*UCL

Automated Software
Transplantation

Alexandru Marginean

*UCL

Why Autotransplantation”

Video Player

change
picture

sIJCL Alexandru Marginean - Automated Software Transplantation

Why Autotransplantation”

Video Player

picture

sIJCL Alexandru Marginean - Automated Software Transplantation

Why Autotransplantation”

Video Player

picture

sIJCL Alexandru Marginean - Automated Software Transplantation

Why Autotransplantation”

Video Player

picture

sIJCL Alexandru Marginean - Automated Software Transplantation

Why Autotransplantation”

Video Player

picture

sIJCL Alexandru Marginean - Automated Software Transplantation

Why Autotransplantation”

Video Player

Start from
scratch

picture

sIJCL Alexandru Marginean - Automated Software Transplantation

Why Autotransplantation”

Video Player

Start rrom
ccraich

picture

sIJCL Alexandru Marginean - Automated Software Transplantation

Why Autotransplantation”

source repositories

Video Player

Start rrom
ccraich

picture

sIJCL Alexandru Marginean - Automated Software Transplantation

Why Autotransplantation”

source repositories

Video Player

Start rrom
ccraich

picture

sIJCL Alexandru Marginean - Automated Software Transplantation

Open Source Repositories

10000000

/7500000

<10/0/0/0/0]0)

2500000

0
2007 2008 2009 2010 2011 2012 2013 2014

Github Popularity (repositories)
tUCL Alexandru Marginean - Automated Software Transplantation

Motivation

e Alot of time is waisted in extending the functionality of
an existing software system.

* Clone detection, code migration, code salvaging,
reuse, dependency analyse, feature extraction
technigques.

* The overall process is still manual, tedious and error
prone.

* Alot of functionalities required for a new software, Is
already available on source code repositories.

sIJCL Alexandru Marginean - Automated Software Transplantation

Human Organ
Transplantat

10N

Alexandru Marginean - Automated Software Transplantation

*UCL

*UCL

Automated Software
Transplantation

Donor

()

Host

Organ
Vein

I=

Alexandru Marginean - Automated Software Transplantation

*UCL

Automated Software
Transplantation

Donor

()

Host

Organ
Vein

I=

Alexandru Marginean - Automated Software Transplantation

*UCL

Automated Software
Transplantation

Donor

()

Host

Organ
Vein

I=

Alexandru Marginean - Automated Software Transplantation

Video Encoder

ﬁUCL Alexandru Marginean - Automated Software Transplantation

Video Encoder

® 0

ﬁUCL Alexandru Marginean - Automated Software Transplantation

Video Encoder

«*
i =

ﬁUCL Alexandru Marginean - Automated Software Transplantation

Video Encoder

-
=

ﬁUCL Alexandru Marginean - Automated Software Transplantation

Video Encoder

n&UCL Alexandru Marginean - Automated Software Transplantation

der

ﬁUCL Alexandru Marginean - Automated Software Transplantation

Project Run g File Edit Editor # Debug

Id Selection O Execute Onew | save <2 v QtHelpDocumentation
qgthelpdocumentation.h qgthelpdocumentation.cop E3 | qgthelpplugi < > Line: 1 43 qthelpdocumentation.h 3
JECT
} public
QtHelpDocunentation(const

return QStringList(n_info.keys()).join(", *);

trings name, const QMaps

Quidget* QtHelpDocumentation: :documentatiopWidget (QNidget* parent)
{ QtHelpDocunentation(const QStrings name
Quidget* ret

if(n_info.isEmpty () { virtual gstring name() const { return n_name

ret=new QLabel(il8n("C
virtual gstring description()

NetworkAcc virtual Quidget* docunentationwidget (QNidgett parent)
(QWebPage
) const

virtual Kp: imentationProvider provider
Jap<QStri) ¢

QMap info() const { return m_infc
this, atic QtHelpPlugin® s_provider
private slots:
void jumpedTo(const QUFLE newtrl)

ipplugin.h
sts.bt ~
v 1 m_nane;
¢ c on Access: public Kind: Function string, QUrl> n_info;
Decl. string, QUFl>::const_iterator m_current
< Ae .
B n may " cti Line: 1 Col: 1

CMakeLists.txt
Qir d(dir

foreach(astr
gString filellar Q
ring filetiar A
if (1fileNane
H oebug) bool isCheckable () const
if(n_engind void setCheckable (bool)
Project Selection KDebug See also QAction::setChecked().
el

se <
Name. KDebug Show documentation for QAction::se

_engine.error() << n_engine. registeredDocunentations ()
Help found at all”

> QtHelpPlugin: : docunentationForDeclaration(KDevelop: :Declaration® dec) const

@b FindinFiles © Buld o Version Control) Code Browser) Problems @] Konsole

SCALPEL

sIJCL Alexandru Marginean - Automated Software Transplantation

C Layout
Feature?

*UCL

Bun Navigation

O Execute

op.d
app_templates
v

umentation.
h gthelpc
n qthelpnetw

]

ipplugin.h
CMakeLists.txt
formatters

Project Selection

Name

Edit Editor Code | Window

Onew [save
qthelpdocumentation.h

return QStringList(n_info.keys()).join(", *);

<2 v QtHelpDocumentation

Quidget* QtHelpDocumentation: :documentatiopWidget (QNidget* parent)

Quidget* ret
if(n_info.isEmpty () {
Fet=new QLabel (i18n("Could not find any do
} else {
bview(parent)
nage

current.key());
setCheckable(bool)
Action Ac

<

CMakelLists.txt qthelpplugin.c

if(tdirNane.isEnpty ()
QDir d(dirNane)
foreach(const Qstr
Qstring fileNar QA
ring filellai Access functions:

(1fileNane

Link (nane

public Kind: Function

KDebug () bool isCheckable () const

if(n_engine

void setCheckable (bool)

KDebug See also QAction::setChecked()

se S| n
\Debug Show documentation for QAction.

gine.error()

Help found at all*

op::IDocumentation > QtHelpPlugin

@b FindinFiles © Buld o Version Control) Code Browser) Problems @] Konsole

SCALPEL

<< n_engine. registereddo

qthelpdocumentation.cpp [qthelpplugi < > Line: 1

this

43

[@)e)
@ Debug |/ Code

qthelpdocumentation.h [

0_0BJECT

public
OtHelpDocunentation(const QString& name,
OtHelpDocumentation(const QStrings name.
virtual Qstring name() const { return m_name
virtual gstring description()
virtual Qwid * documentationiidget (QNidget* parent)

virtual Kpevelop::IDocunentationProvider* provider() const
QMap<qstring, QUrl> info() const { return n_infc

atic QtHelpPlugin® s_provider
private slots:
void jumpedTo(const QUFLE newtrl)

) m_nane;
string, Qurl> n_info;
string, QUFl>::const_iterator m_current

umentations ()

:docunent ationForDeclaration (kDevelop: :Declaration* dec) const

X!

C Call Graphs?

Alexandru Marginean - Automated Software Transplantation

C Layout
Feature?

=0
Session Project N n | Fle Edit Edior
Onew | save

qthelpdocumentation.h

return

QtHelpDocumentation

qthelpdocumentation.cpp qthelpplugi < > Line: 166 Col: 43

0).join(" A

SICINED
Review =@ Debug |/ Code

qthelpdocumentation.h £

0_0BJECT
public

C Call Graphs?

QtHelpbocunentation(const
Quidge elp entation: : documentatiofiidget (Qnid
t QtHelpDocunentation(const
Quidget* ret
virtual gstring name() const { return n_name
unentation for * n_nane)
virtual gstring description() const

nager (new HelpNetw Ma virtual Quidget* docunentationWidget (QNidget+ parent)
bP
der+ provider() const
{ return n_infc
Qstrings nane, n_info.keys()
rnativeLink* act=new QtHelp nativeLink (nane, this, static QtHelpPlugin® s_provider
private slots:
void junpedTo(const QUILE newtrl)

setCheckable(£ o) n_nane;
jec Container:) Access: String, QUrl> m_info;
Decl. string, QUrl>::const_iterator m_current;
ty holds whet! isac ction
< i state r) ssor, a
CMakeLists.txt (] qthelpplugin.c S aon tom s sy e ; ‘ gt

elpc
n gthelpnetwork.h
2 Ipplugin.

Ipplugin.h
elists.txt

property
e.isEnpty()) In some situation s ould d on the st hers
For exampl p

t
filellar Q G
filellar functions:

bool isCheckable () const
void setCheckable (bool)
Project Selection e also QActi tChecked()
Name. Show documentation for ¢

elop

) QtHelp found at al

velop: : IDocumentation > QtHelpPlugin: : documentationForDeclaration (KDevel, laration* dec) const

@b FindinFiles © Buld o Version Control) Code Browser) Problems @] Konsole

23 \-printf()

doc [git:master] $ cflow -Tnl d.c

83 +-main() <int main (int argc, char **argv) at d.c:85>
1} +-fprintf()

13 +-atoi()

13 \-printdir() <voi
23 +-getcuwd()
23 +-perror()
23 +-chdir()
+-opendir

o
|2 W
o o
)

=

rintdjr (int level, char *name) at d.c:42> (R)

Indenting using GNU Indent

howdy.c %

-0 o USCALPEL

printf (
return 0;
} return 0;

CCUTH WN — ®\0~0 U~ WN
9 (N9 (9 (N9 (A (9 (A (A A A A A A A A e O A

P T (= (= (= [(=

Bk
b

18 { 2}
rsive: see 4)

94 25

._.
~
~n

\-closedir()
tmp/cf1/doc [git:master] $

Alexandru Marginean - Automated Software Transplantation

*UCL

Kate

30 { 21 \-printf()
tmp/cf1/doc [git:master] $ cflow -Tnl d.c

1 { 83} +-main() <int main (int argc, char **argv) at d.c:85>
2 { 1} +-fprintf()
3{ 1} +-atoi()
4 { 1} \-printdir() <voi rintdir (int level, char *name) at d.c:42> (R)
5{ 2% +-getcuwd()
- - 6 { 2} +-perror()
Indenting using GNU Indent TLoa e
+-opendir
I
10 {
11§
12 §

._.
w
~

Int main ()
{ main () SCAI—PEL
printf (s a demo of GNU Indent\n"); { . L . 14 {
return 0; printf 00 e : T {

} return 0;

} 16 { 33
17§ 23
18 { 2% dir() <void printdir (int level, char *name) at d.c:42> (recu

rsive: see 4)
19 { 23 \-closedir()
tmp/cf1/doc [git:master] $

sIJCL Alexandru Marginean - Automated Software Transplantation

Kate

30 { 21 \-printf()
tmp/cf1/doc [git:master] $ cflow -Tnl d.c

1 { 83} +-main() <int main (int argc, char **argv) at d.c:85>
2 { 1} +-fprintf()
g4 1L seaei()
4 { 1} \-printdir() <voi rintdir (int level, char *name) at d.c:42> (R)
5§{ 23 +-getcuwd()
G4 2 +-perror()
74 2% +—chdir()
indening sing G ndn: 8 { +-opendir
I
10 {
11§
L

USCALPEL

dir() <void printdir (int level, char *name) at d.c:42> (recu
rsive: see 4)
19 { 23 \-closedir()
tmp/cf1/doc [git:master] $

sIJCL Alexandru Marginean - Automated Software Transplantation

Kate

LUSCALPEL

sIJCL Alexandru Marginean - Automated Software Transplantation

Kate

LUSCALPEL

sIJCL Alexandru Marginean - Automated Software Transplantation

Kate

© New L Open 4@ Previous Document & Next Document
4| vE5 ~/Development/ssBs... | [P |
cc

posix.c

id parse_function_decli
dcl(Ident*, it
knr_dcl (Ident!
typedef();
sion();

t parmdcl(Ide
dirdcl(Iden
skip_struct()
Symbol *get_symbol
maybe_parm_list

call(int
id reference(char*,

int leve
Symbol *caller;
struct obstack text stk;

int parm_level;

typedef int Stackpos[1];

TOKSTK tok
TOKSTK *token_stack;
int tos;
t curs;
t token_stack length
t token_stack increa ;

Line: 1 of 1,159 Col: 1 LINE INS

*UCL

H Save W Save As O Close

() <Symbol *get_symbol (char *name) at example.c:109
ow()
stremp()
install_ident()
globals_only()
xmalloc()
linked_list_create()
linked_list_append()
call() <void call (char *name, int line) at example.c:1128>:
add_reference() <Symbol *add_reference (char *name, int line) at
example.c:1109>:

get_symbol() <Symbol *get_symbol (char *name) at example.c:1093>

lookupCFlow
stremp()
install_ident()
globals_only()
xmalloc()
linked_list_create()
linked_list_append()
data_in_list()
linked_list_append()
cleanup stack() <void cleanup stack () at example.c:156>:

Alexandru Marginean - Automated Software Transp

Kate

= B 3 = €) 1540 3

@ @ @ callGraphoriginal.c - Kate

© New L= Open <@ Previous Document & Next Document H Save i/A Save As 9 Close

vES ~/Development/SSBS...

[Z Documents

1inc e "Interface
struct symbol {
struct table entry *owner;
Symbol *next;
struct linked list_entry *entry;
enum symtype type;
r *name;
enum symbol flag flag;
struct symbol *alias;
active;
expand_line;
token_type
r *source;
def_line;
struct linked list *ref line;
level;
r *decl;
enum storage storage;
nt arity;
nt recursive;

struct linked list *caller;
struct linked list *callee;

struct yy trans_info { flex_int32 t yy verify; flex_ int32 t yy nxt;};
struct yy buffer_state {FILE *yy input_file;

r *yy ch_buf;

r *yy buf_pos;

yy_size t yy buf size yy_n_chars;

yy_is_our_buffer;
int yy is_interactive;

int yy at_bol;

int yy bs_lineno;

Line: 53 of 3,718 Col: 13 LINE INS

parser.c UTF-8

USCALPEL

@ @ @ callGraphoriginal.c - Kate
<@ Previous Document &) Next Document

~/Development/ssBs...| | Finclude "In
struct symbol

struct table_ent
Symbol *next;
struct linked list_entry *entry;
enum symtype type;
char *name;
enum symbol flag flag;
struct symbol *alias;
t active;
expand_line;
token_type;

w[: Documents

enum storage storage;
int arity;
recursive;
size t ord;
struct linked list *calle
struct linked list *calle

Y
struct yy trans_info

ex_int32_t yy verify;
ex_int32 t yy nxt;

yy_buffer_state
*yy_input_file;
*yy_ch_buf;
char *yy buf pos;
yy_size_t yy buf size;

Line: 1 0f 4,917 Col: 1 LINE

lantation

Wl seve |

*UCL

Approacn

Stage 1 Stage 2

Vein and Organ
Backward Suite

Insertion
points Matching Table
Semantic Donor <---> Host

Analysis

Manual process Automated process

Alexandru Marginean - Automated Software Transplantation

Stage 1 - Static Analysis

slicing
in and Organ H

Backward

Insertion
points

Semantic
Analysis

sIJCL Alexandru Marginean - Automated Software Transplantation

Stage 1 - Static Analysis

slicing
in and Organ H

Backward

Insertion
points

Semantic
Analysis

sIJCL Alexandru Marginean - Automated Software Transplantation

Stage 1 - Static Analysis

slicing
in and Organ H

Backward

Insertion
points

Semantic
Analysis

sIJCL Alexandru Marginean - Automated Software Transplantation

Stage 1 - Static Analysis

slicing
in and Organ H

Backward

Insertion
points

Semantic
Analysis

sIJCL Alexandru Marginean - Automated Software Transplantation

Stage 1 - Static Analysis

slicing
in and Organ H

Backward

Insertion
points

Semantic
Analysis

sIJCL Alexandru Marginean - Automated Software Transplantation

Stage 1 - Static Analysis

slicing
in and Organ H

Backward

Matchin TR
Entry [Slicing Table ’

Insertion
points

Semantic
Analysis

sIJCL Alexandru Marginean - Automated Software Transplantation

Stage 1 - Static Analysis

Donor: X -> Host: A, B, C

in and Organ H

slicing

Backward

Matchin e
Entry [Slicing Table ’

Insertion
points

Semantic
Analysis

sIJCL Alexandru Marginean - Automated Software Transplantation

Stage 1 - Static Analysis

slicing
in and Organ H

Backward

Matchin TR
Entry [Slicing Table ’

Insertion
points

Semantic
Analysis

sIJCL Alexandru Marginean - Automated Software Transplantation

Stage 1 - Static Analysis

slicing
in and Organ H

Backward

Matchin e
Entry [Slicing Table ’

Insertion
points

Semantic
Analysis

SDG

sIJCL Alexandru Marginean - Automated Software Transplantation

Stage 1 - Static Analysis

slicing
in and Organ H

Backward

Slicing
Matchi

SDG

sIJCL Alexandru Marginean - Automated Software Transplantation

Stage 1 - Static Analysis

slicing
in and Organ H

Backward

Matchin e
Entry [Slicing Table ’

Insertion
points

Semantic
Analysis

SDG

sIJCL Alexandru Marginean - Automated Software Transplantation

Stage 2 - Gp
81| S2[Ss[8i 5] ... |80

Individual

M: V4H
|\/|2: V4'_|

Var
Matching

Ice Box Test
Suite

nts

(s s] [se] L]

Stateme

sIJCL Alexandru Marginean - Automated Software Transplantation

Stage 2 - Gp
81| S2[Ss[8i 5] ... |80

Ice Box Test
Suite

sIJCL Alexandru Marginean - Automated Software Transplantation

Stage 2 - Fitness Evaluation

ﬁUCL Alexandru Marginean - Automated Software Transplantation

Stage 2 - Fitness Evaluation

Fixed Individual
Mi: JV4P Nt

Ma: V4H
.|

Var
Matching

Stateme
nts

sIJCL Alexandru Marginean - Automated Software Transplantation

Stage 2 - Fitness Evaluation

Does it compile?

Fixed Individual

M: V4
Ma: V4H

Var
Matching

Stateme
nts
-
E
Y
@p)
!

sIJCL Alexandru Marginean - Automated Software Transplantation

Stage 2 - Fitness Evaluation

Fixed Individual

(@)
i H

SE| 2
Mo R e

| M Vit
=
b |
&N Week Proxies:

Does It executes test cases without
crashing?

sIJCL Alexandru Marginean - Automated Software Transplantation

Stage 2 - Fitness Evaluation

Fixed Individual

|\/|1: V1H
Ma: V4H

(s8] [swf]

Var
Matching

nts

Stateme

Strong Proxies: Does it
produce the correct output?

sIJCL Alexandru Marginean - Automated Software Transplantation

Stage 2 - Gp Operators

n&UCL Alexandru Marginean - Automated Software Transplantation

Stage 2 - Gp Operators

n&UCL Alexandru Marginean - Automated Software Transplantation

Stage 2 - Gp Operators

n&UCL Alexandru Marginean - Automated Software Transplantation

Stage 2 - Gp Operators

n&UCL Alexandru Marginean - Automated Software Transplantation

Stage 2 - Gp Operators

sIJCL Alexandru Marginean - Automated Software Transplantation

Stage 2 - Gp Operators

Random
Mapping Selection

sIJCL Alexandru Marginean - Automated Software Transplantation

Stage 3 - Organ Insertion

Transplantable
Organ

ORGAN_RET entry(host ST){}

Host'

Transplantable
Organ

sIJCL Alexandru Marginean - Automated Software Transplantation

Stage 3 - Organ Insertion

Transplantable
Organ

ORGAN_RET entry(host ST){}

entry(ST) Host

Transplantable
Organ

sIJCL Alexandru Marginean - Automated Software Transplantation

Stage 3 - Organ Insertion

rgan
ORGAN_RET entry(host ST){} M

Host'

Transplantable
Organ

sIJCL Alexandru Marginean - Automated Software Transplantation

Demo

Validation

4 validation steps:

Tests

Regression lests;

Augmented " Augmonted
Regression Tests;

! RegressmnTests :

Host' Host' Host!
‘ Whole \ ‘ Whole \ ‘ Whole \

Validation 1 Validation 2 Validation 3

Acceptance Tests;

Manual Validation:

sIJCL Alexandru Marginean - Automated Software Transplantation

Subject Programs

Subjects Tvpe Size Rear. |solation
|dct Donor | 2.3k - 3-5
Mytar Donor | 0.4k - 4
Cflow Donor 25Kk - 6-20
Webserver | Donor 1.7k - 3
TuxCrypt Donor | 2.7k - 4-5
Pidgin HOSt 363k 38 -
Cflow Host 25k 2 -
SOX HOsSt 43K 157 -
Case Study
X204 Donor 03K - 1
GNU Indent | Donor 2{6] - 0
GNU cflow | Donor 25Kk - 8
Kate Host 43K 42 -
VLC Host 422k 27 -

Results

Case Studies

All Test Suites Time

Donor Host Passed Regression Regression++ Acceptance Avarage

X264 VLC 1 1 1 1 26 (hours)
cflow Kate 16 20* 17 18 101
Indent Kate 18 20" 18 19 31

sIJCL Alexandru Marginean - Automated Software Transplantation

Empirical Study

All Test Suites
Donor Host Passed Regression Regression++ Acceptance
|dct Pidgin 16 2{0) 17 10
Mytar Pidgin 10 2{0) 18 20
Web Pidgin 0 2(0) 0 18
Cflow Pidgin 15 2(0) 15 16
Tux Pidgin 15 2{0) 17 16
|dct Cflow 16 17 16 16
Mytar Cflow 17 17 17 2(0)
Web Cflow 0 0 0 17
Cflow Cflow 2(0) 2(0) 2(0) 2(0)
Tux Ctlow 14 15 14 16
|dct SoX 15 18 17 16
Mytar SoX 17 17 17 20
Web SoX 0 0 0 17
Cflow SoX 14 16 15 14
Tux SOX 13 13 13 14
TOTAL 188/300 233/300 196/300 256/300

*UCL

Alexandru Marginean - Automated Software Transplantation

Publication

e Barr, E.T., Harman, M., Jia, Y., Marginean, A., Petke, J.:
Automated software transplantation. In: ISSTA (2015), to appear

e Barr, E.T., Harman, M., Jia, Y., Marginean, A., Petke, J.:
Automated software transplantation - Artifact Evaluation. In:
ISSTA15-AE , accepted

e Barr, E.T., Harman, M., Jia, Y., Marginean, A., Petke, J.:
Automated Transplantation of Call Graph and Layout Features
into Kate. In: SSBSE (2015), to appear

 Barr, E.T., Harman, M., Jia, Y., Marginean, A., Petke, J.:
USCALPEL, at http://crest.cs.ucl. ac.uk/autotransplantation/
MuScalpel.html

sIJCL Alexandru Marginean - Automated Software Transplantation

http://ac.uk/autotransplantation/MuScalpel.html

*UCL

Earl T. Barr Mark Harman Yue Jia

Publication

Automated Software Transplantation

Alexandru Marginean Justyna

CREST, University College London, Malet Place, London, WC1E 6BT, UK
{e.barr,m.harman,yue.jia,alexandru.marginean.13,j.petke}@ucl.ac.uk

ABSTRACT

Automated transplantation would open many exciting av-
enues for software development: suppose we could autotrans-
plant code from one system into another, entirely unrelated,
system. This paper introduces a theory, an algorithm, and
a tool that achieve this. Leveraging lightweight annotation,
program analysis identifies an organ (interesting behavior to
transplant); testing validates that the organ exhibits the de-
sired behavior during its extraction and after its implantation
into a host. While we do not claim automated transplanta-
tion is now a solved problem, our results are encouraging:
we report that in 12 of 15 experiments, involving 5 donors
and 3 hosts (all popular real-world systems), we successfully
autotransplanted new functionality and passed all regression
tests. Autotransplantation is also already useful: in 26 hours
computation time we successfully autotransplanted the H.264
video encoding functionality from the x264 system to the
VLC media player; compare this to upgrading x264 within
VLC, a task that we estimate, from VLC’s version history,
took human programmers an average of 20 days of elapsed,
as opposed to dedicated, time.

Categories and Subject Descriptors

D.2.13 [Software Engineering]: Reusable Software; D.2.5
[Software Engineering]: Testing and Debugging

Keywords

Automated software transplantation, autotransplantation,
genetic improvement

1. INTRODUCTION

Software engineers spend a great deal of time extracting,
porting, and rewriting existing code to extend the function-
ality of existing software systems. Currently, this is tedious,
laborious, and slow [15]. The research community has pro-
vided analyses and partial support for such manual code
reuse: for example, clone detection [5, 32, 36, 60], code

migration (38, 58], code salvaging [12], reuse [13, 14, 16],

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
ISSTA’15, July 12-17, 2015, Baltimore, MD, USA

ACM. 978-1-4503-3620-8/15/07
http://dx.doi.org/10.1145/2771783.2771796

dependence analysis [3, 22, 29, 30] and feature extraction
techniques [24, 33, 44]. However, the overall process remains
largely unautomated, particularly the critical transplantation
of code that implements useful functionality from a donor
into a target system, which we call the host.

What if we could automate the process of extracting func-
tionality from one system and transplanting it into another?
This is the goal we set ourselves in this paper. That is, we are
the first to develop and evaluate techniques to implement au-
tomated software transplantation from one system to another,
which one of the authors proposed (hitherto unimplemented
and unevaluated) in the keynote of the 2013 WCRE [28].

A programmer must first identify the entry point of code
that implements a feature of interest. Given an entry point
in the donor and a target implantation point in the host
program, the goal of automated transplantation is to identify
and extract an organ, all code associated with the feature
of interest, then transform it to be compatible with the
name space and context of its target site in the host. The
programmer also supplies test suites that guide the search for
donor code modifications required to make it fully executable
(and pass all test cases) when deployed in the host.

This is a challenging vision of transplantation, because
code from one system is unlikely to even compile when it is
re-located into an unrelated foreign system without extensi
modification, let alone execute and pass test cases. The
traction of the code also involves identifying all semanti
required code and the successful insertion of the code organ
into the host requires nontrivial modifications to the organ to
ensure it adds the required feature without breaking existing
functionality. In this paper, we present results that demon-
strate that this vision of automated software transplantation
is indeed achievable, efficient and potentially useful.

Feature identification is well studied [14, 16, 58]. Extract-
ing a component of ¢ tem, given the identification of a
suitable feature is also well studied, through work on slicing
and dependence analysis [22, 24, 29, 33, 44]. The challenges
of automatically extracting a feature from one system, trans-
planting it into an entirely different system, and usefully
executing it in the organ beneficiary, however, have not pre-
viously been studied in the literature.

We developed p/Trans, an algorithm for automated software
transplantation, based on a new kind of genetic program-
ming, augmented by a novel form of program slicing. pTrans
synergizes anal and testing: analysis extracts an ‘organ’,
an executable slice from a donor; testing guides all phases
of autotransplantation — identifying the organ in the donor,
minimizing and placing the organ into an ice-box, and fi-

Automated Transplantation of Call Graph and
Layout Features into Kate

Alexandru Marginean, Earl T. Barr, Mark Harman, and Yue Jia

UCL, Department of Computer Science, CREST Centre

Abstract. We report the automated transplantation of two features
currently missing from Kate: call graph generation and automatic layout
for C programs, which have been requested by users on the Kate devel-
opment forum. Our approach uses a lightweight annotation system with
Search Based techniques augmented b, atic analysis for automated
transplantation. The results are promising: on average, our tool requires
101 minutes of standard desktop machine time to transplant the call
graph feature, and 31 minutes to transplant the layout feature. We re-
peated each experiment 20 times and validated the resulting transplants
using unit, regression and acceptance test suites. In 34 of 40 experiments
conducted our search-based autotransplantation tool, uSCALPEL, was
able to successfully transplant the new functionality, passing all tests.

1 Introduction

We recently introduced a search based technique for automated software trans-
plantation [2,7]. Guided by dependence analysis and testing, our approach uses a
variant of genetic programming to identify and extract useful functionality from a
donor program, and transplant it into a (possibly unrelated) host program. We im-
plemented our approach as a tool called pSCALPEL, which is publicly available [1].

In this challenge paper, we illustrate the way in which realistic, scalable, and
useful real-world transplantation can be achieved using SCALPEL. We apply our
tool to the SSBSE 2015 Challenge program Kate', a popular text editor based on
KDE. Its rich feature set and available plugins make it a popular, lightweight IDE
for C developers. We perform two automated transplantations using @SCALPEL.
In the first one, we transplant call graph drawing ability from the GNU utility pro-
gram cflow, to augment Kate with the ability to construct and display call graphs.

This is a useful feature for a lightweight IDE, like Kate, and would clearly be
nontrivial to implement from scratch. Using our search based autotransplantation,
1SCALPEL, the developer merely needs to identify the entry point of the source
code in the donor program (cflow in this case) and the tool will do the rest; ex-
tracting the relevant code, matching names spaces between host and donor and ex-
ecuting regressions, unit and acceptance tests. Like much previous work on genetic
programming |12], our approach relies critically on the availability of high quality
test suites. We do not directly address this issue in the present paper, but believe

! http://kate-editor.org

Alexandru Marginean - Automated Software Transplantation

http://ac.uk/autotransplantation/MuScalpel.html

Automated Software
Transplantation

Approach

Donor Stage 1
\ Vein and Organ
! Backward Suite
H OSt ! Donor Slicing

v

Transplantable
Entry | Slicing Organ
points

H 1
. Insertion ost
Ve I n points Matching Table Transplantable
Semantic | Donor <---> Host Organ
> E—

|
|
\

Organ

I
o
(7]
-

Analysis

Manual process Automated process

lp
tUCL Alexandru Marginean - Automated Software Transplantation tUCL Alexandru Marginean - Automated Software Transplantation
4 validation steps: Case Studies
R) T " All Test Suites Time
eqgression [esls; _
9 ’ Regression : Donor Host Passed Regression Regression++ Acceptance Avarage
x264 VLC 1 1 1 1 26 (hours)
Au g m e nte d Reglrjegsn;i%r:'?:sts ! ! Acceptance Tests | f " 16 20 17 18 101
: : ' b : cflow ate *

Regression Tests; !

Whole Whole Whole Indent Kate 18 20* 18 19 31

Validation 1 Validation 2 Validation 3

Acceptance Tests;

Manual Validation:

o I [od B Alexandru Marginean - Automated Software Transplantation o I [od B Alexandru Marginean - Automated Software Transplantation

