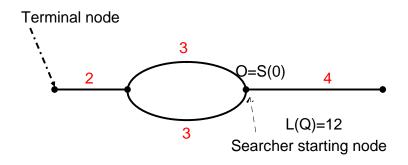
Minimax Search of a Network

Steve Alpern

Department of Mathematics, LSE

Search for Immobile Hider on a Network

Every edge e of Q has a length L(e) and the total length is denoted by $L(Q) = \mu$. The length of a minimal (Chinese Postman) tour is denoted $\overline{\mu}$.



Bounds on V=V(Q,O) for a General Network

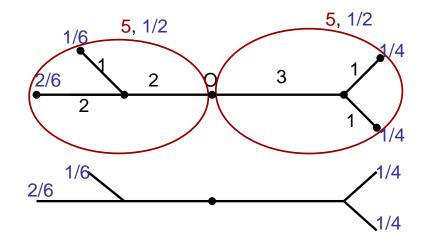
Theorem (Gal): For any network (Q, O), the value V of the search game for an immobile hider satisfies

$$\frac{\mu}{2} \le V \le \frac{\bar{\mu}}{2}.$$

The lower bound holds iff Q is Eulerian (has Eulerian Tour). The upper bound holds for trees and iff Q is Weakly Eulerian (Gal), that is, consists of a disjoint family of Eulerian networks connected in a tree like fashion.

Equal Branch Density (EBD) Hider Distribution on Trees

The optimal Hider distribution on a tree is the EBD distribution e. At every branch node it assigns probabilities to the branches proportional to their lengths.



Arc-Adding Lemma: Get Q' from a Q by adding edge e of length $l \ge 0$ between points $x, y \in Q$. Then

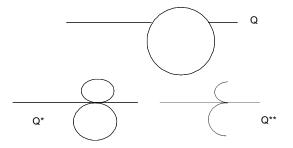
1.
$$V(Q') \leq V(Q) + 2l$$
, so $V(Q') \leq V(Q)$ if we identify v_1, v_2 $(l = 0)$

2. If $l \ge d_Q(v_1, v_2)$, then $V(Q') \ge V(Q)$. Any hiding strategy on Q does as well on Q'.

Weakly Eulerian Networks

Definition: A network is weakly Eulerian if it contains a set of disjoint Eulerian networks such that shrinking each to a point transforms the network into a tree.

Proposition (Gal): If Q is a weakly Eulerian network then $V = \bar{\mu}/2$.



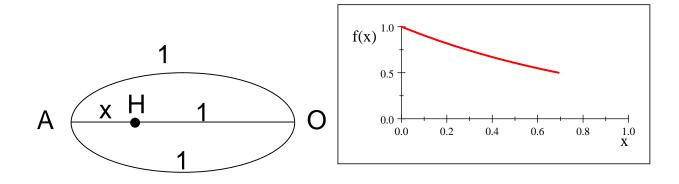
All three networks have same $\overline{\mu}$. $V(Q^*) \leq V(Q)$ and $V(Q^*) \geq V(Q^{**})$ Arc-Adding Lemma. $V(Q^{**}) = \overline{\mu}/2$ (tree).

 $\bar{\mu}/2 \leq V(Q) \leq \bar{\mu}/2.$

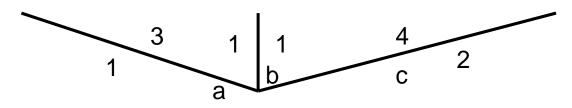
Gal's Theorem

Theorem [3.26]: For any network $Q, V = \bar{\mu}/2$ iff Q is weakly Eulerian.

The 'Three Arc' Network



Best to hide near A. Pick x (on random arc) with probability density $f(x) = e^{-x}$ $0 < x < \ln 2 \approx .693$. Searcher goes to A, back a bit on another arc, back to A, back to O, back towards A. (S. Gal, L. Pavlovic). $V = (4 + \ln 2)/3 \approx 1.56 < \bar{\mu}/2$.



Tree with asymmetric distances (travel times): out (left) back (right)

(Alpern-Lidbetter Formula): $V = \frac{\bar{\mu}}{2} + \frac{1}{2} \sum_{\text{leaves } j} e(j) (d(0, j) - d(j, 0)).$ (1)