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Introduction

 Hundreds of published defect prediction models

 Generic machine learning approaches used

 Defect prediction is a bit ‘special’

 Code cleaning is our new simple code-specific 

technique…



Code Cleaning

 Data cleaning is a good practice in defect prediction

 Code cleaning goes further
 DP models are trained on fix data

 Fix data is not clean for many reasons

 Noisy fix data impairs the performance of DP models

 Code cleaning tries to:
1. Identify methodsmost likely to contain true fix data

2. Clean out methods most likely not to contain noisy fixes

3. Establish a more reliable set of cleaned methods for DP

 A taxonomy of method types…



A Taxonomy of Method Types



Cleaned Code Used in Training and Testing



Research Questions

RQ1: Does code cleaning have a significant effect on 
the performance of a basic defect prediction model?

RQ2 Is the improvement of our code cleaning due to 
the reduction of the data imbalance?



Methods

1. Three systems were analysed…



The Three Systems Analysed

F igur e 1: A diagr am showing how defect pr ed ict ion

can be car r ied out .

software systems. A study by Hall et al. [8] has ident ified
over 200 papers and the models/ met rics used to carry out

defect predict ion.

2.2 Class Imbalance Problem
In data mining and machine learning, the class imbalance

problem arises when the minority class is under-represented.

This under-representat ion or imbalance between the minor-
ity and the majority class can hinder the performance of
some of the classifiers. Japkowicz et al. [11], Weiss et al.

[33], Weiss [32] and Chawla et al. [5] have invest igated prob-
lems with learning from imbalanced data in more detail, one

of which is that classifiers aim to reduce the number of mis-
classificat ions while maintaining a generalisable predict ion

model. When the dataset is highly imbalanced the total
cost of misclassifying a very small number of items (the mi-

nority class) is low and a simple model can be built which
predicts just the majority class. When dealing with a binary

class problem, this imbalance can be mit igated by using data
sampling. Data sampling techniques include either under-

sampling the majority class (e.g. random under-sampling),
over-sampling the minority class or a combinat ion of the

two. More intelligent techniques include synthet ic minority
over-sampling technique (SMOTE) [4], Borderline SMOTE

[9] and Wilson’s Edit ing (WE) [35]. In software defect pre-
dict ion, there is normally a high number of datasets which

su↵er from the data imbalance problem. This is because
there will be less defect ive modules (the minority class) com-

pared to the non-defect ive code (the majority class). Sam-
pling techniques have not been widely used within defect
predict ion - studies have specifically invest igated the im-

pact of defect data balance [12, 26, 24, 31, 29]. Khoshgof-
taar et al. [12] invest igate the impact on imbalanced data

on the at t ribute select ion process. They show that the at -
t ribute select ion performs bet ter when the data is bet ter

balanced. However the defect predict ion models perform
the same whether the t raining data was created using bal-

anced or unbalanced data. Sei↵ert et al. [26] invest igated
five di↵erent data sampling techniques, concluding that all

Table 1: T he t hr ee syst em s analysed in t h is paper .
T he T 2 and T 1 r elease number is t he r ev ision num -

ber of t he snapshot befor e t he syst em s wer e put int o
pr oduct ion.

System Release Release Date KLOC Methods

EJDT 3.0 25/ 04/ 2004 292 13,571
T1 2.38 22/ 03/ 2013 52 4,552

T2 2.38 22/ 03/ 2013 36 4,996

the models built with the sampled datasets out -performed

those unsampled datasets. Defect predict ion models built
with data sampling techniques have been reported to per-

form bet ter by Rodriguez et al. [24], Wang and Yao [31] and
Tan et al. [29].

3. METHODOLOGY

3.1 Systems
To perform our study we used three di↵erent Java sys-

tems. One of the systems is open-source, Eclipse.JDT .core
(EJDT ), and two are from a commercial telecommunica-

t ions company (T1 and T25). EJDT was chosen because
it has been extensively used in defect predict ion studies [8].

Although we collected defect data ourselves, we chose the
Eclipse.JDT .core (EJDT) 3.0 release because the defects for

this system had previously been mapped between the bug
t racking system and the version cont rol system [28, 3, 13].

Using a system which had been analysed for defects pre-
viously allowed us to validate our own technique for locat -
ing defect ive code. We collected data from two commercial

telecommunicat ions systems. The code, together with raw
bug t racking and version cont rol data was provided to us

by a large internat ional telecommunicat ions company based
in the UK. The contextual informat ion for each system can

be found in Table 1. We note that the T2 and T1 release
number is the revision number of the snapshot before the

systems were put into product ion.

3.2 Code Cleaning
Wedefinecodecleaning as the removal of part icular method

types from the independent variable datasets used in defect
predict ion models. The methods removed are those least

likely to contain faults as they contain no logical code (e.g.
class field get ters and set ters). This means that they may
havebeen changed due to a fault , but werenot the root cause

of a fault . We removed these methods (since they could be
a source of noise) to determine if they were impact ing on

defect predict ion models. To answer our research quest ions,
we therefore created two di↵erent datasets, one that con-

tained all methods in a system (excluding test methods)
and a cleaned set of methods.

To ident ify which methods to exclude, wecreated a method
taxonomy in consultat ion with developers from our collab-

orator telecommunicat ions company. This taxonomy helps
to define the di↵erent method types. Table 2 shows the

taxonomy of method types.
Table 3 shows which method types (from our taxonomy

in Table 2) are included in the non-cleaned and cleaned

5The actual names and purpose of each of the systems has
not been published for commercial confident ially reasons.



Methods 

2. We used the SZZ algorithm to collect fix data…



Faulty Methods in Each System



Methods 

3. We created the IdentifierELFF tool to label each 
method according to our taxonomy…



Method Types in each System



Methods 

4. We created two different datasets containing:
1. All methods

2. Cleaned methods…



Impact on Faults when Cleaning Applied



Methods 

5. We built basic DP models using:
 Standard source code analysis metrics collected using JHawk

 Naıve Bayes, J48 and Random Forest

 Ten stratified folds of the data with each experiment repeated 
100 times.

6. We compared our results to generic data balancing:
 SMOTE and random under-sampling

 Manual under-sampling



Results

RQ1 Does code cleaning have a significant effect on the 
performance of a basic defect prediction model?



The Impact of Code Cleaning on Prediction



Effect Sizes of MCC using Code Cleaning



Results 

RQ2 Is the improvement of our code cleaning due to 
the reduction of the data imbalance?



Applying SMOTE v Cleaning



Applying Random Undersampling v Cleaning



Applying Manual Undersampling v Cleaning



Conclusion

 Code cleaning can:
 have a significant impact with large effect sizes at method level 

on DP performance

 perform better than generic data balancing.

 Code cleaning a potentially important new defect-
specific technique.

 Lots of potential uses of our approach.

 Much more work to do investigating the possibilities 
of code cleaning.



Any Questions?

David Bowes: d.h.bowes@herts.ac.uk

Steve Counsell: steve.counsell@brunel.ac.uk

Tracy Hall: tracy.hall@brunel.ac.uk

Thomas Shippey: thomas.shippey@brunel.ac.uk


