aterm 133 117 60 57 49% 1 0 98% 100%
Opkg 132 106 9 97 92% 1 3 99% 97%
Bash 1,111 1,086 806 280 26% 0 34 100% 88%
CUPS 1,398 1,079 213 866 80% 12 0 99% 100%
Xalan 1,334 1,334 379 955 72% 0 4 100% 99%
OpenSSL 2,105 2,027 1,180 847 42% 0 5 100% 99%
FFmpeg 2,267 2,239 986 1,253 56% 0 7 100% 99%

We use the build output and status to establish the ground
truth for our evaluation by executing a clean build after
removing each source file in the studied systems. We refer
to these builds as the removed builds. If the removed build
for a source file X executes without error, then the removal
of X had no impact on the build output, and X is recorded
as excluded from the build process. On the other hand, if the
removed build for file X has an error, then X had an impact
on the build output, and we mark X as being included in
the build process.

We measure the accuracy of a CBDG by comparing the
ground truth for each file to the files that appear in the
CBDG for each studied system. We use four metrics to
measure the accuracy of a CBDG:

False negatives – Files that are excluded from the CBDG,
but actually have an impact on the build process.

False positives – Files that are included in the CBDG, but
do not have an impact on the build process.

Recall – The proportion of the files that have an impact on
the build process that are included in the CBDG.

Precision – The proportion of false positives in the CBDG.

Results. CBDGs contain very few false negatives,
and hence have very high recall. Table 2 shows that we
only observe a total of 14 false negative in the seven studied
systems. We manually investigate the root cause of these
false negatives by inspecting the build specifications.

We find that files often appear as false negatives in the
CBDG due to errors in the build specifications. For example,
the build specifications of Aterm, Opkg, and CUPS check for
the existence of these files, yet they were never read (or
written) by any of the processes spawned during the build.
On the other hand, the number of false positives

was slightly larger. We again perform an inspection of
the build specifications in order to determine the root cause
for these false positives. The inspection revealed that these
false positive files are used only if they were present. If the
false positive files were not present, no error was issued, but
the output of the build is changed. For example, in Bash,
the number of false positives was higher than the other pack-
ages because Bash contains various localization files (i.e., .po
files) that translate the Bash deliverables into many di↵erent
languages. The build system of Bash processes any .po files
that are present.

CBDGs can accurately determine whether a source file
is included in or excluded from the build process with a
recall of 98%-100% and precision of 88%-100%.

Discussion. Although beyond the scope of this paper, the
results of our false negative analysis suggest that CBDGs
may also be useful for detecting errors in build specifica-
tions. If we use the CBDG as the ground truth to evalu-
ate the removed build results (the inverse of the experiment
performed above), we could detect errors in the build speci-
fications of studied systems. We expand upon this and other
uses of the CBDG in Section 8.

(RQ2) Does our approach reveal license mis-
match issues?
Approach. We aim to detect inconsistencies between the
license of the client deliverables and the external components
that are used to create it. A license of a deliverable is said
to be inconsistent with an external component that is used
to create it if the license of any file in an external component
contains terms that cannot be satisfied by the terms of the
license of the deliverable.
In recent work, we analyzed the Fedora 12 distribution

to understand how license auditing is performed [11]. One
of the challenges we faced was determining which files are
used to create a deliverable. This is particularly important
in systems that include files under di↵erent licenses that do
not allow for their composition. For example, one deliverable
that contains a file released under the BSD-4 license and
another file released under the GPLv2 license. This type of
inconsistency can be detected using the CBDG. Any file that
is a predecessor to a deliverable in the CBDG must have a
license that is compatible with the license of the deliverable.
Specifically, our license compliance assessment is performed

using the following five steps:

1. Extract the licenses of each file in each of the studied
systems using Ninka.

2. Identify the declared license of the client deliverables
by examining product documentation (i.e. the license
of the deliverables as stated by the authors of the soft-
ware).

3. Trace the build of each system and generate its CBDG.

4. Annotate the CBDG file nodes with license informa-
tion.

5. Traverse the CBDG to identify the sources that are
used to create the client deliverables.

6. Mark client deliverables that contain sources that are
released under incompatible licenses as inconsistencies.

In our prior study [11], we identified three systems that
appear to contain license incompatibilities.

Linux x64

Fixes in these files may have a
smaller impact (if any) on customers

Tracing Software Build Processes to
Uncover License Compliance

Inconsistencies
S. van der Berg et al.

[ASE 2014]

20

Understanding conditionally
included files using the build system

Design recovery and maintenance
of build systems
B. Adams et al.

[ICSM 2007]

20

Understanding conditionally
included files using the build system

Design recovery and maintenance
of build systems
B. Adams et al.

[ICSM 2007]

1. All releases are equal,
2. All branches are equal,

Harmful assumptions about release pipelines
that can impact predictive modelling

3. All files are equal

but some are more equal than others

1. All releases are equal,
2. All branches are equal,

Harmful assumptions about release pipelines
that can impact predictive modelling

3. All files are equal

My nightmare

Amassing and indexing a large
sample of version control systems

Audris Mockus
[MSR 2009]

Boa: a language and infrastructure for analyzing
ultra-large-scale software repositories

R. Dyer et al.
[ICSE 2013]

The GHTorent Dataset and Tool
Suite

G. Gousios
[MSR 2013]

My nightmare

Amassing and indexing a large
sample of version control systems

Audris Mockus
[MSR 2009]

Boa: a language and infrastructure for analyzing
ultra-large-scale software repositories

R. Dyer et al.
[ICSE 2013]

The GHTorent Dataset and Tool
Suite

G. Gousios
[MSR 2013]

We collect all of the data in the world,
but it’s meaningless without context!

23

Risk
assessment

Integration

23

Risk
assessment

Integration

Build
optimization

Build

23

Risk
assessment

Integration

Build
optimization

Build

Smarter deployment
tooling

Deployment

23

Risk
assessment

Integration

Build
optimization

Build

Smarter deployment
tooling

Deployment

23

I have openings for Master's
and PhD students!

