
Some Application of Optimisation to 
Software Engineering Problems
Shin Yoo / CREST
4th COW 26/02/2010



Outline

Motivation

Application Areas

Case Study 1. Requirement Engineering

Case Study 2. Regression Testing

Optimisation Techniques

Future Directions



Motivation: why optimise?

Easier than building a perfect solution

Computational power: fast, scalable

Data-driven, quantitative

Insightful; allows holistic observation of problem space



“The heavy use of computer analysis has pushed the 
game itself in new directions. The machine doesn't 
care about style or patterns or hundreds of years of 
established theory. It is entirely free of prejudice and 
doctrine and this has contributed to the development 
of players who are almost as free of dogma as the 
machines with which they train. (...) Although we still 
require a strong measure of intuition and logic to play 
well, humans today are starting to play more like 
computers.” 

- Gary Kasparov, “The Chess Master and the Computer”



Application Areas

Regression Testing

Requirement Analysis

Test Data Generation

Project Management

Refactoring

Program Comprehension

Model Checking

Agent-based System

Automated Patch Generation

Software Design Tools

... still expanding with many more to come



Application Areas

Tier 1 Tier 2
Combinatorial problems

in SE context
Problems that are

specific to SE

Regression Testing

Requirement Analysis Test Data Generation

Project Management

Refactoring

Program Comprehension

Model Checking

Agent-based System

Automated Patch Generation

Software Design Tools



Application Areas

Tier 1 Tier 2
Combinatorial problems

in SE context
Problems that are

specific to SE

Test Data Generation

Refactoring

Program Comprehension

Model Checking

Agent-based System

Automated Patch Generation

Software Design Tools



Application Areas

Tier 1 Tier 2
Combinatorial problems

in SE context
Problems that are

specific to SE

Test Data Generation

Refactoring

Program Comprehension

Model Checking

Agent-based System

Automated Patch Generation

Software Design ToolsPrioritisation

Set-cover

Bin-packing



Case Study: Requirements

“What is the most cost-effective subset of software 
requirements to be included in the next version?”

“What is the most efficient release schedule?”

“Are customers treated fairly?”



Requirements: selection

Essential problem structure: knapsack problem

Requirements value: based on customer input, 
customer value, expected revenue, etc

Requirement cost: development cost, time, etc

Goal: minimise cost, maximise value



Requirements: selection



Requirements: selection

(a) Motorola Data Set: (b) Motorola Data Set: (c) Motorola Data Set:
4 customers; 35 requirements 4 customers; 35 requirements 4 customers; 35 requirements

30% resource limitation 50% resource limitation 70% resource limitation

(d) Greer & Ruhe Data Set: (e) Greer & Ruhe Data Set: (f) Greer & Ruhe Data Set:
5 customers; 20 requirements 5 customers; 20 requirements 5 customers; 20 requirements

30% resource limitation 50% resource limitation 70% resource limitation

Figure 1. Kiviat diagrams for illustrative budget values

(a) Motorola Data Set (b) Greer & Ruhe Data Set

Figure 2. Tensions between the Customers’ Satisfaction for Different Budgetary Resource Con-
straints



Case Study: Regression

Regression testing: a test process that aims to gain 
confidence that “existing” functionality hasn’t been 
damaged by recent changes

In order to test existing functionality, one has to execute 
old tests, of which there are too many



Case Study: Regression

Regression testing: a test process that aims to gain 
confidence that “existing” functionality hasn’t been 
damaged by recent changes

In order to test existing functionality, one has to execute 
old tests, of which there are too many

Software testing can only reveal faults, it 
cannot guarantee the lack of faults



Case Study: Regression

Regression testing: a test process that aims to gain 
confidence that “existing” functionality hasn’t been 
damaged by recent changes

In order to test existing functionality, one has to execute 
old tests, of which there are too many



Case Study: Regression

“What is the subset of tests that is most likely to 
detect the largest number of faults?”

“Which test should I execute first in order to detect 
faults as early as possible?”



Regression: minimisation

Essential problem structure: set-cover problem

Each test satisfies (or covers) different sets of test 
requirements; different coverage metrics have 
different correlation with fault-finding

Each test has associated cost

Goal: to obtain the smallest subset that achieves the 
maximum test requirements



Regression: minimisation

Figure 2: Plot of Pareto frontier for two objective formulation. With the Siemens suite, the results from

the additional greedy algorithm are dominated by the reference Pareto frontier obtained by an exhaustive

search, which NSGA-II is also capable of finding. However, in the zoomed plot of space, it can be observed

that the additional greedy algorithm dominates the rest of the algorithms.



Regression: prioritisation

Essential problem structure: permutation

Early maximisation of coverage - greedy algorithm is 
by definition very efficient but unable to deal with 
multiple criteria



Regression: prioritisation

188 ELBAUM ET AL.

(a) (b)

(c)

Figure 1. Example illustrating the APFD measure: (a) test suite and faults exposed; (b) APFD for prioritized
test suite T 1; (c) APFD for prioritized test suite.

2.1. Prioritization techniques

Numerous prioritization techniques have been described in the research literature
(Elbaum et al., 2001b, 2002; Jones and Harrold, 2001; Rothermel et al., 2001;
Wong et al., 1997). To date, most proposed techniques have been code-based, relying
on information relating test cases to coverage of code elements, and a first dimension
along which techniques can be distinguished is in terms of the type of code elements
they consider. For example, test cases can be prioritized in terms of the number of
code statements, basic blocks, or functions they executed on a previous version of the
software. One technique for doing this, total function coverage prioritization, simply
sorts the test cases in the order of the number of functions they cover, and if multiple
test cases cover the same number of functions, orders these randomly.

188 ELBAUM ET AL.

(a) (b)

(c)

Figure 1. Example illustrating the APFD measure: (a) test suite and faults exposed; (b) APFD for prioritized
test suite T 1; (c) APFD for prioritized test suite.

2.1. Prioritization techniques

Numerous prioritization techniques have been described in the research literature
(Elbaum et al., 2001b, 2002; Jones and Harrold, 2001; Rothermel et al., 2001;
Wong et al., 1997). To date, most proposed techniques have been code-based, relying
on information relating test cases to coverage of code elements, and a first dimension
along which techniques can be distinguished is in terms of the type of code elements
they consider. For example, test cases can be prioritized in terms of the number of
code statements, basic blocks, or functions they executed on a previous version of the
software. One technique for doing this, total function coverage prioritization, simply
sorts the test cases in the order of the number of functions they cover, and if multiple
test cases cover the same number of functions, orders these randomly.

188 ELBAUM ET AL.

(a) (b)

(c)

Figure 1. Example illustrating the APFD measure: (a) test suite and faults exposed; (b) APFD for prioritized
test suite T 1; (c) APFD for prioritized test suite.

2.1. Prioritization techniques

Numerous prioritization techniques have been described in the research literature
(Elbaum et al., 2001b, 2002; Jones and Harrold, 2001; Rothermel et al., 2001;
Wong et al., 1997). To date, most proposed techniques have been code-based, relying
on information relating test cases to coverage of code elements, and a first dimension
along which techniques can be distinguished is in terms of the type of code elements
they consider. For example, test cases can be prioritized in terms of the number of
code statements, basic blocks, or functions they executed on a previous version of the
software. One technique for doing this, total function coverage prioritization, simply
sorts the test cases in the order of the number of functions they cover, and if multiple
test cases cover the same number of functions, orders these randomly.



Benefits of Abstraction
Requirements

Design

Implementation

Integration

Testing

Maintenance



Benefits of Abstraction
Requirements

Design

Implementation

Integration

Testing

Maintenance

subset selection prioritisationsubset selection prioritisation



Benefits of Abstraction
Requirements

Design

Implementation

Integration

Testing

Maintenance

subset selection prioritisation

subset selection prioritisation



Benefits of Abstraction
Requirements

Design

Implementation

Integration

Testing

Maintenance

subset selection prioritisation

subset selection prioritisation

Reformulating SE problems 
into optimisation problems
reveals hidden similarities



Benefits of Abstraction

Analytic Hierarchical Process: first used in Requirement 
Engineering, now also used for regression test 
prioritisation

Average Percentage of Fault Detection: metric devised 
for regression test prioritisation, now being recast for 
prioritisation or requirements



Optimisation Techniques

Genetic Algorithm: versatile, most popular (cool factor?)

Hill climbing, Simulated Annealing: often as competitive 
as, or even better than, GA

Exact methods: least widely used - scalable? flexible? 
multi-objectiveness?



Future Directions

Multi-Objective Paradigm: already explored in testing 
and requirements, others to follow

Copes with complex constraints

Works well when there are multiple surrogate fitness



Future Directions

Interactivity: relatively unexplored due to the high cost 
of human input

Eliciting human knowledge

Resolving ambiguities that are hard to quantise



Kasparov’s Advanced Chess

Competition between teams consist of human + chess 
software

It looks similar to our goal in a lot of ways...



Kasparov’s Advanced Chess

“..being able to access a database of a few million 
games meant that we didn't have to strain our 
memories nearly as much in the opening..”

“Having a computer partner also meant never having to 
worry about making a tactical blunder.”

“Weak human + machine + better process was 
superior to a strong computer alone and, more 
remarkably, superior to a strong human + machine + 
inferior process.”



Future Directions

Our final goal is not to replace human decision making 
process; it is to aid the process with an unbiased 
alternative and an insight into the problem structure



References

M. Harman, S. A. Mansouri, and Y. Zhang. Search based software engineering: A comprehensive 
analysis and review of trends techniques and applications. Technical Report TR-09-03, Department 
of Computer Science, King’s College London, April 2009.

Y. Zhang, M. Harman, and S. A. Mansouri. The Multi-Objective Next Release Problem. In GECCO 
’07: Proceedings of the 2007 Genetic and Evolutionary Computation Conference, pages 1129–
1136. ACM Press, 2007.

S. Yoo and M. Harman. Pareto efficient multi-objective test case selection. In Proceedings of 
International Symposium on Software Testing and Analysis (ISSTA 2007), pages 140–150. ACM 
Press, July 2007.

S. Yoo, M. Harman, P. Tonella, and A. Susi. Clustering test cases to achieve effective & scalable 
prioritisation incorporating expert knowledge. In Proceedings of International Symposium on 
Software Testing and Analysis (ISSTA 2009), pages 201–211. ACM Press, July 2009.

Gary Kasparov, “The Chess Master and the Computer”, The New York Review of Books, http://
www.nybooks.com/articles/23592

http://www.nybooks.com/articles/23592
http://www.nybooks.com/articles/23592
http://www.nybooks.com/articles/23592
http://www.nybooks.com/articles/23592

