CoEvolving Memetic Algorithms (COMA) A framework for algorithm creation and adaptation

Jim Smith
University of the West of England
Overview

- Memetic Algorithms in a broader context
- What do I mean by memes?
- Co-evolving Gene and Memes
 - COMA framework
 - Key findings and open questions
- Conclusions
Positioning

Adaptive Search – but to what?

- An instance of a problem?
 - Algorithm Selection Problem (ML) / NELLI
- A history of search on an instance?
 - Adaptive Operator Selection (meta-heuristics)
 - Hyper-heuristics / VNS etc.
- Distinct regions of search space?
 - Self-Adaptation (meta-heuristics)
 - (some) Multimeme Algorithms
Memetic algorithms as adaptive systems

- Typical Viewpoint: MA = EA + Local Search
- Get better results with multiple LS operators
 - (Krasnogor & Smith, Gecco '01 ->, Ong & Keane '04 IEEE TEC)
 - Blurred distinction to Hyper-Heuristics
- Adaptive MAs (Ong et al. 2006 IEEE SMC-B)
 - as a more general framework
 - AMA = Meta-heuristic + set of LS + choice function
Ong et al.'s classification

<table>
<thead>
<tr>
<th>Nature of adaptation mechanism</th>
<th>Source of information To adaptation mechanism</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Adaptive Type</th>
<th>Adaptive Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>External</td>
</tr>
<tr>
<td></td>
<td>Local</td>
</tr>
<tr>
<td></td>
<td>Global</td>
</tr>
<tr>
<td>Static</td>
<td>Basic meta-Lamarckian learning / Simplerandom</td>
</tr>
<tr>
<td>Qualitative</td>
<td>Randomdescent / Randompermdescent</td>
</tr>
<tr>
<td>Adaptive Quantitative</td>
<td>Sub-Problem Decomposition/ Greedy</td>
</tr>
<tr>
<td>Self-Adaptive</td>
<td>Multi-memes/ Co-evolution MA</td>
</tr>
</tbody>
</table>
Meuth *et al.* categorisation of MAs

- **First Generation:**
 - Global search paired with local search

- **Second Generation:**
 - Global search with multiple local optimizers.
 - Memetic information (Choice of optimizer) passed to offspring (Lamarckian evolution)

- **Third Generation:**
 - Global search with multiple local optimizers.
 - Memetic information (Choice of local optimizer) passed to offspring (Lamarckian Evolution).
 - A mapping between evolutionary trajectory and choice of local optimizer is learned

- **Fourth Generation:**
 - Mechanisms of recognition, generalization, optimization, and memory are utilized *to search meme space*

How do we classify Meme Transmission?

With respect to the:

1. **Search space?**
 - Global /local – depends on move operator/distance metric

2. **Individual choosing a meme?**
 - Credit assignment problem

3. **Memepool?**
 - Social theories (Vertical/horizontal/diagonal)
Or more generally...

AMA = population of solutions
 + population of memes

- Both adapted by meta-heuristics,
- Individual’s behavioural responses can be modified by memes
 - Could think of as individual or social learning
- But why not also teaching?
- Or task sharing more generally?
Co-Evolving Memetic algorithms

- Framework for investigating meme-gene co-adaptation from 1-4G
- Separate populations of genes and memes
- Run a search algorithm in each space,
- Could use any representation and model, needn’t be EAs
 - For example Nogueras and Cottas use EDAs

“Perturbative” rather than constructive.
CO-evolving Memetic Algorithms (COMA)

- Memes match and replace patterns in genotypes
 - Syntactic string rewriting
 - Set of possible matches ↔ LS neighbourhood
 - Gives really good optimisation results
 - Smith: PPSN ’02, IEEE SMC-B ’07, ECJ 2012
 - Nogueras and Cotta PPSN ’14, J NMA ’15
- Evolved memes capture underlying problem structure
 - E.g., solve concatenated trap functions in linear time,
 - “rediscover” Protein folding rules
- Changing LS neighbourhoods facilitate escape from local optima

CO-evolving Memetic Algorithms (COMA) Jim Smith, UWE.
Illustration: 4 trap problem

Linear with $R^2 > 0.8$
Population of evolving solutions

<table>
<thead>
<tr>
<th>r d d l u l u u r u r d r d r d d d l u</th>
</tr>
</thead>
<tbody>
<tr>
<td>u l d l u u r u u u l u l u r l l u</td>
</tr>
<tr>
<td>u r l l u u r u u u l u l u r l l u</td>
</tr>
<tr>
<td>r d d l u l l l u r u r d r d r d d d l u</td>
</tr>
<tr>
<td>u r r l l u l u r u r d r d d d l u</td>
</tr>
</tbody>
</table>

- This example from protein structure prediction
- Offspring created by normal processes of selection, crossover and mutation
Population of Rules

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
<th>Pivot</th>
<th>Depth</th>
<th>Linkage</th>
</tr>
</thead>
<tbody>
<tr>
<td>r #1 u#r</td>
<td>r u l d u l</td>
<td>S</td>
<td>1</td>
<td>L</td>
</tr>
<tr>
<td>1#r</td>
<td>l r d</td>
<td>S</td>
<td>-1</td>
<td>L</td>
</tr>
<tr>
<td>11#d</td>
<td>l r u u</td>
<td>G</td>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>#u u #</td>
<td>#u r r</td>
<td>S</td>
<td>3</td>
<td>L</td>
</tr>
</tbody>
</table>

- **Linkage** indicates gene-meme pairing
 - *Self-adaptive linkage, Random, Fitness based*
- **Pivot**: *Steepest / Greedy search of neighbourhood.*
- **Depth**: *-1 indicates search to local optima.*
One application

offspring solution

uldluluuruluululurllulu

uldluluuruluululurllulu

uldluluuruluululurllulu

uldluluuruluululurllulu

uldluluuruluululurllulu

The Neighbourhood to be searched i.e. the set of points which can be reached by applying this operator to this solution

offspring rule

u ≠ u : uuu : s : 1 : 1
Some key results

- **Different spaces need different search algorithms:**
 - Obvious if the encoding is very different, but also true if the same
 - e.g. Nogueras & Cotta showed Laplacian correction to maintain entropy was useful in solution but not meme space

- **The credit assignment issue differs between spaces**
 - Solutions: Maturana et al showed *extreme* reward gave best results for operator adaptation in solution space (IEEE CEC’09)
 - Memes: *mean* reward is better for various 2G and 4G strategies
 - Best results: *local* adaptation using piecewise linear fitness

- **Ideas can overwhelm geography**
 - More rapid dispersion in meme space can reduce effects of deme separation in gene space
Some open questions

- **Rate of adaptation:**
 - So far work has used synchronous adaptation of memes,
 - is this necessary or desirable?

- **Richer transformations?**
 - Extend the regular expressions used for rewriting
 - Or use GP (cf. Fukunaga ECJ 2002 did it offline),
 - Simoes et al (PPSN14) self-adapted neural transformations (effectively endosymbiotic memes),

- **Extension to modelling problems**
 - Memes for genetic improvement of software?

- **Memes for teaching as well as learning?**
And more: How does all this work within the context of

- **Dynamic Optimisation/Modelling**
 - What is needed for continuous adaptation

- **Interactive Machine Learning / Optimisation**
 - Longer term adaption/selection of memes according to human behaviour and reactions
 - Being explored with IPAT tool
 - Allows interaction with anything that can be shown/heard/watched via HTML5
 - Shortly to be available as open source framework

- **Expensive problems that need surrogate models**
 - How approximate can you get and still adapt?

CO-evolving Memetic Algorithms (COMA)
Jim Smith, UWE.
Conclusions

- COMA framework support research into the co-adaption of problem solving strategies with the solutions to the problem being solved.
 - So closely linked with Hyperheuristics etc.
- Premise: even for simple problems the optimal strategies will vary during search
 - So online adaptation methods are necessary
 - And may not be designable in advance
- Available on request as C libraries, welcome ports to other languages

CO-evolving Memetic Algorithms (COMA) Jim Smith, UWE.
What more might we be able to get?