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Application of Information 
Theory to Fault 
Localisation

or
“How I learnt to stop 
worrying and love the bomb 
entropy”
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H(
X
)
=

�
X

x
2
X

p
(
x
)
l
o
g

2
p
(
x
)



This talk is…

❖ Not a theoretical masterclass on application of Shannon 
Entropy to software engineering, unfortunately

❖ Rather a story of a clueless software engineer who learnt 
to appreciate the power of information theory



The Problem Domain

❖ Fault Localisation: given 
observations from test 
execution (which includes both 
passing and failing test cases), 
identify where the faulty 
statement lies.



Spectra Based Fault Localisation

ef � ep
ep + np + 1

Formula (Suspiciousness)

Ranking

Program
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to check



Structural Test Test Test Spectrum Tarantula Rank
Elements t1 t2 t3 ep ef np nf

s1 • 1 0 0 2 0.00 9
s2 • 1 0 0 2 0.00 9
s3 • 1 0 0 2 0.00 9
s4 • 1 0 0 2 0.00 9
s5 • 1 0 0 2 0.00 9
s6 • • 1 1 0 1 0.33 4
s7 (faulty) • • 0 2 1 0 1.00 1
s8 • • 1 1 0 1 0.33 4
s9 • • • 1 2 0 0 0.50 2

Result P F F

Spectra-Based Fault Localisation
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How do we evaluate these?
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Expense Metric

❖ Assumes that the developer 
checks the ranking from top to 
bottom

❖ The higher the faulty statement 
is ranked, the earlier the fault is 
found
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(gp add), subtraction (gp sub), and multiplication (gp mul) do not require any
treatment, because these operations cannot result in numerical exceptions. The
division operator gp div will return 1 when division by zero error is expected.
Similarly, the square root operator gp sqrt uses the absolute value of the given
input. For terminal symbols, we use the program spectra data {e

p

, e

f

, n

p

, n

f

},
as well as one constant, 1.

Table 3. List of GP operators

Operator Node Definition

gp add(a, b) a + b

gp sub(a, b) a - b

gp mul(a, b) ab

gp div(a, b) 1 if b = 0, a

b

otherwise
gp sqrt(a)

p
|a|

3.2 Fitness Function

The aim of risk evaluation formula is not only to assign high risk value to the
faulty statement, but also to ensure that the assigned high risk value results
in a high ranking of the faulty statement. That is, the performance of a risk
evaluation formula is measured by the relative position of the faulty statement
when ranked by the formula.

In literature, this relative measurement is often referred to as the Expense
metric [21], which is a normalised ranking of the faulty statement. Given a risk
evaluation formula ⌧ , a program p, and a fault b in p, the Expense metric E is
calculated as in Equation 2:

E(⌧, p, b) =
Ranking of b according to ⌧

Number of statements in p

⇤ 100 (2)

Expense is an a-posteriori, evaluative metric: it can be calculated only when
the faulty statement is known. Because we are evolving a risk evaluation formula
from locations of the known faults, Expense can be used as a fitness function. To
avoid over-fitting to the location of a specific fault, we calculate Expense metric
for a candidate formula using multiple faults from di↵erent programs and take
the average as the fitness function. For a set of n known faults B = {b1, . . . , bn}
from corresponding n programs P = {p1, . . . , pn}, the fitness value of a candidate
risk evaluation formula ⌧ is calculated as follows:

fitness(⌧, B, P ) =
1

n

nX

i=1

E(⌧, p
i

, b

i

) (to be minimised) (3)

Depending on the risk evaluation formula, multiple statements may get as-
signed the same risk evaluation value and, thereby, tie in the ranking. Because it
is not immediately clear what will be the appropriate tie-breaker for a candidate
formula, we do not break ties and assign the most conservative ranking to all



Does every test execution help you?

❖ When a statement is executed by a failing test, we 
suspect it more; by a passing test, we suspect it less.

❖ Ideally, we want the failing test to only execute the 
faulty statement, which is not possible of course.

❖ Practically, we want the subset of test runs that gives us 
the most distinguishing power, and we want this as 
early as possible.



What is the information gain of 
executing one more test?



PTi(B(sj)) =
⌧(sj |Ti)Pm
j=1 ⌧(sj |Ti)

Convert suspiciousness
into probability

HTi(S) = �
mX

j=1

PTi(B(sj)) · logPTi(B(sj))
Compute the Shannon Entropy
of Fault Locality

PTi+1(B(sj)) = PTi+1(B(sj)|F (ti+1)) · ↵+

PTi+1(B(sj)|¬F (ti+1)) · (1� ↵)
Assuming the failure rate observed
so far, compute lookahead P

We can predict the information gain of a test case!



grep, v3, F_KP_3
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1.
0

Su
sp

ic
io

us
ne

ss

FLINT
TCP
Random

0 20 40 60 80 100

Percentage of Executed Tests

−1
5

−5
0

5
10

Ex
pe

ns
e 

R
ed

uc
tio

n

Exp. Reduction FLINT
Exp. Reduction Greedy

flex, v5, F_AA_4
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sed, v2, F_AG_19
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Lessons Learned #1

❖ Probabilistic view works! Even when there are some 
wrinkles in your formulations.

❖ Software artefacts tend to exhibit continuity (e.g. 
coverage of a test case does not change dramatically 
between versions, etc). This helps the point 1.



Problem Solved…?

❖ Various empirical study established partial rankings 
between formulas at first.

❖ Then a theoretical study proved the dominance between 
formulas and their performance in Expense metrics.



But then machines arrived.

Aside: we also automatically evolved formulas using GP, which we then proved 
cannot be bettered by humans. So technically machines arrived twice.



Machine Based Evaluation

❖ Qi et al. took a backward 
approach

❖ Use suspicious score as weights 
to mutate program states until 
Genetic Programming can 
repair the fault.

❖ The better the localisation, the 
quicker the repair will be found.



Strange Results

❖ Theory says Jaccard formula is worse than Op2.

❖ But machines found it much easier to repair programs 
when using the localisation from Jaccard.

❖ Why?



Abstraction destroys Information

❖ Expense metric assumes linear 
consumption of the result (i.e. 
developer checks statements 
following the ranking).

❖ GP consumes raw 
suspiciousness numbers, which 
is a much richer source of 
information.

<

Same ranking, completely different
amount of information.



New Evaluation Metric

❖ Following the way we 
predicted information yield, 
we should be able to describe 
the true fault locality as a 
probability distribution.

❖ Subsequently, measure the 
cross-entropy between the true 
distribution and one generated 
by any technique.

to the likelihood of the statement containing the fault, we
convert the suspiciousness score given by an FL technique,
⌧ : S ! [0, 1], into the probability of any member of S
containing the fault, P⌧ (s), as follows:

P⌧ (si) =
⌧(si)Pn
i=1 ⌧(si)

, (1  i  n) (3)

This converts suspiciousness scores given by any ⌧ (includ-
ing L) into a probability distribution, P⌧ . The metric we
propose is the Kullback-Leibler divergence [16] of P⌧ from
PL, denoted as DKL(PL||P⌧ ): it measures the information
loss that happens when using P⌧ instead of PL and is
calculated as follows:

DKL(PL||P⌧ ) =
X

i

ln
PL(si)

P⌧ (si)
PL(si) (4)

We call this as Locality Information Loss (LIL). Kullback-
Leibler divergence between two given probability distribu-
tion P and Q requires the following: both P and Q should
sum to 1, and Q(si) = 0 implies P (si) = 0. We satisfy the
former by the normalization in Equation 3 and the latter by
always substituting 0 with ✏ after normalizing ⌧ 2 (because
we cannot guarantee the implication in our application).
When these properties are satisfied, DKL(PL||P⌧ ) becomes
0 when PL and P⌧ are identical. As with the Expense
metric, the lower the LIL value is the more accurate the
FL technique is. Based on Information Theory, LIL has the
following strengths compared to the Expense metric:

• Expressiveness: unlike the Expense metric that only
concerns the actual faulty statement, LIL also reflects
how well the suspiciousness of non-faulty statements
have been supressed by an FL technique. That is, LIL
can be used to explain the results of Qi et al. [23]
quantitatively.

• Flexibility: unlike the Expense metric that only con-
cerns a single faulty statement, LIL can handle multiple
locations of faults. For m faults (or for a fault that
consists of m different locations), the distribution PL
will simply show not one but m spikes, each with 1

m
as height.

• Applicability: Expense metric is tied to FL techniques
that produce rankings, whereas LIL can be applied to
any FL technique. If a technique assigns suspiciousness
scores to statements, it can be converted into P⌧ ; if a
technique simply presents one or more statements as
candidate fault location, P⌧ can be formulated to have
corresponding peaks.

IV. EXPERIMENTAL SETUP

We have designed the following three research questions
to evaluate the effectiveness of MUSE in terms of the

2
✏ should be smaller than the smallest normalized non-zero suspicious-

ness score by ⌧ .

Expense metric [18] and the LIL metric (Section III):

RQ1. Foundation: How many test results change from
failure to pass and vice versa between before and after on a
mutant generated by mutating a faulty statement, compared
with a mutant generated by mutating a correct one?

RQ1 is to validate the conjectures in Section II-A, on
which MUSE depends. If these conjectures are valid (i.e.,
more failing test cases become passing after mutating the
faulty statement than a correct one, and more passing test
cases become failing after mutating a correct statement than
the faulty one), we can expect that MUSE will localize a
fault precisely.

RQ2. Precision: How precise is MUSE, compared with
Jaccard, Ochiai, and Op2 in terms of the % of executed
statements examined to localize a first fault?

Precision in terms of the % of program statements to be
examined is the traditional evaluation criteria for fault local-
ization techniques. RQ2 evaluates MUSE with the Expense
metric against the three widely studied SBFL techniques –
Jaccard, Ochiai, and Op2. Op2 [19] is proven to perform
well in Expense metric; Ochiai [20] performs closely to Op2,
while Jaccard [10] shows good performance when used with
automated program repair [23].

RQ3. Information Loss: How precise is MUSE, compared
with Jaccard, Ochiai, and Op2 in terms of the Locality
Information Loss (LIL) metric?

RQ3 evaluates the precision of MUSE with the LIL metric
introduced in Section III against the three SBFL techniques
(Jaccard, Ochiai, and Op2). The smaller the LIL value is,
the more precise the FL technique is.

To answer the research questions, we performed a se-
ries of experiments by applying Jaccard, Ochiai, Op2, and
MUSE to the 14 faulty versions in five real world C
programs. The following subsections describe the details of
the experiments.

A. Subject Programs

For the experiments, we used five non-trivial real-world
programs including flex version 2.4.7, grep version 2.2,
gzip version 1.1.2, sed version 1.18, and space, all of
which are from the SIR benchmark suite [4].

Table I describes the target programs including their
sizes in Lines of Code, the faulty versions used, and the
numbers of failing and passing test cases for each program
version/fault pair. From the base versions listed above, we
randomly selected three faulty versions from each program
except grep where a failure is detected only in two faulty
versions by the used test suite. grep v3 and space
v19 have multiple faults and the other versions have one
fault per each version. The fault ID of each version is
presented in Table I (For the rest of the paper, we refer to
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Figure 2: Framework of MUtation-baSEd fault localization technique (MUSE)
D. MUSE Framework

Figure 2 shows the framework of MUtation-baSEd fault
localization technique (MUSE). There are three major
stages: selection of statements to mutate, testing of the
mutants, and calculation of the suspiciousness scores.
Step 1: MUSE receives a target program P and a test
suite T . After executing T on P , MUSE selects the target
statements, i.e. the statements of P that are executed by at
least one failing test case in T . We focus on only these
statements as those not covered by any failing tests, can be
considered not faulty with respect to T .
Step 2: MUSE generates mutant versions of P by mutating
each of the statements selected at Step 1. MUSE may
generate multiple mutants from a single statement since one
statement may contain multiple mutation points [8]. MUSE
tests all generated mutants with T and records the results.
Step 3: MUSE compares the test results of T on P with the
test results of T on all mutants. This produces the weight
↵, based on which MUSE calculates the suspiciousness of
the target statements of P .

III. LIL: LOCALITY INFORMATION LOSS

The output of fault localization techniques can be con-
sumed by either human developers or automated program re-
pair techniques. Expense [18] metric measures the portion of
program statements that need to be inspected by developers
until the localization of the fault. It has been widely adopted
as an evaluation metric for FL techniques [13, 19, 31] as well
as a theoretical framework that showed hierarchies between
SBFL techniques [28, 29]. However, the Expense metric has
been criticised for being unrealistic to be used by a human
developer directly [22].

In an attempt to evaluate the precision of SBFL tech-
niques, Qi et al. [23] compared SBFL techniques by mea-
suring the Number of Candidate Patches (NCP) generated
by GenProg [25] automated program repair tool, with the
given localization information.1 Automated program repair
techniques tend to bypass the ranking and directly use the

1Essentially this measures the number of fitness evaluation for the
Genetic Programming part of GenProg; hence the lower the NCP score
is, the more efficient GenProg becomes, and in turn the more effective the
given localization technique is.

suspiciousness scores of each statement as the probability
of mutating the statement (expecting that mutating a highly
suspicious statement is more likely to result in a potential
fix) [6, 25]. An interesting empirical observation by Qi
et al. [23] is that Jaccard [10] produced lower NCP than
Op2 [19], despite having been proven to always produce
a lower ranking for the faulty statement than Op2 [28].
This is due to the actual distribution of the suspiciousness
score: while Op2 produced higher ranking for the faulty
statement than Jaccard, it assigned almost equally high sus-
piciousness scores to some correct statements. On the other
hand, Jaccard assigned much lower suspiciousness scores
to correct statements, despite ranking the faulty statement
slightly lower than Op2.

This illustrates that evaluation and theoretical analysis
based on the linear ranking model is not applicable to
automated program repair techniques. LIL metric can mea-
sure the aptitude of FL techniques for automated repair
techniques as it measures the effectiveness of localization
in terms of information loss rather than the behavioural cost
of inspecting a ranking of statements. LIL metric essentially
captures the essence of the entropy-based formulation of
fault localization [32] in the form of an evaluation metric.

We propose a new evaluation metric that does not suffer
from this discrepancy between two consumption models.
Let S be the set of n statements of the Program Under
Test, {s1, . . . , sn}, sf , (1  f  n) being the single faulty
statement. Without losing generality, we assume that output
of any fault localization technique ⌧ can be normalized to [0,
1]. Now suppose that there exists an ideal fault localization
technique, L, that can always pinpoint sf as follows:

L(si) =
⇢

1 (si = sf )
✏ (0 < ✏ ⌧ 1, si 2 S, si 6= sf )

(2)

Note that we can convert outputs of FL techniques that do
not use suspiciousness scores in a similar way: if a technique
⌧ simply reports a set C of m statements as candidate faulty
statements, we can set ⌧(si) = 1

m when si 2 C and ⌧(si) =
✏ when si 2 S \ C.

We now cast the fault localization problem in a proba-
bilistic framework as in the previous work [32]. Since the
suspiciousness score of a statement is supposed to correlate

to the likelihood of the statement containing the fault, we
convert the suspiciousness score given by an FL technique,
⌧ : S ! [0, 1], into the probability of any member of S
containing the fault, P⌧ (s), as follows:

P⌧ (si) =
⌧(si)Pn
i=1 ⌧(si)

, (1  i  n) (3)

This converts suspiciousness scores given by any ⌧ (includ-
ing L) into a probability distribution, P⌧ . The metric we
propose is the Kullback-Leibler divergence [16] of P⌧ from
PL, denoted as DKL(PL||P⌧ ): it measures the information
loss that happens when using P⌧ instead of PL and is
calculated as follows:

DKL(PL||P⌧ ) =
X

i

ln
PL(si)

P⌧ (si)
PL(si) (4)

We call this as Locality Information Loss (LIL). Kullback-
Leibler divergence between two given probability distribu-
tion P and Q requires the following: both P and Q should
sum to 1, and Q(si) = 0 implies P (si) = 0. We satisfy the
former by the normalization in Equation 3 and the latter by
always substituting 0 with ✏ after normalizing ⌧ 2 (because
we cannot guarantee the implication in our application).
When these properties are satisfied, DKL(PL||P⌧ ) becomes
0 when PL and P⌧ are identical. As with the Expense
metric, the lower the LIL value is the more accurate the
FL technique is. Based on Information Theory, LIL has the
following strengths compared to the Expense metric:

• Expressiveness: unlike the Expense metric that only
concerns the actual faulty statement, LIL also reflects
how well the suspiciousness of non-faulty statements
have been supressed by an FL technique. That is, LIL
can be used to explain the results of Qi et al. [23]
quantitatively.

• Flexibility: unlike the Expense metric that only con-
cerns a single faulty statement, LIL can handle multiple
locations of faults. For m faults (or for a fault that
consists of m different locations), the distribution PL
will simply show not one but m spikes, each with 1

m
as height.

• Applicability: Expense metric is tied to FL techniques
that produce rankings, whereas LIL can be applied to
any FL technique. If a technique assigns suspiciousness
scores to statements, it can be converted into P⌧ ; if a
technique simply presents one or more statements as
candidate fault location, P⌧ can be formulated to have
corresponding peaks.

IV. EXPERIMENTAL SETUP

We have designed the following three research questions
to evaluate the effectiveness of MUSE in terms of the

2
✏ should be smaller than the smallest normalized non-zero suspicious-

ness score by ⌧ .

Expense metric [18] and the LIL metric (Section III):

RQ1. Foundation: How many test results change from
failure to pass and vice versa between before and after on a
mutant generated by mutating a faulty statement, compared
with a mutant generated by mutating a correct one?

RQ1 is to validate the conjectures in Section II-A, on
which MUSE depends. If these conjectures are valid (i.e.,
more failing test cases become passing after mutating the
faulty statement than a correct one, and more passing test
cases become failing after mutating a correct statement than
the faulty one), we can expect that MUSE will localize a
fault precisely.

RQ2. Precision: How precise is MUSE, compared with
Jaccard, Ochiai, and Op2 in terms of the % of executed
statements examined to localize a first fault?

Precision in terms of the % of program statements to be
examined is the traditional evaluation criteria for fault local-
ization techniques. RQ2 evaluates MUSE with the Expense
metric against the three widely studied SBFL techniques –
Jaccard, Ochiai, and Op2. Op2 [19] is proven to perform
well in Expense metric; Ochiai [20] performs closely to Op2,
while Jaccard [10] shows good performance when used with
automated program repair [23].

RQ3. Information Loss: How precise is MUSE, compared
with Jaccard, Ochiai, and Op2 in terms of the Locality
Information Loss (LIL) metric?

RQ3 evaluates the precision of MUSE with the LIL metric
introduced in Section III against the three SBFL techniques
(Jaccard, Ochiai, and Op2). The smaller the LIL value is,
the more precise the FL technique is.

To answer the research questions, we performed a se-
ries of experiments by applying Jaccard, Ochiai, Op2, and
MUSE to the 14 faulty versions in five real world C
programs. The following subsections describe the details of
the experiments.

A. Subject Programs

For the experiments, we used five non-trivial real-world
programs including flex version 2.4.7, grep version 2.2,
gzip version 1.1.2, sed version 1.18, and space, all of
which are from the SIR benchmark suite [4].

Table I describes the target programs including their
sizes in Lines of Code, the faulty versions used, and the
numbers of failing and passing test cases for each program
version/fault pair. From the base versions listed above, we
randomly selected three faulty versions from each program
except grep where a failure is detected only in two faulty
versions by the used test suite. grep v3 and space
v19 have multiple faults and the other versions have one
fault per each version. The fault ID of each version is
presented in Table I (For the rest of the paper, we refer to

Locality Information Loss (LIL)
defined with Kullback-Leibler divergence



Worth a thousand words.
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Lessons Learned #2

❖ Entropy measures are much richer than simply counting 
something: it gives you a holistic view.

❖ Cross-entropy is a vastly underused tool in software 
engineering in general.



Spectra Based Fault Localisation

ef � ep
ep + np + 1

Formula (Suspiciousness)

Ranking

Program

Tests

Spectrum

Higher ranking
=

Fewer statements 
to check
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