
Quantifying Information Leaks via
Model Counting Modulo Theories

Sang Phan

Queen Mary University of London

April 28, 2015

1 / 20

Information Flow

Secret input (H) Public input (L)

Program P

Public Output (O)

Non-interference

Public input (L)

Program P

Secret input (H)

Information leaked

Public Output (O) √
?

2 / 20

Non-interference is unachievable

int check(int H, int L){

int O;

if (L == H)

O = ACCEPT;

else O = REJECT;

return O;

}

password check

Secret input (H) Public input (L)

Program P

Public Output (O)

Non-interference

Public input (L)

Program P

Secret input (H)

Information leaked

Public Output (O) √
?

Leaks = Secrecy before observing - Secrecy after observing

∆E (XH) = E (XH)− E (XH |XO)

3 / 20

Quantifying Information Leaks

Theorem of Channel Capacity

∆E (XH) ≤ log2(|O|)

has been proved for Shannon entropy and Rényi’s min-entropy

holds for all possible distributions of XH .

is the basis of state-of-the-art techniques for Quantitative
Information Flow analysis.

Definition

Quantitative Information Flow (QIF) is the problem of counting N,
the number of possible outputs of a given program P.

4 / 20

Quantifying as Counting

Adversary

tries to infer

H from L and O

H

L
O

f

O is stored as a bit vector b1b2 . . . bM .

Assume we have a first-order formula ϕP such that:

ϕP contains a set of Boolean variables VI := {p1, p2, .., pM}
pi = > if and only if bi is 1, and pi = ⊥ if and only if bi = 0

Counting outputs of P ≡ Counting models of ϕP w.r.t. VI

5 / 20

Model Counting Modulo Theories

SAT

generalize to first-order theories

#SAT

SMT

generalize to
counting models

generalize to first-order theories

generalize to
counting models

#SMT

6 / 20

Model Counting Modulo Theories

SAT

generalize to first-order theories

#SAT

SMT

generalize to
counting models

generalize to first-order theories

generalize to
counting models

#SMT

6 / 20

Lazy Satisfiability Modulo Theories

DPLL Modulo Theories

DPLL(T) = DPLL + T -solver

ϕ := {¬(x > 10) ∨ A1} ∧
{(x > 10) ∨ ¬A1} ∧
{¬A3 ∨ (x < 1)}

BA(ϕ) := {¬B1 ∨ A1} ∧
{B1 ∨ ¬A1} ∧
{¬A2 ∨ B2}

µP = A1 ∧ B1 ∧ A2 ∧ B2 ⇒ T -solver(µ) returns inconsistent.
µP = A1 ∧ B1 ∧ ¬A2 ∧ ¬B2 ⇒ T -solver(µ) returns consistent.

7 / 20

QIF as #SMT

P ϕP

QIF #SMT

Formal methods DPLL(T)

Two approaches:

Use formal methods to mimic DPLL(T).

Generate ϕP , then using DPLL(T).

8 / 20

QIF analysis using Model Checking

for all i from 1 to M do
bi = (O >> (i - 1)) & 1
if (bi == 1) then

pi ← >
else

pi ← ⊥

Figure : Program instrumentation to build the set VI

The algorithm consists of two components:

A procedure to enumerate bit configurations (similar to DPLL)

A model checker to check the existence of the bit
configurations (similar to the T -solver)

9 / 20

QIF analysis using Model Checking

UNSAT

p1

p1 ∧ p2

p1 ∧ p2 ∧ p3

p1 ∧ p2 ∧ p3 ∧ p4

p1 ∧ p2 ∧ p3 ∧ p4 ∧ p5p1 ∧ p2 ∧ p3 ∧ p4 ∧ ¬p5

p1

p2

p3

p4

p5

assert !(p1 && p2 && p3 && p4 && p5);

10 / 20

QIF analysis using Symbolic Execution

Symbolic Execution

A program analysis technique that has several applications, in
particular automated test generation.

Executing programs with symbols instead of concrete inputs.

11 / 20

QIF analysis using Symbolic Execution

Symbolic Execution as DPLL Modulo Theories

DPLL(T) = DPLL + T -solver
Symbolic Executor = Boolean Executor + T -solver

Add conditions to test each bits of the output:

for all i from 1 to M do
bi = (O >> (i - 1)) & 1
if (bi == 1) then

pi ← >
else

pi ← ⊥

Figure : Program instrumentation to build the set VI

12 / 20

QIF analysis using Symbolic Execution

s1

s2 s3

p1
p1

p2 p2

H ≥ 16

pc := (H 16)

H < 16

pc := (H ≥ 16)<

pc ∧ p1 pc ∧ p1

pc ∧ p1 ∧ p2
pc ∧ p1 ∧ ¬p2

(H ≥ 16) and (H < 16): program conditions.

p1, p2, ..: additional conditions.

13 / 20

QIF analysis using a #SMT solver

Program transformation

L = 8;

if (H < 16)

O = H + L;

else

O = L;

(L1 = 8) ∧
(G0 = H0 < 16) ∧
(O1 = H0 + L1) ∧
(O2 = L1) ∧
(O3 = g?O1 : O3)

Figure : A simple program encoded into a first-order formula

Formula instrumentation to build the set VI :

(assert (= (= #b1 ((extract 0 0) O3)) p1))

14 / 20

QIF analysis using a #SMT solver

Use APIs provided by an SMT solver

Blocking clause

After finding a model

µ = l0 ∧ l1 ∧ · · · ∧ lm ∧ . . .

Add the clause:

block = ¬l0 ∨ ¬l1 ∨ · · · ∨ ¬lm

Depth-first search

Two components:

A DPLL like procedure to enumerate truth assignments.

Use the SMT solver to check consistency of the truth
assignments.

15 / 20

Implementation

Tools selected:

Model Checking: CBMC (Ansi C)
Symbolic Execution: Symbolic PathFinder (Java bytecode)
Program transformation: CBMC
SMT solver: z3

Benchmarks include:

Vulnerabilities in Linux kernel
Anonymity protocols
A Tax program from the European project HATS (Java)

Assumptions: all programs have bounded loops, no recursion.

16 / 20

Evaluation

Some of the experiments:

Case Study Policy LoC sqifc time selfcomp time

Data Sanitization - < 10 11.898 timed out

CVE-2011-2208 64 > 200 22.759 119.117

CVE-2011-2208 256 88.196 timed out

CVE-2011-1078 8 > 200 10.380 13.853

CVE-2011-1078 64 37.899 timed out

CRC 8 < 30 1.209 0.498

CRC 32 8.657 timed out

Figure : Times are in seconds, timeout is 30 minutes. In the first case
study, “-” means the policy is not specified.

17 / 20

Evaluation

Some of the experiments:

Benchmark Leaks
sqifc sqifc++ time
time CBMC aZ3 Total time

Data sanitization 4 11.898 0.165 0.086 0.251
Implicit flow 2.81 5.033 0.169 0.049 0.218
Population count 5.04 17.278 0.162 0.398 0.560
Mix and duplicate 16 - 0.154 136.947 137.101
Masked copy 16 - 0.175 18.630 18.805
Sum query 4.81 64.557 0.162 0.133 0.295
Ten random outputs 3.32 64.202 0.160 0.093 0.253
CRC (8) 3 2.551 0.184 0.099 0.283
CRC (32) 5 7.755 0.193 0.325 0.518

Figure : Leaks are in bits. aZ3 runs with the DFS-based algorithm.
Times are in seconds, “-” means timeout in one hour. Total time of
sqifc++ is the sum of CBMC time and aZ3 time.

18 / 20

Conclusions

P

program transformation
ϕP

QIF #SMT

Formal methods DPLL(T)

Two approaches:

Use formal methods to mimic DPLL(T).

QIF analysis using Model Checking.
QIF analysis using Symbolic Execution.

Generate ϕP , then using DPLL(T).

Generate ϕP using program transformation.
Extend an SMT solver for #SMT.

19 / 20

THANK YOU FOR YOUR ATTENTION!

20 / 20

	Introduction
	Information Flow
	Quantitative Information Flow

	Model Counting Modulo Theories
	Symbolic Execution as DPLL Modulo Theories
	Quantifying information leaks using a #SMT solver

	Evaluation
	Conclusions

