
Why Types Matter

Zheng Gao

CREST, UCL

Russell’s Paradox

Let R be the set of all sets that are not
members of themselves. Is R a
member of itself?

• If so, this contradicts with R’s definition

• If not, by definition, R should contain
itself

Formalism in naïve set theory:

Let R = {x | x ∉ x}, then R ∈ R ⟺ R ∉ R

The Barber Paradox

There is a town with a male barber who shaves all
and only those men who do not shave themselves.
Who shaves the barber?

The Barber Paradox

There is a town with a male barber who shaves all
and only those men who do not shave themselves.
Who shaves the barber?

• If the barber does not shave himself, according to the
rule he must shave himself.

The Barber Paradox

There is a town with a male barber who shaves all
and only those men who do not shave themselves.
Who shaves the barber?

• If the barber does not shave himself, according to the
rule he must shave himself.

• If he does shave himself, according to the rule he will
not shave himself.

The Barber Paradox

There is a town with a male barber who shaves all
and only those men who do not shave themselves.
Who shaves the barber?

• If the barber does not shave himself, according to the
rule he must shave himself.

• If he does shave himself, according to the rule he will
not shave himself.

Naïve set theory
contains contradiction

Types to the Rescue

Constructs a hierarchy of types.

Any object is built only from those of higher types,
which prevents circular referencing.

1) a barber as a citizen of the town, who shaves himself

and

2) a barber as a professional, who shaves others

are of different types.

Type Theory

An alternative to set theory as a foundation for
mathematics, in which each term has a type

Simply typed λ-calculus is one of the many forms of
type theory, which consists of

• Base types

• Only one type constructor, ⟶, used to model the type
of functions

The Evolution of Types

t

The Evolution of Types

t

The Evolution of Types

t

The Evolution of Types

t

The Evolution of Types

t

The Evolution of Types

t

Type System

A tractable method that assigns types to syntactic
phrases that compose a program, and automatically
checks whether the usage of these phrases comply
with their types

An over-approximation of the run-time behaviour of
program terms

Static & Dynamic Type Checking

Source
Code ExecutableCompilation Execution

Static & Dynamic Type Checking

Source
Code ExecutableCompilation Execution

Static type
checking

Static & Dynamic Type Checking

Source
Code ExecutableCompilation Execution

Static type
checking

Early error detection

Static & Dynamic Type Checking

Source
Code ExecutableCompilation Execution

Static type
checking

Early error detection

Increased run-time
efficiency

Static & Dynamic Type Checking

Source
Code ExecutableCompilation Execution

Static type
checking

Early error detection

Increased run-time
efficiency

Better documentation

Static & Dynamic Type Checking

Source
Code ExecutableCompilation Execution

Static type
checking

Dynamic
type checking

Early error detection

Increased run-time
efficiency

Better documentation

Static & Dynamic Type Checking

Source
Code ExecutableCompilation Execution

Static type
checking

Dynamic
type checking

Early error detection Reduced
implementation
overheadIncreased run-time

efficiency

Better documentation

Static & Dynamic Type Checking

Source
Code ExecutableCompilation Execution

Static type
checking

Dynamic
type checking

Early error detection Reduced
implementation
overheadIncreased run-time

efficiency

Better documentation Better expressibility

Why We Care

Generally, almost all real-world programming
languages have type systems which offers multiple
benefits.

Specifically for GI/GP, type systems have the promise
to guide the search and avoid the construction of
invalid individuals.

Java’s Static Type Checking

Suppose we have:

Java’s Static Type Checking

Java’s Static Type Checking

Illegal. Compiler thinks new B().me()
returns an object of class A, but at run-
time, this returns an objects of class B.

Java’s Static Type Checking

Illegal. Compiler thinks new B().me()
returns an object of class A, but at run-
time, this returns an objects of class B.

Legal.

Java’s Static Type Checking

Illegal. Compiler thinks new B().me()
returns an object of class A, but at run-
time, this returns an objects of class B.

Legal.

Legal.

Java’s Static Type Checking

Illegal. Compiler thinks new B().me()
returns an object of class A, but at run-
time, this returns an objects of class B.

Legal.

Legal.

Legal. But throws cast
exception at run-time.

Hindley Milner’s Type System

One of the most famous type systems for the typed λ-
calculus with parametric polymorphism:

• A fast (nearly linear time) algorithm that
automatically infer types of the constructs from their
usage

• A set of typing rules, e.g.

HM Example

Let us assume that we have a function myFunc of
type:

myFunc : ADT ⟶ int

And we want to infer the type of a function someFunc

someFunc (x) + myFunc (x)

Step One

someFunc (x) + myFunc (x)

Step One

someFunc (x) + myFunc (x)

x : α

Step Two

someFunc (x) + myFunc (x)

ADT ⟶ intx : α

Step Two

someFunc (x) + myFunc (x)

ADT ⟶ int

α = ADT

x : α

Step Two

someFunc (x) + myFunc (x)

ADT ⟶ int

α = ADT

x : α

x : ADT

Step Three

someFunc (x) + myFunc (x)

ADT ⟶ int
x : ADT

Step Three

someFunc (x) + myFunc (x)

ADT ⟶ int
x : ADT

+: int ⟶ int ⟶ int

Step Three

someFunc (x) + myFunc (x)

ADT ⟶ int
x : ADT

someFunc : ADT ⟶ int

+: int ⟶ int ⟶ int

Polymorphism

The provision of
a single interface
to entities of
different types

Polymorphism

Parametric

Ad Hoc

Inclusion

Parametric Polymorphism

Rank-N polymorphic function is a function whose
parameters are Rank-(N-1) polymorphic

Generic programming in programming languages

Ad Hoc Polymorphism

Function overloading in programming languages

Inclusion Polymorphism

Inheritance creates inclusion polymorphism (subtyping)

Inclusion Polymorphism

Inheritance creates inclusion polymorphism (subtyping)

Cat < Animal

Dog < Animal

HM Limitations

• Limited to rank 1 parametric polymorphism

• Does not support ad hoc polymorphism

• No notion of subtyping

Limitation Example One

Suppose we have subtyping B < A, any function that
takes arguments of type A is expected to takes
arguments of type B as well.

someFunc (x) + myFunc (x)

ADT ⟶ int

α = ADT ???

x : α

x : ADT ???

Limitation Example One

Suppose we have subtyping B < A, any function that
takes arguments of type A is expected to takes
arguments of type B as well.

someFunc (x) + myFunc (x)

ADT ⟶ int

α = ADT ???

x : α

x : ADT ???

Limitation Example Two
In HM, an assumption set may contain at most one typing
assumption for an construct

The operator < , for example, has types:

char ⟶ char ⟶ bool

int ⟶ int ⟶ bool

But it does not have the type:

∀α.α ⟶ α ⟶ bool

So any single typing is either too narrow or too wide

Intersection Types

Allow a term to have multiple types by introducing a
type constructor ⋀, a universal type ω used for
untypable constructs, and the following typing rules:

In practice, intersection types enable function
overloading.

Union Types

The dual notion of intersection types, which
introduces a type constructor ⋁ and similar typing
rules.

In C / C++, union types are the construct union

Example
Consider the following code snippet in C++:

The type of function foo would be:

((int ⋁ ADT) ⟶ int ⟶ void) ⋀ ((int ⋁ ADT) ⟶ float ⟶ void)

Example
Consider the following code snippet in C++:

The type of function foo would be:

((int ⋁ ADT) ⟶ int ⟶ void) ⋀ ((int ⋁ ADT) ⟶ float ⟶ void)

Example
Consider the following code snippet in C++:

The type of function foo would be:

((int ⋁ ADT) ⟶ int ⟶ void) ⋀ ((int ⋁ ADT) ⟶ float ⟶ void)

Example
Consider the following code snippet in C++:

The type of function foo would be:

((int ⋁ ADT) ⟶ int ⟶ void) ⋀ ((int ⋁ ADT) ⟶ float ⟶ void)

Example
Consider the following code snippet in C++:

The type of function foo would be:

((int ⋁ ADT) ⟶ int ⟶ void) ⋀ ((int ⋁ ADT) ⟶ float ⟶ void)

Retype

A general tool that automatically replaces certain
types, together with the corresponding operations if
necessary, of a program with new ones.

Potential Applications

Reducing energy consumption

Precision tracking and improvement for FP programs

New mutation operators in GI/GP

Taint analysis

Symbolic execution

Auto-transplantation

Intersection Types in Retype
We use intersection types to cleanly model function
overloading, because Retype may generate new overloads
of an existing operator.

Consider the following code snippet:

Assumption: an external function ext_func of type int ⟶ int

Objective: retype int to ADT

Intersection Types in Retype
We use intersection types to cleanly model function
overloading, because Retype may generate new overloads
of an existing operator.

Consider the following code snippet:

Assumption: an external function ext_func of type int ⟶ int

Objective: retype int to ADT

Before retyping

Intersection Types in Retype
We use intersection types to cleanly model function
overloading, because Retype may generate new overloads
of an existing operator.

Consider the following code snippet:

Assumption: an external function ext_func of type int ⟶ int

Objective: retype int to ADT

+: int ⟶ int ⟶ int

Before retyping

Intersection Types in Retype
We use intersection types to cleanly model function
overloading, because Retype may generate new overloads
of an existing operator.

Consider the following code snippet:

Assumption: an external function ext_func of type int ⟶ int

Objective: retype int to ADT

+: int ⟶ int ⟶ int

+: int ⟶ int ⟶ int

Before retyping

Intersection Types in Retype
We use intersection types to cleanly model function
overloading, because Retype may generate new overloads
of an existing operator.

Consider the following code snippet:

Assumption: an external function ext_func of type int ⟶ int

Objective: retype int to ADT

+: ADT ⟶ ADT ⟶ ADT

+: ADT ⟶ int ⟶ ADT

After retyping

