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Motivation
• A lot of time is waisted in extending the functionality of 

an existing software system. 

• Clone detection, code migration, code salvaging, 
reuse, dependency analyse, feature extraction 
techniques. 

• The overall process is still manual, tedious and error 
prone. 

• A lot of functionalities required for a new software, is 
already available on source code repositories.
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Algorithm 1 Generate the initial population P ; the function
choose returns an element from a set uniformly at random.
Input V , the organ vein; SD, the donor symbol table; OM , the host

type-to-variable map; Sp, the size of population; v, statements in
individual; m, mappings in individual.

1: P := ;
2: for i := 1 to Sp do

3: m, v := ;, ;
4: for all sd 2 SD do

5: sh := choose(OM [sd])
6: m := m [ {sd ! sh}
7: v := { choose(V ) }
8: P := P [ {(m, v)}
9: return P

variables used in donor at LO. For each individual, Alg. 1 first
uniformly selects a type compatible binding from the host’s
variables in scope at the implantation point to each of the
organ’s parameters. We then uniformly select one statement
from the organ, including its vein, and add it to the individual.
The GP system records which statements have been selected
and favours statements that have not yet been selected.

Search Operators During GP, µTrans applies crossover
with a probability of 0.5. We define two custom, crossover
operators: fixed-two-points and uniform crossover. The fixed-
two-points crossover is the standard fixed-point operator sepa-
rately applied to the organ’s map from host variables to organ
parameters and the statement vector, restricted to each vec-
tor’s centre point. The uniform crossover operator produces
only one o↵spring, whose host to organ map is the crossover of
its parents’ and whose V and O statements are the union of its
parents. The use of union here is novel. Initially, we used con-
ventional fixed-point crossover on organ and vein statements
vectors, but convergence was too slow. Adopting union sped
convergence, as desired. Fig. 4 shows an example of applying
the crossover operators on the two individuals on the left.
After crossover, one of the two mutation operators is ap-

plied with a probability of 0.5. The first operator uniformly
replaces a binding in the organ’s map from host variables
to its parameters with a type compatible alternative. In
our running example, say an individual currently maps the
host variable curs to its N_init parameter. Since curs is
not a valid array length in idct, the individual fails the
organ test suite. Say the remap operator chooses to remap
N_init. Since its type is int, the remap operator selects a
new variable from among the int variables in scope at the
insertion point, which include ‘hit_eof, curs, tos, length,
. . . ’ . The correct mapping is N_list to length; if the remap
operator selects it, the resulting individual will be more fit.

The second operator mutates the statements of the organ.
First, it uniformly picks t, an o↵set into the organ’s statement
list. When adding or replacing, it first uniformly selects a
index into the over-organ’s statement array. To add, it inserts
the selected statement at t in the organ’s statement list; to
replace, it overwrites the statement at t with the selected
statement. In essence, the over-organ defines a large set of
addition and replacement operations, one for each unique
statement, weighted by the frequency of that statement’s
appearance in the over-organ. Fig. 5 shows an example of
applying µTrans’s mutation operators.

At each generation, we select top 10% most fit individuals
(i.e. elitism) and insert them into the new generation. We
use tournament selection to select 60% of the population for
reproduction. Parents must be compilable; if the proportion
of possible parents is less than 60% of the population, Alg. 1
generates new individuals. At the end of evolution, an organ

that passes all the tests is selected uniformly at random and
inserted into the host at Hl.

Fitness Function Let IC be the set of individuals that
can be compiled. Let T be the set of unit tests used in GP,
TXi and TPi be the set of non-crashed tests and passed tests
for the individual i respectively. Our fitness function follows:

fitness(i) =

(
1
3 (1 +

|TXi|
|T | + |TPi|

|T | ) i 2 IC

0 i /2 IC
(1)

For the autotransplantation goal, a viable candidate must,
at a minimum, compile. At the other extreme, a successful
candidate passes all of the TO

D , the developer-provided test
suite that defines the functionality we seek to transplant.
These poles form a continuum. In between fall those individ-
uals who execute tests to termination, even if they fail. Our
fitness function therefore contains three equally-weighted
fitness components. The first checks whether the individual
compiles properly. The second rewards an individual for
executing test cases to termination without crashing and last
rewards an individual for passing tests in TO

D .

Implementation Implemented in TXL and C, µScalpel
realizes µTrans and comprises 28k SLoCs, of which 16k is
TXL [17], and 12k is C code. µScalpel inherits the limita-
tions of TXL, such as its stack limit which precludes parsing
large programs and its default C grammar’s inability to prop-
erly handle preprocessor directives. As an optimisation we
inline all the function calls in the organ. Inlining eases slice
reduction, eliminating unneeded parameters, returns and
aliasing. For the construction of the call graphs, we use GNU
cflow, and inherit its limitations related to function pointers.

5. EMPIRICAL STUDY
This section explains the subjects, test suites, and research

questions we address in our empirical evaluation of automated
code transplantation as realized in our tool, µScalpel.

Subjects We transplant code for five donors into three hosts.
We used the following criteria to choose these programs. First,
they had to be written in C, because µScalpel currently
operates only on C programs. Second, they had to be popular
real-world programs people use. Third, they had to be diverse.
Fourth, the host is the system we seek to augment, so it had to
be large and complex to present a significant transplantation
challenge, while, fifth, the organ we transplant could come
from anywhere, so donors had to reflect a wide range of sizes.
To meet these constraints, we perused GitHub, SourceForge,
and GNU Savannah in August 2014, restricting our attention
to popular C projects in di↵erent application domains.

Presented in Tab. 1, our donors include the audio stream-
ing client IDCT, the simple archive utility MYTAR, GNU
Cflow (which extracts call graphs from C source code), Web-
server3 (which handles HTTP requests), the command line
encryption utility TuxCrypt, and the H.264 codec x264. Our
hosts include Pidgin, GNU Cflow (which we use as both a
donor and a host), SOX, a cross-platform command line au-
dio processing utility, and VLC, a media player. We use x264
and VLC in our case study in Sec. 7; we use the rest in Sec. 6.
These programs are diverse: their application domains

span chat, static analysis, sound processing, audio streaming,
archiving, encryption, and a web server. The donors vary in
size from 0.4–63k SLoC and the hosts are large, all greater
3https://github.com/Hepia/webserver.
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Algorithm 1 Generate the initial population P ; the function
choose returns an element from a set uniformly at random.
Input V , the organ vein; SD, the donor symbol table; OM , the host

type-to-variable map; Sp, the size of population; v, statements in
individual; m, mappings in individual.

1: P := ;
2: for i := 1 to Sp do

3: m, v := ;, ;
4: for all sd 2 SD do

5: sh := choose(OM [sd])
6: m := m [ {sd ! sh}
7: v := { choose(V ) }
8: P := P [ {(m, v)}
9: return P

variables used in donor at LO. For each individual, Alg. 1 first
uniformly selects a type compatible binding from the host’s
variables in scope at the implantation point to each of the
organ’s parameters. We then uniformly select one statement
from the organ, including its vein, and add it to the individual.
The GP system records which statements have been selected
and favours statements that have not yet been selected.

Search Operators During GP, µTrans applies crossover
with a probability of 0.5. We define two custom, crossover
operators: fixed-two-points and uniform crossover. The fixed-
two-points crossover is the standard fixed-point operator sepa-
rately applied to the organ’s map from host variables to organ
parameters and the statement vector, restricted to each vec-
tor’s centre point. The uniform crossover operator produces
only one o↵spring, whose host to organ map is the crossover of
its parents’ and whose V and O statements are the union of its
parents. The use of union here is novel. Initially, we used con-
ventional fixed-point crossover on organ and vein statements
vectors, but convergence was too slow. Adopting union sped
convergence, as desired. Fig. 4 shows an example of applying
the crossover operators on the two individuals on the left.
After crossover, one of the two mutation operators is ap-

plied with a probability of 0.5. The first operator uniformly
replaces a binding in the organ’s map from host variables
to its parameters with a type compatible alternative. In
our running example, say an individual currently maps the
host variable curs to its N_init parameter. Since curs is
not a valid array length in idct, the individual fails the
organ test suite. Say the remap operator chooses to remap
N_init. Since its type is int, the remap operator selects a
new variable from among the int variables in scope at the
insertion point, which include ‘hit_eof, curs, tos, length,
. . . ’ . The correct mapping is N_list to length; if the remap
operator selects it, the resulting individual will be more fit.

The second operator mutates the statements of the organ.
First, it uniformly picks t, an o↵set into the organ’s statement
list. When adding or replacing, it first uniformly selects a
index into the over-organ’s statement array. To add, it inserts
the selected statement at t in the organ’s statement list; to
replace, it overwrites the statement at t with the selected
statement. In essence, the over-organ defines a large set of
addition and replacement operations, one for each unique
statement, weighted by the frequency of that statement’s
appearance in the over-organ. Fig. 5 shows an example of
applying µTrans’s mutation operators.

At each generation, we select top 10% most fit individuals
(i.e. elitism) and insert them into the new generation. We
use tournament selection to select 60% of the population for
reproduction. Parents must be compilable; if the proportion
of possible parents is less than 60% of the population, Alg. 1
generates new individuals. At the end of evolution, an organ

that passes all the tests is selected uniformly at random and
inserted into the host at Hl.

Fitness Function Let IC be the set of individuals that
can be compiled. Let T be the set of unit tests used in GP,
TXi and TPi be the set of non-crashed tests and passed tests
for the individual i respectively. Our fitness function follows:

fitness(i) =

(
1
3 (1 +

|TXi|
|T | + |TPi|

|T | ) i 2 IC

0 i /2 IC
(1)

For the autotransplantation goal, a viable candidate must,
at a minimum, compile. At the other extreme, a successful
candidate passes all of the TO

D , the developer-provided test
suite that defines the functionality we seek to transplant.
These poles form a continuum. In between fall those individ-
uals who execute tests to termination, even if they fail. Our
fitness function therefore contains three equally-weighted
fitness components. The first checks whether the individual
compiles properly. The second rewards an individual for
executing test cases to termination without crashing and last
rewards an individual for passing tests in TO

D .

Implementation Implemented in TXL and C, µScalpel
realizes µTrans and comprises 28k SLoCs, of which 16k is
TXL [17], and 12k is C code. µScalpel inherits the limita-
tions of TXL, such as its stack limit which precludes parsing
large programs and its default C grammar’s inability to prop-
erly handle preprocessor directives. As an optimisation we
inline all the function calls in the organ. Inlining eases slice
reduction, eliminating unneeded parameters, returns and
aliasing. For the construction of the call graphs, we use GNU
cflow, and inherit its limitations related to function pointers.

5. EMPIRICAL STUDY
This section explains the subjects, test suites, and research

questions we address in our empirical evaluation of automated
code transplantation as realized in our tool, µScalpel.

Subjects We transplant code for five donors into three hosts.
We used the following criteria to choose these programs. First,
they had to be written in C, because µScalpel currently
operates only on C programs. Second, they had to be popular
real-world programs people use. Third, they had to be diverse.
Fourth, the host is the system we seek to augment, so it had to
be large and complex to present a significant transplantation
challenge, while, fifth, the organ we transplant could come
from anywhere, so donors had to reflect a wide range of sizes.
To meet these constraints, we perused GitHub, SourceForge,
and GNU Savannah in August 2014, restricting our attention
to popular C projects in di↵erent application domains.

Presented in Tab. 1, our donors include the audio stream-
ing client IDCT, the simple archive utility MYTAR, GNU
Cflow (which extracts call graphs from C source code), Web-
server3 (which handles HTTP requests), the command line
encryption utility TuxCrypt, and the H.264 codec x264. Our
hosts include Pidgin, GNU Cflow (which we use as both a
donor and a host), SOX, a cross-platform command line au-
dio processing utility, and VLC, a media player. We use x264
and VLC in our case study in Sec. 7; we use the rest in Sec. 6.
These programs are diverse: their application domains

span chat, static analysis, sound processing, audio streaming,
archiving, encryption, and a web server. The donors vary in
size from 0.4–63k SLoC and the hosts are large, all greater
3https://github.com/Hepia/webserver.
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Algorithm 1 Generate the initial population P ; the function
choose returns an element from a set uniformly at random.
Input V , the organ vein; SD, the donor symbol table; OM , the host

type-to-variable map; Sp, the size of population; v, statements in
individual; m, mappings in individual.

1: P := ;
2: for i := 1 to Sp do

3: m, v := ;, ;
4: for all sd 2 SD do

5: sh := choose(OM [sd])
6: m := m [ {sd ! sh}
7: v := { choose(V ) }
8: P := P [ {(m, v)}
9: return P

variables used in donor at LO. For each individual, Alg. 1 first
uniformly selects a type compatible binding from the host’s
variables in scope at the implantation point to each of the
organ’s parameters. We then uniformly select one statement
from the organ, including its vein, and add it to the individual.
The GP system records which statements have been selected
and favours statements that have not yet been selected.

Search Operators During GP, µTrans applies crossover
with a probability of 0.5. We define two custom, crossover
operators: fixed-two-points and uniform crossover. The fixed-
two-points crossover is the standard fixed-point operator sepa-
rately applied to the organ’s map from host variables to organ
parameters and the statement vector, restricted to each vec-
tor’s centre point. The uniform crossover operator produces
only one o↵spring, whose host to organ map is the crossover of
its parents’ and whose V and O statements are the union of its
parents. The use of union here is novel. Initially, we used con-
ventional fixed-point crossover on organ and vein statements
vectors, but convergence was too slow. Adopting union sped
convergence, as desired. Fig. 4 shows an example of applying
the crossover operators on the two individuals on the left.
After crossover, one of the two mutation operators is ap-

plied with a probability of 0.5. The first operator uniformly
replaces a binding in the organ’s map from host variables
to its parameters with a type compatible alternative. In
our running example, say an individual currently maps the
host variable curs to its N_init parameter. Since curs is
not a valid array length in idct, the individual fails the
organ test suite. Say the remap operator chooses to remap
N_init. Since its type is int, the remap operator selects a
new variable from among the int variables in scope at the
insertion point, which include ‘hit_eof, curs, tos, length,
. . . ’ . The correct mapping is N_list to length; if the remap
operator selects it, the resulting individual will be more fit.

The second operator mutates the statements of the organ.
First, it uniformly picks t, an o↵set into the organ’s statement
list. When adding or replacing, it first uniformly selects a
index into the over-organ’s statement array. To add, it inserts
the selected statement at t in the organ’s statement list; to
replace, it overwrites the statement at t with the selected
statement. In essence, the over-organ defines a large set of
addition and replacement operations, one for each unique
statement, weighted by the frequency of that statement’s
appearance in the over-organ. Fig. 5 shows an example of
applying µTrans’s mutation operators.

At each generation, we select top 10% most fit individuals
(i.e. elitism) and insert them into the new generation. We
use tournament selection to select 60% of the population for
reproduction. Parents must be compilable; if the proportion
of possible parents is less than 60% of the population, Alg. 1
generates new individuals. At the end of evolution, an organ

that passes all the tests is selected uniformly at random and
inserted into the host at Hl.

Fitness Function Let IC be the set of individuals that
can be compiled. Let T be the set of unit tests used in GP,
TXi and TPi be the set of non-crashed tests and passed tests
for the individual i respectively. Our fitness function follows:

fitness(i) =

(
1
3 (1 +

|TXi|
|T | + |TPi|

|T | ) i 2 IC

0 i /2 IC
(1)

For the autotransplantation goal, a viable candidate must,
at a minimum, compile. At the other extreme, a successful
candidate passes all of the TO

D , the developer-provided test
suite that defines the functionality we seek to transplant.
These poles form a continuum. In between fall those individ-
uals who execute tests to termination, even if they fail. Our
fitness function therefore contains three equally-weighted
fitness components. The first checks whether the individual
compiles properly. The second rewards an individual for
executing test cases to termination without crashing and last
rewards an individual for passing tests in TO

D .

Implementation Implemented in TXL and C, µScalpel
realizes µTrans and comprises 28k SLoCs, of which 16k is
TXL [17], and 12k is C code. µScalpel inherits the limita-
tions of TXL, such as its stack limit which precludes parsing
large programs and its default C grammar’s inability to prop-
erly handle preprocessor directives. As an optimisation we
inline all the function calls in the organ. Inlining eases slice
reduction, eliminating unneeded parameters, returns and
aliasing. For the construction of the call graphs, we use GNU
cflow, and inherit its limitations related to function pointers.

5. EMPIRICAL STUDY
This section explains the subjects, test suites, and research

questions we address in our empirical evaluation of automated
code transplantation as realized in our tool, µScalpel.

Subjects We transplant code for five donors into three hosts.
We used the following criteria to choose these programs. First,
they had to be written in C, because µScalpel currently
operates only on C programs. Second, they had to be popular
real-world programs people use. Third, they had to be diverse.
Fourth, the host is the system we seek to augment, so it had to
be large and complex to present a significant transplantation
challenge, while, fifth, the organ we transplant could come
from anywhere, so donors had to reflect a wide range of sizes.
To meet these constraints, we perused GitHub, SourceForge,
and GNU Savannah in August 2014, restricting our attention
to popular C projects in di↵erent application domains.

Presented in Tab. 1, our donors include the audio stream-
ing client IDCT, the simple archive utility MYTAR, GNU
Cflow (which extracts call graphs from C source code), Web-
server3 (which handles HTTP requests), the command line
encryption utility TuxCrypt, and the H.264 codec x264. Our
hosts include Pidgin, GNU Cflow (which we use as both a
donor and a host), SOX, a cross-platform command line au-
dio processing utility, and VLC, a media player. We use x264
and VLC in our case study in Sec. 7; we use the rest in Sec. 6.
These programs are diverse: their application domains

span chat, static analysis, sound processing, audio streaming,
archiving, encryption, and a web server. The donors vary in
size from 0.4–63k SLoC and the hosts are large, all greater
3https://github.com/Hepia/webserver.
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Algorithm 1 Generate the initial population P ; the function
choose returns an element from a set uniformly at random.
Input V , the organ vein; SD, the donor symbol table; OM , the host

type-to-variable map; Sp, the size of population; v, statements in
individual; m, mappings in individual.

1: P := ;
2: for i := 1 to Sp do

3: m, v := ;, ;
4: for all sd 2 SD do

5: sh := choose(OM [sd])
6: m := m [ {sd ! sh}
7: v := { choose(V ) }
8: P := P [ {(m, v)}
9: return P

variables used in donor at LO. For each individual, Alg. 1 first
uniformly selects a type compatible binding from the host’s
variables in scope at the implantation point to each of the
organ’s parameters. We then uniformly select one statement
from the organ, including its vein, and add it to the individual.
The GP system records which statements have been selected
and favours statements that have not yet been selected.

Search Operators During GP, µTrans applies crossover
with a probability of 0.5. We define two custom, crossover
operators: fixed-two-points and uniform crossover. The fixed-
two-points crossover is the standard fixed-point operator sepa-
rately applied to the organ’s map from host variables to organ
parameters and the statement vector, restricted to each vec-
tor’s centre point. The uniform crossover operator produces
only one o↵spring, whose host to organ map is the crossover of
its parents’ and whose V and O statements are the union of its
parents. The use of union here is novel. Initially, we used con-
ventional fixed-point crossover on organ and vein statements
vectors, but convergence was too slow. Adopting union sped
convergence, as desired. Fig. 4 shows an example of applying
the crossover operators on the two individuals on the left.
After crossover, one of the two mutation operators is ap-

plied with a probability of 0.5. The first operator uniformly
replaces a binding in the organ’s map from host variables
to its parameters with a type compatible alternative. In
our running example, say an individual currently maps the
host variable curs to its N_init parameter. Since curs is
not a valid array length in idct, the individual fails the
organ test suite. Say the remap operator chooses to remap
N_init. Since its type is int, the remap operator selects a
new variable from among the int variables in scope at the
insertion point, which include ‘hit_eof, curs, tos, length,
. . . ’ . The correct mapping is N_list to length; if the remap
operator selects it, the resulting individual will be more fit.

The second operator mutates the statements of the organ.
First, it uniformly picks t, an o↵set into the organ’s statement
list. When adding or replacing, it first uniformly selects a
index into the over-organ’s statement array. To add, it inserts
the selected statement at t in the organ’s statement list; to
replace, it overwrites the statement at t with the selected
statement. In essence, the over-organ defines a large set of
addition and replacement operations, one for each unique
statement, weighted by the frequency of that statement’s
appearance in the over-organ. Fig. 5 shows an example of
applying µTrans’s mutation operators.

At each generation, we select top 10% most fit individuals
(i.e. elitism) and insert them into the new generation. We
use tournament selection to select 60% of the population for
reproduction. Parents must be compilable; if the proportion
of possible parents is less than 60% of the population, Alg. 1
generates new individuals. At the end of evolution, an organ

that passes all the tests is selected uniformly at random and
inserted into the host at Hl.

Fitness Function Let IC be the set of individuals that
can be compiled. Let T be the set of unit tests used in GP,
TXi and TPi be the set of non-crashed tests and passed tests
for the individual i respectively. Our fitness function follows:

fitness(i) =

(
1
3 (1 +

|TXi|
|T | + |TPi|

|T | ) i 2 IC

0 i /2 IC
(1)

For the autotransplantation goal, a viable candidate must,
at a minimum, compile. At the other extreme, a successful
candidate passes all of the TO

D , the developer-provided test
suite that defines the functionality we seek to transplant.
These poles form a continuum. In between fall those individ-
uals who execute tests to termination, even if they fail. Our
fitness function therefore contains three equally-weighted
fitness components. The first checks whether the individual
compiles properly. The second rewards an individual for
executing test cases to termination without crashing and last
rewards an individual for passing tests in TO

D .

Implementation Implemented in TXL and C, µScalpel
realizes µTrans and comprises 28k SLoCs, of which 16k is
TXL [17], and 12k is C code. µScalpel inherits the limita-
tions of TXL, such as its stack limit which precludes parsing
large programs and its default C grammar’s inability to prop-
erly handle preprocessor directives. As an optimisation we
inline all the function calls in the organ. Inlining eases slice
reduction, eliminating unneeded parameters, returns and
aliasing. For the construction of the call graphs, we use GNU
cflow, and inherit its limitations related to function pointers.

5. EMPIRICAL STUDY
This section explains the subjects, test suites, and research

questions we address in our empirical evaluation of automated
code transplantation as realized in our tool, µScalpel.

Subjects We transplant code for five donors into three hosts.
We used the following criteria to choose these programs. First,
they had to be written in C, because µScalpel currently
operates only on C programs. Second, they had to be popular
real-world programs people use. Third, they had to be diverse.
Fourth, the host is the system we seek to augment, so it had to
be large and complex to present a significant transplantation
challenge, while, fifth, the organ we transplant could come
from anywhere, so donors had to reflect a wide range of sizes.
To meet these constraints, we perused GitHub, SourceForge,
and GNU Savannah in August 2014, restricting our attention
to popular C projects in di↵erent application domains.

Presented in Tab. 1, our donors include the audio stream-
ing client IDCT, the simple archive utility MYTAR, GNU
Cflow (which extracts call graphs from C source code), Web-
server3 (which handles HTTP requests), the command line
encryption utility TuxCrypt, and the H.264 codec x264. Our
hosts include Pidgin, GNU Cflow (which we use as both a
donor and a host), SOX, a cross-platform command line au-
dio processing utility, and VLC, a media player. We use x264
and VLC in our case study in Sec. 7; we use the rest in Sec. 6.
These programs are diverse: their application domains

span chat, static analysis, sound processing, audio streaming,
archiving, encryption, and a web server. The donors vary in
size from 0.4–63k SLoC and the hosts are large, all greater
3https://github.com/Hepia/webserver.
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Postoperative Host
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Validation
4 validation steps: 

Regression Tests; 

Augmented 
Regression Tests; 

Acceptance Tests; 

Manual Validation;

Donor 
Acceptance Tests

 Acceptance Tests

Whole
Host'

Regression
Tests

Augmented 
RegressionTests

Whole
Host'

Whole
Host'

Validation 1 Validation 2 Validation 3

!
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Subject Programs
Subjects Type Size Regr. Isolation

Idct Donor 2.3k - 3-5
Mytar Donor 0.4k - 4
Cflow Donor 25k - 6-20

Webserver Donor 1.7k - 3
TuxCrypt Donor 2.7k - 4-5

Pidgin Host 363k 88 -
Cflow Host 25k 21 -
SoX Host 43k 157 -

Case Study
x264 Donor 63k - 1

GNU Indent Donor 26k - 6
GNU cflow Donor 25k - 8

Kate Host 43k 42 -
VLC Host 422k 27 -



Case Studies

All Test Suites Time

Donor Host Passed Regression Regression++ Acceptance Avarage

x264 VLC 1 1 1 1 26 (hours)

cflow Kate 16 20* 17 18 101

Indent Kate 18 20* 18 19 31

Results
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Empirical Study
All Test Suites

Donor Host Passed Regression Regression++ Acceptance
Idct Pidgin 16 20 17 16

Mytar Pidgin 16 20 18 20
Web Pidgin 0 20 0 18
Cflow Pidgin 15 20 15 16
Tux Pidgin 15 20 17 16
Idct Cflow 16 17 16 16

Mytar Cflow 17 17 17 20
Web Cflow 0 0 0 17
Cflow Cflow 20 20 20 20
Tux Cflow 14 15 14 16
Idct SoX 15 18 17 16

Mytar SoX 17 17 17 20
Web SoX 0 0 0 17
Cflow SoX 14 16 15 14
Tux SoX 13 13 13 14

TOTAL 188/300 233/300 196/300 256/300 
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Automated Software Transplantation

Earl T. Barr Mark Harman Yue Jia Alexandru Marginean Justyna Petke
CREST, University College London, Malet Place, London, WC1E 6BT, UK

{e.barr,m.harman,yue.jia,alexandru.marginean.13,j.petke}@ucl.ac.uk

ABSTRACT
Automated transplantation would open many exciting av-
enues for software development: suppose we could autotrans-
plant code from one system into another, entirely unrelated,
system. This paper introduces a theory, an algorithm, and
a tool that achieve this. Leveraging lightweight annotation,
program analysis identifies an organ (interesting behavior to
transplant); testing validates that the organ exhibits the de-
sired behavior during its extraction and after its implantation
into a host. While we do not claim automated transplanta-
tion is now a solved problem, our results are encouraging:
we report that in 12 of 15 experiments, involving 5 donors
and 3 hosts (all popular real-world systems), we successfully
autotransplanted new functionality and passed all regression
tests. Autotransplantation is also already useful: in 26 hours
computation time we successfully autotransplanted the H.264
video encoding functionality from the x264 system to the
VLC media player; compare this to upgrading x264 within
VLC, a task that we estimate, from VLC’s version history,
took human programmers an average of 20 days of elapsed,
as opposed to dedicated, time.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software; D.2.5
[Software Engineering]: Testing and Debugging

Keywords
Automated software transplantation, autotransplantation,
genetic improvement

1. INTRODUCTION
Software engineers spend a great deal of time extracting,

porting, and rewriting existing code to extend the function-
ality of existing software systems. Currently, this is tedious,
laborious, and slow [15]. The research community has pro-
vided analyses and partial support for such manual code
reuse: for example, clone detection [5, 32, 36, 60], code
migration [38, 58], code salvaging [12], reuse [13, 14, 16],

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA
Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

dependence analysis [3, 22, 29, 30] and feature extraction
techniques [24, 33, 44]. However, the overall process remains
largely unautomated, particularly the critical transplantation
of code that implements useful functionality from a donor
into a target system, which we call the host.

What if we could automate the process of extracting func-
tionality from one system and transplanting it into another?
This is the goal we set ourselves in this paper. That is, we are
the first to develop and evaluate techniques to implement au-
tomated software transplantation from one system to another,
which one of the authors proposed (hitherto unimplemented
and unevaluated) in the keynote of the 2013 WCRE [28].

A programmer must first identify the entry point of code
that implements a feature of interest. Given an entry point
in the donor and a target implantation point in the host
program, the goal of automated transplantation is to identify
and extract an organ, all code associated with the feature
of interest, then transform it to be compatible with the
name space and context of its target site in the host. The
programmer also supplies test suites that guide the search for
donor code modifications required to make it fully executable
(and pass all test cases) when deployed in the host.

This is a challenging vision of transplantation, because
code from one system is unlikely to even compile when it is
re-located into an unrelated foreign system without extensive
modification, let alone execute and pass test cases. The ex-
traction of the code also involves identifying all semantically
required code and the successful insertion of the code organ
into the host requires nontrivial modifications to the organ to
ensure it adds the required feature without breaking existing
functionality. In this paper, we present results that demon-
strate that this vision of automated software transplantation
is indeed achievable, e�cient and potentially useful.

Feature identification is well studied [14, 16, 58]. Extract-
ing a component of a system, given the identification of a
suitable feature is also well studied, through work on slicing
and dependence analysis [22, 24, 29, 33, 44]. The challenges
of automatically extracting a feature from one system, trans-
planting it into an entirely di↵erent system, and usefully
executing it in the organ beneficiary, however, have not pre-
viously been studied in the literature.

We developed µTrans, an algorithm for automated software
transplantation, based on a new kind of genetic program-
ming, augmented by a novel form of program slicing. µTrans
synergizes analysis and testing: analysis extracts an ‘organ’,
an executable slice from a donor; testing guides all phases
of autotransplantation — identifying the organ in the donor,
minimizing and placing the organ into an ice-box, and fi-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
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Copyright is held by the owner/author(s).
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Automated Transplantation of Call Graph and

Layout Features into Kate

Alexandru Marginean, Earl T. Barr, Mark Harman, and Yue Jia

UCL, Department of Computer Science, CREST Centre

Abstract. We report the automated transplantation of two features
currently missing from Kate: call graph generation and automatic layout
for C programs, which have been requested by users on the Kate devel-
opment forum. Our approach uses a lightweight annotation system with
Search Based techniques augmented by static analysis for automated
transplantation. The results are promising: on average, our tool requires
101 minutes of standard desktop machine time to transplant the call
graph feature, and 31 minutes to transplant the layout feature. We re-
peated each experiment 20 times and validated the resulting transplants
using unit, regression and acceptance test suites. In 34 of 40 experiments
conducted our search-based autotransplantation tool, µScalpel, was
able to successfully transplant the new functionality, passing all tests.

1 Introduction

We recently introduced a search based technique for automated software trans-
plantation [2,7]. Guided by dependence analysis and testing, our approach uses a
variant of genetic programming to identify and extract useful functionality from a
donor program, and transplant it into a (possibly unrelated) host program. We im-
plemented our approach as a tool called µScalpel, which is publicly available [1].

In this challenge paper, we illustrate the way in which realistic, scalable, and
useful real-world transplantation can be achieved using µScalpel. We apply our
tool to the SSBSE 2015 Challenge program Kate1, a popular text editor based on
KDE. Its rich feature set and available plugins make it a popular, lightweight IDE
for C developers. We perform two automated transplantations using µScalpel.
In the first one, we transplant call graph drawing ability from the GNU utility pro-
gram cflow, to augment Kate with the ability to construct and display call graphs.

This is a useful feature for a lightweight IDE, like Kate, and would clearly be
nontrivial to implement from scratch. Using our search based autotransplantation,
µScalpel, the developer merely needs to identify the entry point of the source
code in the donor program (cflow in this case) and the tool will do the rest; ex-
tracting the relevant code, matching names spaces between host and donor and ex-
ecuting regressions, unit and acceptance tests. Like much previous work on genetic
programming [12], our approach relies critically on the availability of high quality
test suites. We do not directly address this issue in the present paper, but believe
1
http://kate-editor.org

http://ac.uk/autotransplantation/MuScalpel.html
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Validation
4 validation steps: 

Regression Tests; 
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Case Studies

All Test Suites Time

Donor Host Passed Regression Regression++ Acceptance Avarage

x264 VLC 1 1 1 1 26 (hours)

cflow Kate 16 20* 17 18 101

Indent Kate 18 20* 18 19 31

Results
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