Adaptive Neighbourhood Search

for the Component Deployment Problem

Aldeida Aleti & Madalina M. Drugan

October 27, 2015

Software architecture design

Software quality optimisation

The design of embedded systems involves several
important decisions, such as choosing the software
components to use, and deciding how to deploy them
into the hardware platform. These decisions affect the
quality attributes of the system, such as reliability and
safety. Embedded systems are becoming more
complex with many design options to choose from. We
have automated this task.

ArcheOpterix

ArcheOpterix is generic platform for modelling, evaluating and optimising embedded systems. The
main modules of ArcheOpterix are shown in the figure below.

Seloction |
Scheduiing
~ | Redundancy Alocation)
1 Daploymen

Satay 1
Energy Consumpton |

Podomance |
1 Reiabity]

oL
AuosAR
[EAsT-anL
e

1 l Memory 1

Recundancy Lovel)

Localisaton |
Gollocaton

interface

ExactAgorthms |
Ant Colony Optimésation |

= Simulaied Amnealing |
3| Bayesian Houristics)

~ | GenetcAlgorithms. l

Component Deployment Problem

Bus0 (CAN)

1 1
ECUO | ECU3 | ECUB |
ECU1 | ECU4 | ECU7 |
Bust Bus2
(Front LIN) (Rear LIN)
3 : v = :
|- s 2 o o :
i ~ HMI '
: :;r:rpgn g;::h Lyl oupus [vain :
i Unit m i
! A 2 Brake Speed]
HE Pedal 4 = oy]
! [Emergency Sensor ® obect]
i st Speed ject 4
p oot U’:ie, [Fecoon-]
i ition 1
N :

WAC : Wheel Actuator Controllers (Front and Rear)
WSR : Wheel Sensor Readers (Front and Rear)

Problem Difficulty

Quality attrib
-)

e

utes and optimization strategy

W Standard

W with guarantee

M Problem specific

u Metaheuristic
W General W Not presented

B Problem spedific heuristic

Variables in Component Deployment optimization
Software components C = {c;, ¢, ..., cy} (discrete fix number)
» memory size sz; of the i-th component (KiloBytes)
» workload — million instructions
> initialization probability g; to start from the i-th component
Interaction between software components
» data size — the amount of data sent between ¢; and ¢; in
a single communication event
> execution probability p;; — the probability that calling ¢; ends
with a call of ¢;
Hardware hosts H = {hy, ha, ..., hy} (discrete fix number)
» memory capacity cp of each host (KiloBytes)
> processing speed — instruction - process capacity of
hardware unit
> failure rate fr — the probability of a single hardware failure
Hardware links N = {ny, np, ..., ns}
> data rate — data transmission rate of a bus
> failure rate — data communication error at each link

Component Deployment optimization
D={d|d:C— H} — the set of all function assignment
components to hardware resources
Objective function

wl;

frd(ci)‘ psd(lci)

reliability of a component i is R; = e

v

» reliability of communication between components ¢; and ¢;

ds;;
—frd<c,-)d(c,-)'7drd(cl_)’c,(cj)

R,'J' =€
» expected number of visits for each component v : C — Rx>g
Vi=qi+Y v pi
JETL
» expected number of visits of network links v : C x C — Rx>g
V,'J' = V- pij

» reliability of a deployment architecture d € D is
R = H?:l Rivi Hu RUU

Representation and Pertubator operators

Solution representation < string of (component,host) pairs

Cil|C2|C3|Cs|C5|Cg|C7|C8
hi|hs|h3|ho |hy |h1|ho|hy

OneFlip operator

Cl|C2|C3|Cq|C5|Cq|CT|C8 Cl|C2|C3|Cq|C5|Cq|C7|C8
hi | hg hs3 ho |hga | Ry [ho | hy hi|hs |hg |ho |ha [hy | ho | By

kOpt operator, where k =2
Cl|C2|C3|Cq|C5|Cq|C7|CS Cl|C2|C3|Cqa|C5|Cq|C7|C8
hi |h3 | hg|ho |ha [R1|ho | Ry hi |hs |ha |ho |ha | hs | ho | ha

Perturb < kOpt with random value for k € {1,...,n}

Adaptive Neighbourhood Search

procedure AN
S = RANDOMLYALLOCATE(C, H)
N = SELECTNEIGHBOURHOODOPERATOR(P(N))
if N == OneFlip then
Q(N)=ONEFLIP(S)
end if
if N == KOpt then
Q(N)=KOprT(S, k)
end if
if N == Perturb then
Q(N)=PERTURB(S)
end if
REPORTFEEDBACK(Q(N))
RETURN(S)
end procedure

The selection of the neighbourhood operator is a fitness
proportionate method P(N) = aP(N) + (1 — a)Q(N).

Neighbourhood operators for the Component Deployment

procedure ONEFLIP(S)
2: S$*=S
localOptimum = TRUE
4: for all c < C do
h = RANDOMLYSELECTHOST(H)

6: S’ = AssicNCOMPONENTTOHOST(S, ¢, h)
EVALUATE(S')
8: if S’ > S* then
s*=5
10: end if
end for
12: improvement = FITNESSDIFFERENCE(S, S5¥)
S§=5"
14: RETURN(improvement)

end procedure

Deterministic neighbourhood search

procedure DN

2: S = RANDOMLYALLOCATE(C, H)
ONEFLIP(S)

4: PERTURB(S)
KOPrT(S, k)

6: RETURN(S)
end procedure

Variable neighbourhood search

10:

12:

14:

procedure VN
S = RANDOMLYALLOCATE(C, H)
r = RanpoM([0,1])
if r > 0.5 then
ONEFLIP(S)
end if
if r < 0.5 then
KOprT1(S, k)
end if
p = Ranpom([0,1])
if p < 0.01 then
PERTURB(S)
end if
RETURN(S)
end procedure

Adaptive neighbourhood Variable neighbourhood

Quality proportionate

A operator selection
‘ Rand
‘ Neighbourhood operator ‘ andom
operator selection
—‘ Feedback collection ‘ Nelghbourhood operator

Deterministic neighbourhood

1-Flip operator

k-Opt operator

Final fitness

Final fitness

0.99990
0.99985
0.99980
0.99975
0.99970

0.99965

0.99995
0.99994
0.99993
0.99992
0.99991
0.99990
0.99989
0.99988

0.9998

0.9997 e
N i T . $o0.999 E
E E ! £ 0.9995 v
g +
- £ 0.9994
L N . | 0.9993 +
- 0.9992
AN VN DN Ls AN VN DN Ls
(a) H30C65 (b) H42C85
_ 09999,
‘ . - 0.9998 E = - _
E @ E g 0.9997 %] E g
‘ E’ 0.9996 ‘ ‘
| f “ 0.9995 l |
L 0.9994 g
AN VN DN Ls AN VN DN Ls
(c) H55C107 (d) H62C130

Figure: 30 trials (KS-test p-value<0.05).

Alternative optimization methods

v

Genetic algorithms

v

Simulated annealing

v

Steepest descent

v

Ant colony optimisation

v

Hill-climbing

v

and the list goes on

Remarks

» The nature of the search-space is the key factor determining
the performance of the optimisation algorithm,

» Define/characterise the search-space,
» Analyse what makes problems difficult,
» Guide the optimisation process

» Select the right search strategy

Future work: difficulty of local search

a AR b AR

Fitness

Fitness

	Remarks

