Quantifying Information Leaks via Model Counting Modulo Theories

Sang Phan

Queen Mary University of London

April 28, 2015

Information Flow

Non-interference is unachievable


```
int check(int H, int L){
  int 0;
  if (L == H)
    0 = ACCEPT;
  else 0 = REJECT;
  return 0;
}
```

password check

Leaks = Secrecy before observing - Secrecy after observing

$$\Delta_E(X_H) = E(X_H) - E(X_H|X_O)$$

Theorem of Channel Capacity

$$\Delta_E(X_H) \leq \log_2(|O|)$$

- has been proved for Shannon entropy and Rényi's min-entropy
- holds for all possible distributions of X_H .
- is the basis of state-of-the-art techniques for Quantitative Information Flow analysis.

Definition

Quantitative Information Flow (QIF) is the problem of counting N, the number of possible outputs of a given program P.

- O is stored as a bit vector $b_1 b_2 \dots b_M$.
- Assume we have a first-order formula φ_P such that:
 - φ_P contains a set of Boolean variables $V_I := \{p_1, p_2, ..., p_M\}$
 - $p_i = \top$ if and only if b_i is 1, and $p_i = \bot$ if and only if $b_i = 0$

Counting outputs of $P \equiv$ Counting models of φ_P w.r.t. V_I

Model Counting Modulo Theories

Model Counting Modulo Theories

DPLL Modulo Theories

$$\mathsf{DPLL}(\mathcal{T}) = \mathsf{DPLL} + \mathcal{T}$$
-solver

$$\varphi := \{ \neg (x > 10) \lor A_1 \} \land \qquad \mathcal{BA}(\varphi) := \{ \neg B_1 \lor A_1 \} \land \\ \{ (x > 10) \lor \neg A_1 \} \land \qquad \{ B_1 \lor \neg A_1 \} \land \\ \{ \neg A_3 \lor (x < 1) \} \qquad \{ \neg A_2 \lor B_2 \}$$

$$\mu^P = A_1 \wedge B_1 \wedge A_2 \wedge B_2 \Rightarrow \mathcal{T}\text{-solver}(\mu)$$
 returns **inconsistent**. $\mu^P = A_1 \wedge B_1 \wedge \neg A_2 \wedge \neg B_2 \Rightarrow \mathcal{T}\text{-solver}(\mu)$ returns **consistent**.

QIF as #SMT

Two approaches:

- Use formal methods to mimic DPLL(\mathcal{T}).
- Generate φ_P , then using DPLL(\mathcal{T}).


```
\begin{array}{l} \textbf{for all } i \ \mathsf{from} \ 1 \ \mathsf{to} \ M \ \textbf{do} \\ b_i = (0 >> (i - 1)) \ \& \ 1 \\ \textbf{if } (b_i == 1) \ \textbf{then} \\ p_i \leftarrow \top \\ \textbf{else} \\ p_i \leftarrow \bot \end{array}
```

Figure : Program instrumentation to build the set V_I

The algorithm consists of two components:

- A procedure to enumerate bit configurations (similar to DPLL)
- ullet A model checker to check the existence of the bit configurations (similar to the \mathcal{T} -solver)

QIF analysis using Model Checking

assert $!(p_1 \&\& p_2 \&\& p_3 \&\& p_4 \&\& p_5);$

Symbolic Execution

- A program analysis technique that has several applications, in particular automated test generation.
- Executing programs with symbols instead of concrete inputs.

Symbolic Execution as DPLL Modulo Theories

```
\begin{array}{lll} \mathsf{DPLL}(\mathcal{T}) & = & \mathsf{DPLL} + \mathcal{T}\text{-solver} \\ \mathsf{Symbolic} \ \mathsf{Executor} & = & \mathsf{Boolean} \ \mathsf{Executor} + \mathcal{T}\text{-solver} \end{array}
```

Add conditions to test each bits of the output:

$$\begin{array}{l} \textbf{for all } i \text{ from 1 to } M \textbf{ do} \\ b_i = (0 >> (i - 1)) \ \& \ 1 \\ \textbf{if } (b_i == 1) \textbf{ then} \\ p_i \leftarrow \top \\ \textbf{else} \\ p_i \leftarrow \bot \end{array}$$

Figure : Program instrumentation to build the set V_I

QIF analysis using Symbolic Execution

- $(H \ge 16)$ and (H < 16): program conditions.
- $p_1, p_2, ...$ additional conditions.

Program transformation

Figure: A simple program encoded into a first-order formula

Formula instrumentation to build the set V_i :

(assert (= (= #b1 ((_ extract 0 0)
$$O_3$$
)) p_1))

QIF analysis using a #SMT solver

Use APIs provided by an SMT solver

Blocking clause

After finding a model

$$\mu = I_0 \wedge I_1 \wedge \cdots \wedge I_m \wedge \ldots$$

Add the clause:

$$block = \neg I_0 \lor \neg I_1 \lor \cdots \lor \neg I_m$$

Depth-first search

Two components:

- A DPLL like procedure to enumerate truth assignments.
- Use the SMT solver to check consistency of the truth assignments.

Implementation

- Tools selected:
 - Model Checking: CBMC (Ansi C)
 - Symbolic Execution: Symbolic PathFinder (Java bytecode)
 - Program transformation: CBMC
 - SMT solver: z3
- Benchmarks include:
 - Vulnerabilities in Linux kernel
 - Anonymity protocols
 - A Tax program from the European project HATS (Java)
- Assumptions: all programs have bounded loops, no recursion.

Some of the experiments:

Case Study	Policy	LoC	sqifc time	selfcomp time	
Data Sanitization	-	< 10	11.898	timed out	
CVE-2011-2208	64	> 200	22.759	119.117	
CVE-2011-2208	256		88.196	timed out	
CVE-2011-1078	8	> 200	10.380	13.853	
CVE-2011-1078	64		37.899	timed out	
CRC	8	< 30	1.209	0.498	
CRC	32		8.657	timed out	

Figure: Times are in seconds, timeout is 30 minutes. In the first case study, "-" means the policy is not specified.

Some of the experiments:

Benchmark	Leaks	sqifc	sqifc ++ time		
		time	СВМС	aZ3	Total time
Data sanitization	4	11.898	0.165	0.086	0.251
Implicit flow	2.81	5.033	0.169	0.049	0.218
Population count	5.04	17.278	0.162	0.398	0.560
Mix and duplicate	16	-	0.154	136.947	137.101
Masked copy	16	-	0.175	18.630	18.805
Sum query	4.81	64.557	0.162	0.133	0.295
Ten random outputs	3.32	64.202	0.160	0.093	0.253
CRC (8)	3	2.551	0.184	0.099	0.283
CRC (32)	5	7.755	0.193	0.325	0.518

Figure : Leaks are in bits. aZ3 runs with the DFS-based algorithm. Times are in seconds, "-" means timeout in one hour. Total time of sqifc++ is the sum of CBMC time and aZ3 time.

Two approaches:

- Use formal methods to mimic DPLL(\mathcal{T}).
 - QIF analysis using Model Checking.
 - QIF analysis using Symbolic Execution.
- Generate φ_P , then using DPLL(\mathcal{T}).
 - Generate φ_P using program transformation.
 - Extend an SMT solver for #SMT.

THANK YOU FOR YOUR ATTENTION!