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ORP deals with how to 
assign developers to 
the tasks to be 
performed. 

Operational Release 
Planning (ORP)

Strategic Release 
Planning (SRP) 

SRP is concerned with 
how to select and 
assign requirements to 
multiple subsequent 
releases.
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Requirements

Cost (C)

Value (V)

Time to market (T)

Risk (R)

Frequency of use (F)
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Dependence (D)

And

Or
Precedence
Value-related
Cost-related



Models

Releases

Release 
Number (K)

Release 
Importance (I)

Release 1

Release 2

Release 3



131 2 2 0 3 1 0 3

A set of requirements

RQ1 RQ2 RQn. . . . . . . . . . . . . . . . . . . 

Release1Release 2 Not 
included

Data Representation
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VALUE Ii,k
i =1

N
Maximize f ( x )   = k

i,k
i =1

N
Minimize f ( x )   = COST

FREQUENCY, 
 IMPORTANCE, …

IMPACT, 
RISK, …

Scenario-based 
Fitness Functions
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10 Hyper-Heuristic Operators

1 Random 

2 Swap 

3 Delete_Add 

4 Delete_Add_Best 

5 Delete_Worst_Add 

6 Delete_Worst_Add_Best 

7 Delay_Ahead 

8 Delay_Ahead_Best 

9 Delay_Worst_Ahead 

10 Delay_Worst_Ahead_Best

Ruin & Recreate

Delete_Add_Best



Operator: Delete_Add_Best

12 031 2 0 3 1 3

delete a requirement from the release with 
uniform probability

2

12 031 0 0 3 1 3



Operator: Delete_Add_Best
add the best requirement (based on one 

of fitness values) to one release

12 031 0 0 3 1 3

find the best  
requirement

12 231 0 0 3 1 3



Adaptive Operator Selection

Credit assignment 

Extreme value credit assignment 

Fitness improvement: hypervolume difference 

Reference value: the fitness of the parents 

Operator selection 

Probability matching



Performance Metrics
Quality 

Convergence 

Hypervolume 

Contribution 

Unique Contribution 

Diversity  

Speed

All the metrics were normalised between 0.0 and 1.0 and 
converted to ‘Maximising metrics’.

is only interesting if the algorithm’s quality is strong 



Research Questions
RQ 1 - Quality: Which algorithm performs best? 

RQ 2 - Diversity: What is the diversity of the solutions 
produced by each algorithm? 

RQ 3 - Speed: How fast can the algorithm produce the 
solutions? 

RQ 4 - Scalability: What is the scalability of each 
algorithm with regard to solution quality, diversity and 
speed?
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RQ 1 - Quality

For the meta-heuristic algorithms, NSGA-II performs best overall 
for quality on smaller datasets 

SA performs noticeably better on the three larger datasets

The three hyper-heuristic algorithms outperform their meta-heuristic 
counterparts; 
HNSGA-II is beaten by its meta-heuristic counterpart only on the 
Ericsson dataset.
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RQ 2 - Diversity

Random search perform very well, but the solutions are 
largely suboptimal

Of the Hyper-heuristic algorithms, HNSGA-II exhibits the best diversity

NSGA-II significantly outperforms HNSGA-II for Ericsson dataset

HNSGA-II significantly outperforms NSGA-II on Mozilla and Gnome 
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RQ 3 - Speed

The speed of random search is worse than all other 
algorithms for the larger datasets

HNSGA-II is fastest overall
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RQ 4 - Scalability
The quality of solutions NSGA-II produced decrease as 
the problem size increase 

NSGA-II’s contribution to the reference front 
decrease, as the number of requirements increase 

A negative correlation between the number of 
requirements and convergence of NSGA-II 

For the other algorithms, there is no negative correlation 
between problem size and solution quality 

The algorithms increase their diversity as the scale of 
the problem increase




