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Russell’s Paradox

Let R be the set of all sets that are not 
members of themselves. Is R a 
member of itself?  

• If so, this contradicts with R’s definition 

• If not, by definition, R should contain 
itself 

Formalism in naïve set theory:  

Let R = {x | x ∉ x}, then R ∈ R ⟺ R ∉ R
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and only those men who do not shave themselves. 
Who shaves the barber?

• If the barber does not shave himself, according to the 
rule he must shave himself.

• If he does shave himself, according to the rule he will 
not shave himself.

Naïve set theory  
contains contradiction



Types to the Rescue

Constructs a hierarchy of types.  

Any object is built only from those of higher types, 
which prevents circular referencing. 

1) a barber as a citizen of the town, who shaves himself 

and 

2) a barber as a professional, who shaves others 

are of different types.



Type Theory

An alternative to set theory as a foundation for 
mathematics, in which each term has a type 

Simply typed λ-calculus is one of the many forms of 
type theory, which consists of   

• Base types 

• Only one type constructor, ⟶, used to model the type 
of functions
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Type System

A tractable method that assigns types to syntactic 
phrases that compose a program, and automatically 
checks whether the usage of these phrases comply 
with their types 

An over-approximation of the run-time behaviour of 
program terms



Static & Dynamic Type Checking

Source 
Code ExecutableCompilation Execution



Static & Dynamic Type Checking

Source 
Code ExecutableCompilation Execution

Static type
checking



Static & Dynamic Type Checking

Source 
Code ExecutableCompilation Execution

Static type
checking

Early error detection



Static & Dynamic Type Checking

Source 
Code ExecutableCompilation Execution

Static type
checking

Early error detection

Increased run-time 
efficiency



Static & Dynamic Type Checking

Source 
Code ExecutableCompilation Execution

Static type
checking

Early error detection

Increased run-time 
efficiency

Better documentation



Static & Dynamic Type Checking

Source 
Code ExecutableCompilation Execution

Static type
checking

Dynamic
type checking

Early error detection

Increased run-time 
efficiency

Better documentation



Static & Dynamic Type Checking

Source 
Code ExecutableCompilation Execution

Static type
checking

Dynamic
type checking

Early error detection Reduced 
implementation 
overheadIncreased run-time 

efficiency

Better documentation



Static & Dynamic Type Checking

Source 
Code ExecutableCompilation Execution

Static type
checking

Dynamic
type checking

Early error detection Reduced 
implementation 
overheadIncreased run-time 

efficiency

Better documentation Better expressibility



Why We Care

Generally, almost all real-world programming 
languages have type systems which offers multiple 
benefits.  

Specifically for GI/GP, type systems have the promise 
to guide the search and avoid the construction of 
invalid individuals.
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Java’s Static Type Checking

Illegal. Compiler thinks new B().me()  
returns an object of class A, but at run- 
time, this returns an objects of class B. 

Legal.

Legal.

Legal. But throws cast  
exception at run-time.



Hindley Milner’s Type System

One of the most famous type systems for the typed λ-
calculus with parametric polymorphism: 

• A fast (nearly linear time) algorithm that 
automatically infer types of the constructs from their 
usage 

• A set of typing rules, e.g. 



HM Example

Let us assume that we have a function myFunc of 
type: 

myFunc : ADT ⟶ int 

And we want to infer the type of a function someFunc 

someFunc (x) + myFunc (x)
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someFunc (x) + myFunc (x) 

ADT ⟶ int
x : ADT

someFunc : ADT ⟶ int 

+: int ⟶ int ⟶ int 



Polymorphism

The provision of 
a single interface 
to entities of 
different types 



Polymorphism

Parametric

Ad Hoc

Inclusion



Parametric Polymorphism

Rank-N polymorphic function is a function whose  
parameters are Rank-(N-1) polymorphic

Generic programming in programming languages



Ad Hoc Polymorphism

Function overloading in programming languages
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Inheritance creates inclusion polymorphism (subtyping)



Inclusion Polymorphism

Inheritance creates inclusion polymorphism (subtyping)

Cat < Animal 

Dog < Animal



HM Limitations

• Limited to rank 1 parametric polymorphism 

• Does not support ad hoc polymorphism 

• No notion of subtyping 
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Limitation Example Two
In HM, an assumption set may contain at most one typing 
assumption for an construct 

The operator < , for example, has types: 

char ⟶ char ⟶ bool 

int ⟶ int ⟶ bool 

But it does not have the type:  

∀α.α ⟶ α ⟶ bool 

So any single typing is either too narrow or too wide



Intersection Types

Allow a term to have multiple types by introducing a 
type constructor ⋀, a universal type ω used for 
untypable constructs, and the following typing rules: 

In practice, intersection types enable function 
overloading.



Union Types

The dual notion of intersection types, which 
introduces a type constructor ⋁ and similar typing 
rules. 

In C / C++, union types are the construct union
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Retype

A general tool that automatically replaces certain 
types, together with the corresponding operations if 
necessary, of a program with new ones.   



Potential Applications

Reducing energy consumption 

Precision tracking and improvement for FP programs 

New mutation operators in GI/GP 

Taint analysis 

Symbolic execution 

Auto-transplantation
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