An Empirical Study

Meta and Hyper Heuristic Search for Multi-Objective Release Planning

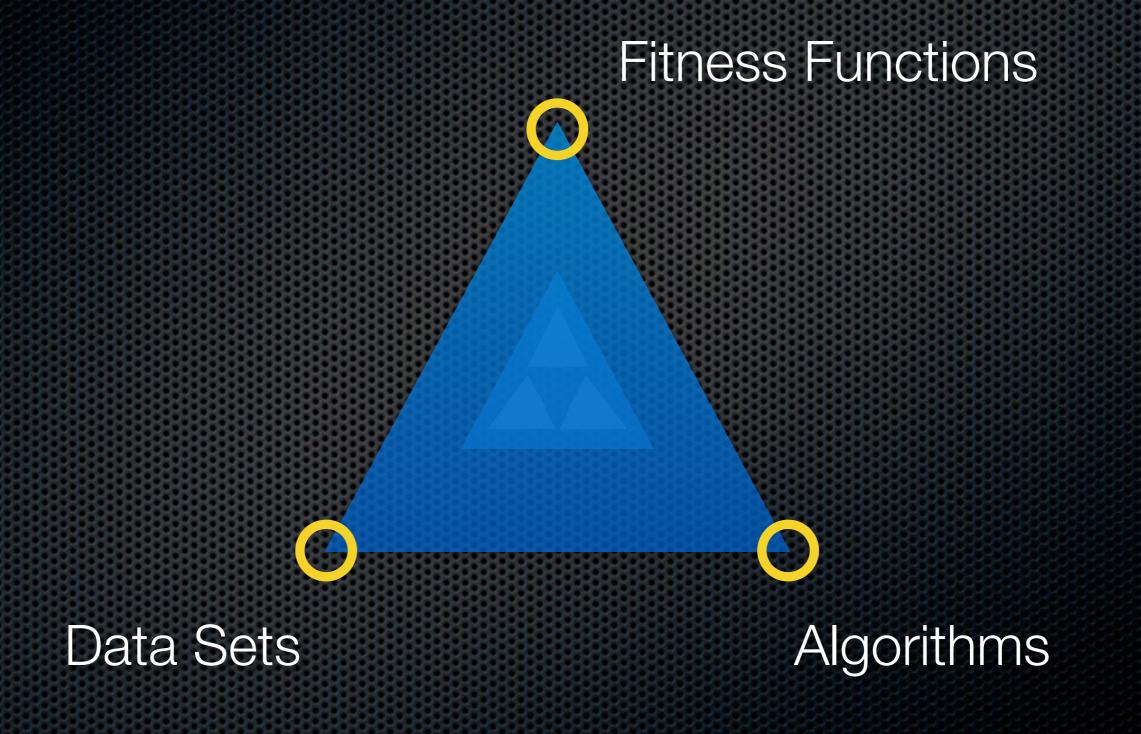
Yuanyuan Zhang CREST, UCL, UK

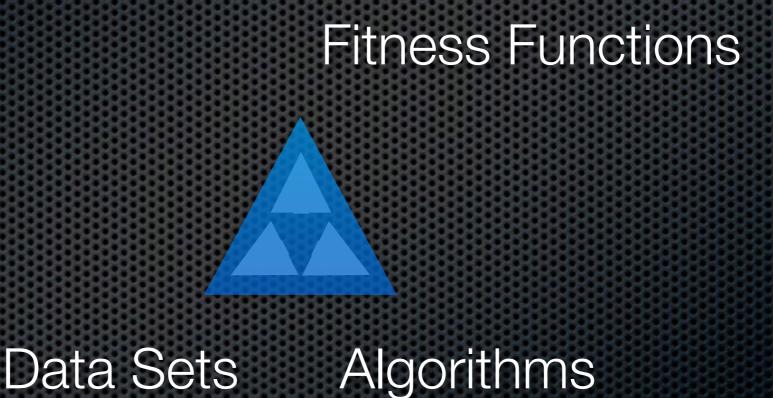
Mark Harman CREST, UCL, UK

Gabriela OchoaGuenther RuheSjaak BrinkkemperUniversity of Stirling, UKUniversity of Calgary, CanadaUtrecht University,The Netherlands

Agenda

- Contributions
- Background
- Data sets
- Fitness functions
- Algorithms
- RQs
- Results & analysis





Algorithms

Real North Real Sets Data Sets

Scenario Based Fitness Functions

Algorithms

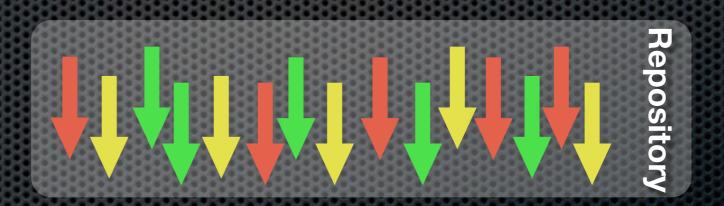
to Real Sets Data Sets

Fitness Functions

Scenario Based Objectives

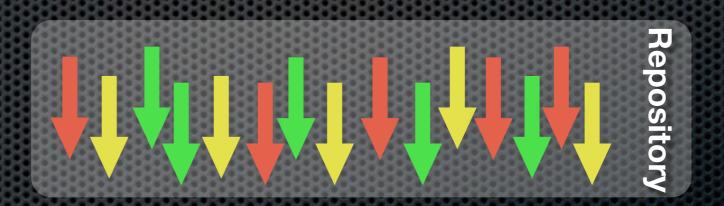
A Wider Spectrum of Algorithms Behaviours

Release Planning



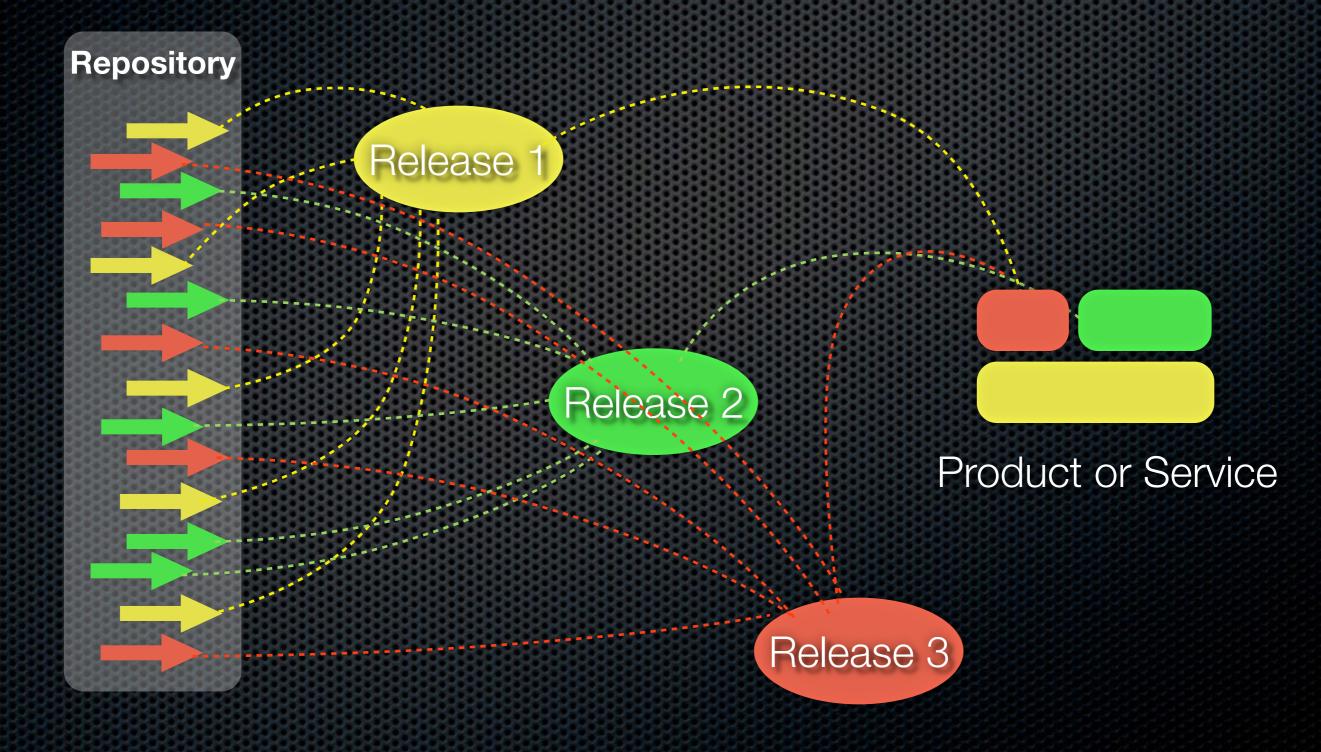
requirements and change requests

Release Planning



requirements and change requests

Release Planning



Strategic Release Planning (SRP)

Operational Release Planning (ORP)

- SRP is concerned with how to select and assign requirements to multiple subsequent releases.
- ORP deals with how to assign developers to the tasks to be performed.

Stakeholders

Π Π Π П Π Π Π Π Π П П П П Π

Stakeholders Number (M)

Stakeholders Weight (W)

Requirements

Cost (C) Value (V) Time to market (T) Risk (R) Frequency of use (F)

Π

Π

Π

Π

Π

Π

Π

Π

Π

П

Requirements

Dependence (D)

Π

Π

П

Π

П

П

Π

П

П

П

П

П

П

And

Or Precedence Value-related Cost-related

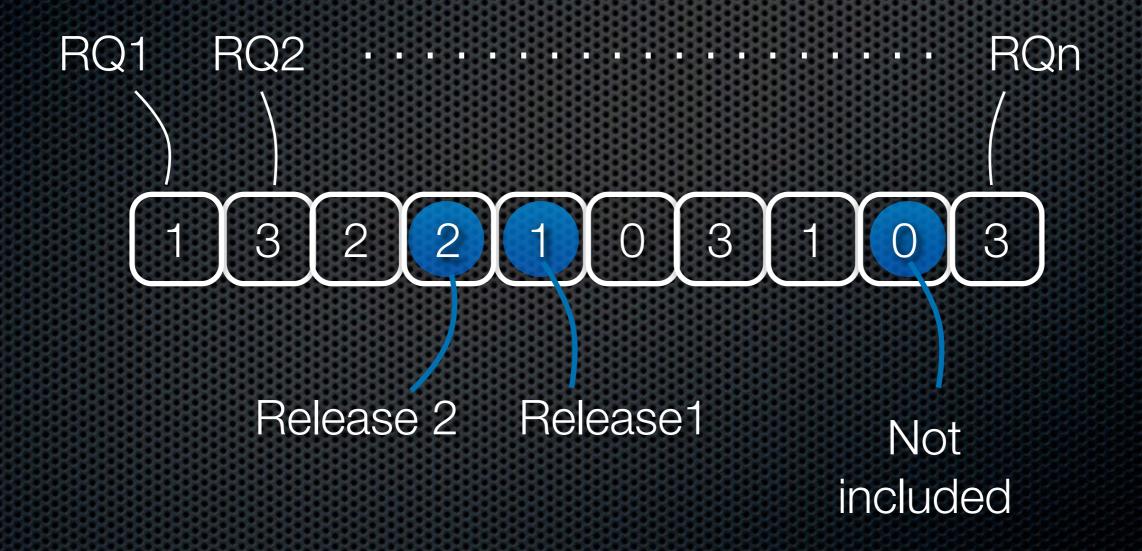
Release Number (K)

Π

Release Importance (I)

Data Representation

A set of requirements



to Real Sets to Data Sets

Fitness Functions

Scenario Based Objectives

Algorithms

A Wider Spectrum of Behaviours

10 Real World Data Sets

Data Sets	# Requirements	#	Objectives			
		Stakeholders	Maximise	Minimise		
Baan	100	17	Revenue	Cost		
StoneGate	100	91	Sales Value	Impact		
Motorola	35	4	Revenue	Cost		
RalicP	143	55	Revenue	Cost		
RalicR	143	79	Revenue	Cost		
Ericsson	124	14	Importance for today & the future	Cost		
MS Word	50	4	Revenue	Risk		
Eclipse	3502	536	Importance	Cost		
Mozilla	4060	768	Importance	Cost		
Gnome	2690	445	Importance	Cost		

Scenario-based Fitness Functions

FREQUENCY, IMPORTANCE, ...

 $|_{k}$

Maximize $f(x) = \sum_{i,k}^{N} VALUE_{i,k}$

Minimize $f(x) = \sum_{i,k}^{N} COST_{i,k}$

i =1

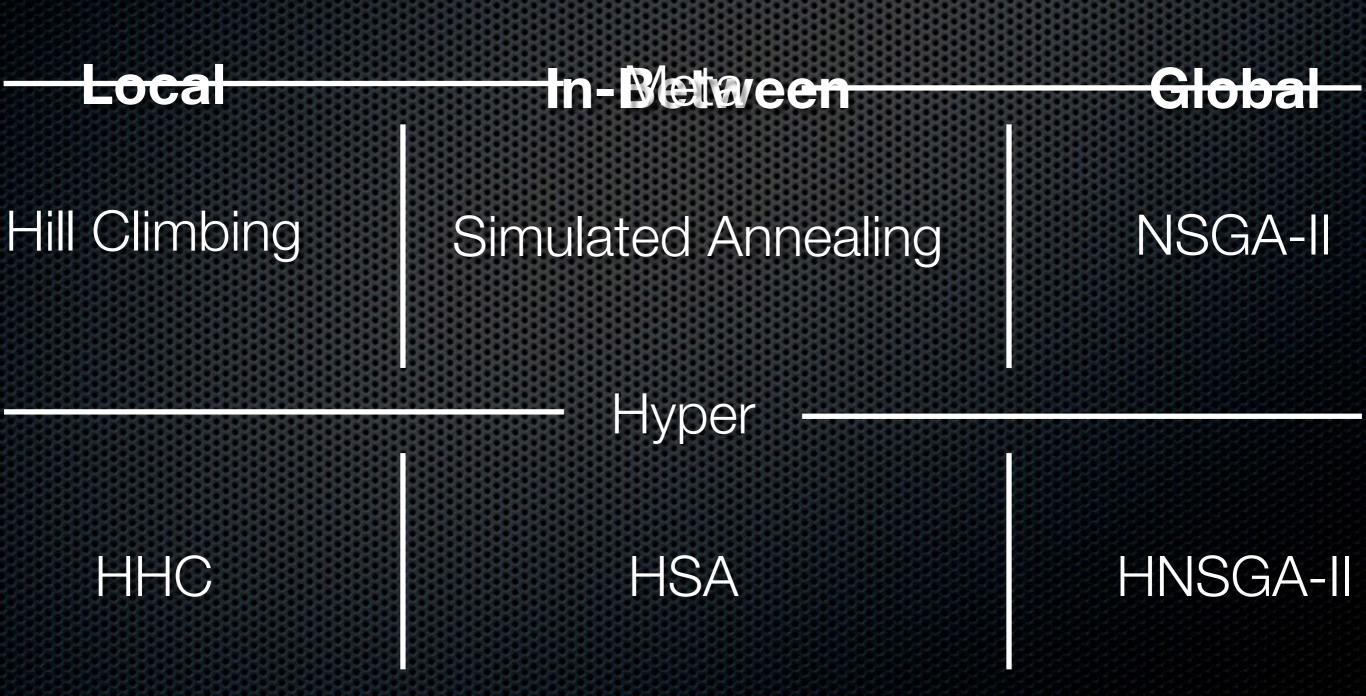
i =1

IMPACT, **RISK**, ...

A Wider Spectrum of Algorithmic Behaviours

Local In-Between Global Hill Climb&ingnulated Annealik@GA-II

A Wider Spectrum of Algorithmic Behaviours



A Wider Spectrum of Algorithmic Behaviours

Meta-heuristics

Hill Climbing Simulated Annealing NSGA-II Hyper-heuristics

HHC HSA HNSGA-II

Random

10 Hyper-Heuristic Operators

Ruin & Recreate

1 Random

2 Swap

3 Delete_Add

4 Delete_Add_Best

5 Delete_Worst_Add

6 Delete_Worst_Add_Best

7 Delay_Ahead

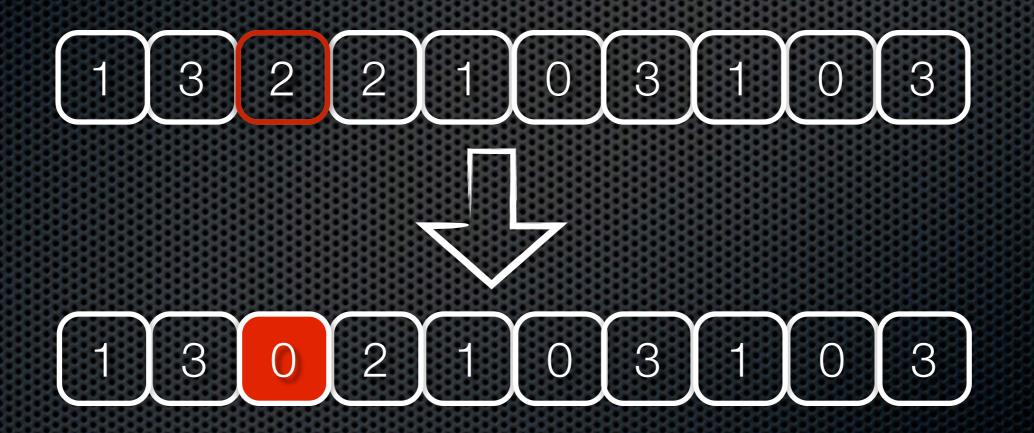
8 Delay_Ahead_Best

9 Delay_Worst_Ahead

10 Delay_Worst_Ahead_Best

Operator: Delete_Add_Best

delete a requirement from the release with uniform probability



Operator: Delete_Add_Best

add the best requirement (based on one of fitness values) to one release

find the best requirement

Adaptive Operator Selection

Credit assignment

- Extreme value credit assignment
- Fitness improvement: hypervolume difference
- Reference value: the fitness of the parents
- Operator selection
 - Probability matching

Performance Metrics

Quality

- Convergence
- Hypervolume
- Contribution
- Unique Contribution
- Diversity is only interesting if the algorithm's quality is strong
- Speed

All the metrics were normalised between 0.0 and 1.0 and converted to 'Maximising metrics'.

Research Questions

RQ 1 - Quality: Which algorithm performs best?

RQ 2 - Diversity: What is the diversity of the solutions produced by each algorithm?

RQ 3 - Speed: How fast can the algorithm produce the solutions?

RQ 4 - Scalability: What is the scalability of each algorithm with regard to solution quality, diversity and speed?

Results & Analysis

RQ 1 - Quality

RQ 1 - Quality

Data Sets		М	eta-heurist	tics	Hyper-heuristics			
		HC	SA	NSGA-II	HHC	HSA	HNSGA-II	
7 smaller datasets	2 Fits							
	3 Fits							
3 larger d	latasets							

For the meta-heuristic algorithms, NSGA-II performs best overall for quality on smaller datasets

SA performs noticeably better on the three larger datasets

The three hyper-heuristic algorithms outperform their meta-heuristic counterparts; HNSGA-II is beaten by its meta-heuristic counterpart only on the Ericsson dataset.

Results & Analysis

RQ 2 - Diversity

RQ 2 - Diversity

Data Sets		Random	Meta-heuristics			Hyper-heuristics		
			HC	SA	NSGA-II	HHC	HSA	HNSGA-II
smaller	2 Fits							
	3 Fits							
3 larger d	latasets							

Random search perform very well, but the solutions are largely suboptimal

Of the Hyper-heuristic algorithms, HNSGA-II exhibits the best diversity

NSGA-II significantly outperforms HNSGA-II for Ericsson dataset

HNSGA-II significantly outperforms NSGA-II on Mozilla and Gnome

Results & Analysis

RQ 3 - Speed

RQ 3 - Speed

Data Oata	Random	Meta-heuristics			Hyper-heuristics			
Dala	Data Sets		HC	SA	NSGA-II	HHC	HSA	HNSGA-II
smaller	2 Fits							
	3 Fits							
3 larger o	latasets							

The speed of random search is worse than all other algorithms for the larger datasets

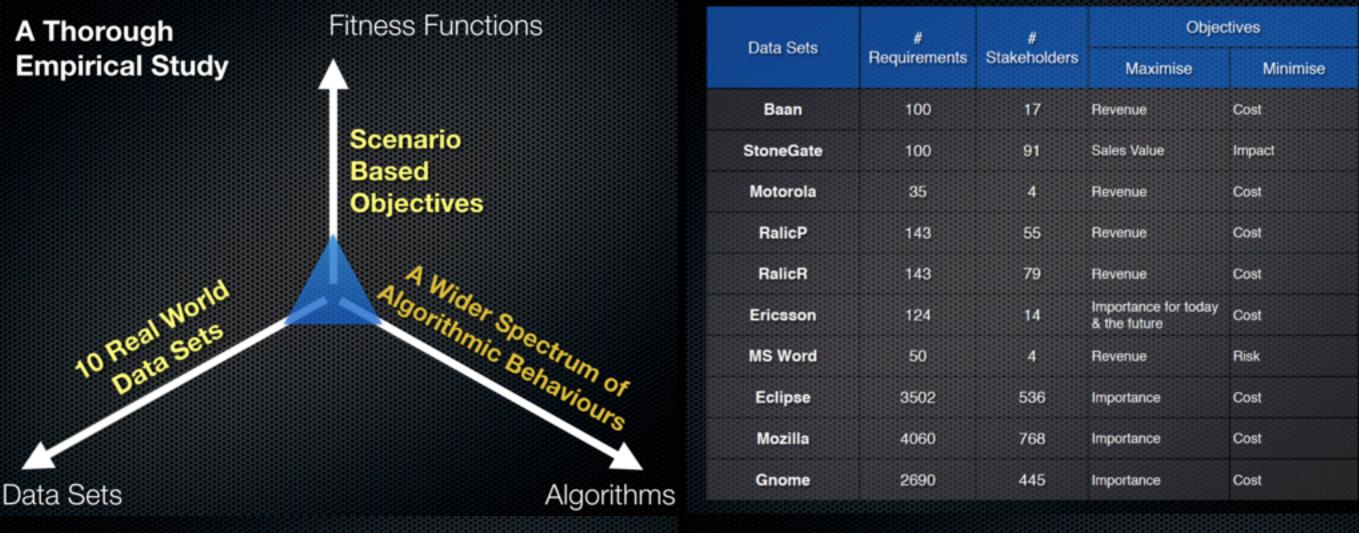
HNSGA-II is fastest overall

Results & Analysis

RQ 4 - Scalability

RQ 4 - Scalability

- The <u>quality</u> of solutions NSGA-II produced decrease as the problem size increase
 - NSGA-II's <u>contribution</u> to the reference front decrease, as the number of requirements increase
 - A negative correlation between the number of requirements and <u>convergence</u> of NSGA-II
- For the other algorithms, there is no negative correlation between problem size and solution <u>quality</u>
- The algorithms increase their <u>diversity</u> as the scale of the problem increase



10 Hyper-Heuristic Operators

Ruin & Recreate

1 Random

2 Swap

3 Delete_Add

4 Delete_Add_Best

5 Delete_Worst_Add

6 Delete_Worst_Add_Best

7 Delay_Ahead

8 Delay_Ahead_Best

9 Delay_Worst_Ahead

10 Delay_Worst_Ahead_Best

Research Questions

RQ 1 - Quality: Which algorithm performs best?

RQ 2 - Diversity: What is the diversity of the solutions produced by each algorithm?

RQ 3 - Speed: How fast can the algorithm produce the solutions?

RQ 4 - Scalability: What is the scalability of each algorithm with regard to solution quality, diversity and speed?