Improved Defect Prediction using Code Cleaning

DAVID BOWES[§], STEVE COUNSELL^{*}, TRACY HALL^{*}, THOMAS SHIPPEY^{*}

*BRUNEL UNIVERSITY LONDON §UNIVERSITY OF HERTFORDSHIRE

THIS WORK WAS PARTLY FUNDED BY A GRANT FROM THE UK'S ENGINEERING AND PHYSICAL SCIENCES RESEARCH COUNCIL UNDER GRANT NUMBER: EP/L011751/1

- Introduction
- Code Cleaning
- Research Questions
- Methods
- Results
- Conclusions

- Hundreds of published defect prediction models
- Generic machine learning approaches used
- Defect prediction is a bit 'special'
- Code cleaning is our new simple code-specific technique...

Code Cleaning

- Data cleaning is a good practice in defect prediction
- Code cleaning goes further
 - DP models are trained on fix data
 - Fix data is not clean for many reasons
 - Noisy fix data impairs the performance of DP models
- Code cleaning tries to:
 - 1. Identify *methods* most likely to contain true fix data
 - 2. Clean out methods most likely not to contain noisy fixes
 - 3. Establish a more reliable set of cleaned methods for DP
- A taxonomy of method types...

A Taxonomy of Method Types

Method Type	Description
Abstract	A method that is labelled as abstract and is declared without implementation.
Anonymous	A method within an anonymous class.
Constructor	This is a constructor that holds executable code.
Empty Constructor	A constructor that holds no executable code.
Empty Method	A method that contains no executable code.
Getter	A method that returns a class field.
Interface	A method that is located within an Interface class and is declared without implemen-
	tation.
Normal	A method which contains executable code. These methods can return a variable or
	be void. These methods are ones that contain the logic code that make the system
	operate.
Setter	A method that sets a class field.
Test	A unit test method.

Cleaned Code Used in Training and Testing

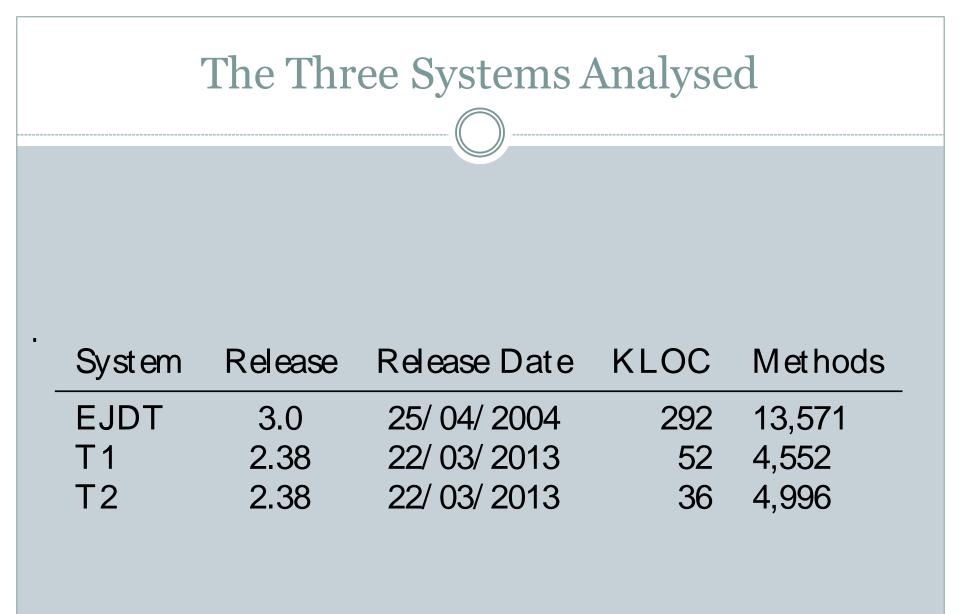
Method Type	Non Cleaned	Cleaned
Abstract	\checkmark	×
Anonymous	\checkmark	×
Constructor	\checkmark	×
Empty Constructor	\checkmark	×
Empty Method	\checkmark	×
Getter	\checkmark	×
Interface	\checkmark	×
Normal	\checkmark	\checkmark
Setter	\checkmark	×
Test	×	×

RQ1: Does code cleaning have a significant effect on the performance of a basic defect prediction model?

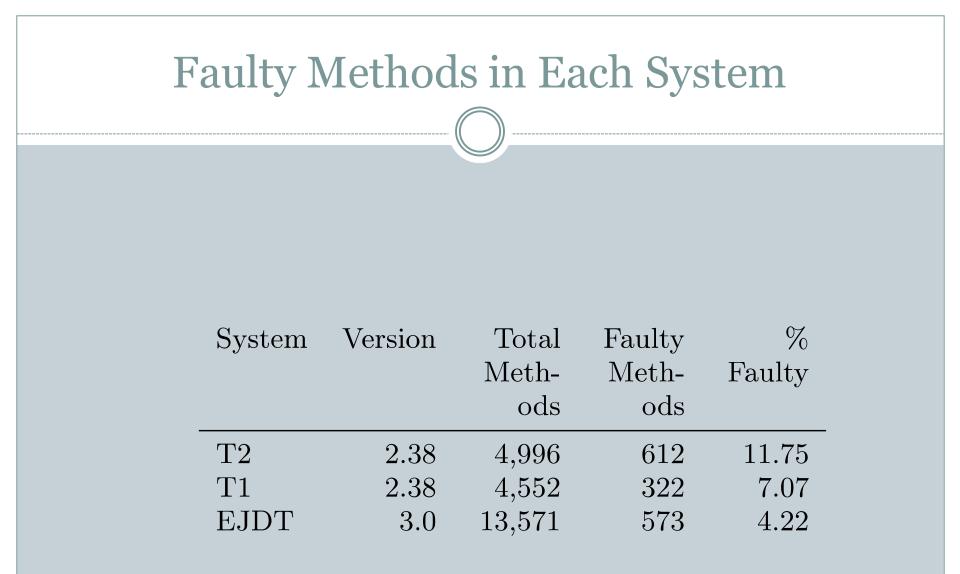
RQ2 Is the improvement of our code cleaning due to the reduction of the data imbalance?

Methods

1. Three systems were analysed...



2. We used the SZZ algorithm to collect fix data...



3. We created the IdentifierELFF tool to label each method according to our taxonomy...

Method Types in each System

	EJI	TC	Г	1	Г	2
Method	No.	%	No.	%	No.	%
Type						
Normal	$9,\!478$	69.84	2,765	60.74	$2,\!096$	41.95
Getter	905	6.67	448	9.84	959	19.2
Constructor	848	6.25	532	11.69	616	12.33
Interface	1131	8.33	520	11.42	185	3.7
Anonymous	331	2.44	113	2.48	751	15.03
Empty	569	4.19	78	1.71	4	0.08
Method						
Setter	125	0.92	79	1.74	239	4.78
Abstract	141	1.04	8	0.18	35	0.7
Empty	43	0.32	9	0.2	111	2.22
Constructor						
Total	$13,\!571$		4,552		4,996	

Methods

4. We created two different datasets containing:

- **1**. All methods
- **2.** Cleaned methods...

Impact on Faults when Cleaning Applied

System	Version	Total	Faulty	%
		Meth-	Meth-	Faulty
		ods	ods	
Τ2	2.38	2,096	441	21.04
T1	2.38	2,765	267	9.66
EJDT	3.0	$9,\!478$	522	5.51

Methods

5. We built basic DP models using:

- Standard source code analysis metrics collected using JHawk
- o Naive Bayes, J48 and Random Forest
- Ten stratified folds of the data with each experiment repeated 100 times.

6. We compared our results to generic data balancing:

- SMOTE and random under-sampling
- Manual under-sampling

RQ1 Does code cleaning have a significant effect on the performance of a basic defect prediction model?

The Impact of Code Cleaning on Prediction

 \bigcirc

Model	System	Cleaned	Precision	Recall	F-Measure	MCC
	T2	No	0.57	0.31	0.40	0.37
		Yes	0.63	0.44	0.52	0.43
τλο	- 	- No	0.18	$- \bar{0}.\bar{6}8^-$	0.28	$-0.3\overline{2}$
J48	11	Yes	0.27	0.61	0.36	0.35
	EJDT	- No	0.17	$-\bar{0}.\bar{3}8^{-}$	$0.2\overline{4}$	$-0.2\overline{3}$
	LJD I	Yes	0.24	0.42	0.30	0.29
	T2	No	0.75	0.32	0.45	0.46
	12	Yes	0.78	0.42	0.55	0.50
Random Forest	T1	- <u>N</u> o	0.26	$-\bar{0}.\bar{6}5^{-}$	0.37	0.38
Random Forest		Yes	0.35	0.67	0.45	0.44
	EJDT	- <u>N</u> o	0.13	$-\bar{0}.\bar{5}8^{-}$	$0.2\overline{2}$	0.26
		Yes	0.17	0.61	0.27	0.31
	Τ2	No	0.25	0.21	0.23	0.13
		Yes	0.35	0.19	0.25	0.13
Now David	 T1	- No	0.15	$-\bar{0}.\bar{1}2^{-}$	0.13	0.06 -
Naïve Bayes		Yes	0.13	0.16	0.14	0.05
	EJDT	- No	0.36	$- \bar{0}.\bar{2}7^{-}$	0.31	-0.28
		Yes	0.35	0.32	0.34	0.30

Effect Sizes of MCC using Code Cleaning

Classifier	System	P Value	Effect Size
	T2	0.00	0.15
J48	T1	0.00	0.35
	EJDT	0.00	0.78
	Τ2	0.00	0.72
Random Forest	T1	0.00	0.58
	EJDT	0.00	0.59
	T2	0.69	0.02
Naïve Bayes	T1	0.05	0.09
	EJDT	0.00	0.32

RQ2 Is the improvement of our code cleaning due to the reduction of the data imbalance?

Applying SMOTE v Cleaning

Classifier	System	Recall	Precision	F-measure	MCC
	T2	0.06	0.07	0.06	0.02
J48	T1	-0.04	0.13	-0.01	0.01
	EJDT	-0.01	0.09	0.02	0.03
Random Forest	Τ2	0.07	0.09	0.08	0.05
	T1	0.03	0.04	0.03	0.02
	EJDT	-0.02	0.06	-0.02	-0.01
Naïve Bayes	T2	-0.04	0.12	0.01	-0.01
	T1	-0.04	0.04	0.00	-0.01
	EJDT	-0.04	0.06	0.02	0.01

Applying Random Undersampling v Cleaning

 \bigcirc

Classifier	System	Recall	Precision	F-measure	MCC
	T2	0.10	0.00	0.08	0.01
J48	T1	-0.14	-0.01	-0.12	-0.05
	EJDT	0.01	0.02	0.02	0.02
D 1	T2	0.11	0.02	0.10	0.05
Random	T1	-0.04	-0.05	-0.05	-0.01
Forest	EJDT	-0.00	0.01	-0.00	0.00
Naïve Bayes	T2	-0.01	0.11	0.03	-0.00
	T1	-0.04	-0.16	-0.08	-0.04
	EJDT	-0.01	-0.01	-0.01	-0.01

Applying Manual Undersampling v Cleaning

Classifier	System	Recall	Precision	F-measure	MCC
	T2	0.03	0.01	0.03	0.03
J48	T1	-0.01	0.05	-0.00	0.01
	EJDT	0.01	0.02	0.02	0.02
Random Forest	Τ2	0.01	0.06	0.03	0.04
	T1	0.03	-0.05	0.02	-0.00
	EJDT	0.01	0.03	0.02	0.02
Naïve	T2	-0.02	-0.02	-0.02	-0.02
	T1	-0.02	-0.01	-0.02	-0.01
Bayes	EJDT	-0.03	-0.01	-0.02	-0.02

Conclusion

• Code cleaning can:

- have a significant impact with large effect sizes at method level on DP performance
- o perform better than generic data balancing.
- Code cleaning a potentially important new defectspecific technique.
- Lots of potential uses of our approach.
- Much more work to do investigating the possibilities of code cleaning.

David Bowes: <u>d.h.bowes@herts.ac.uk</u>

Steve Counsell: steve.counsell@brunel.ac.uk

Tracy Hall: tracy.hall@brunel.ac.uk

Thomas Shippey: thomas.shippey@brunel.ac.uk