SEEDS: A SOFTWARE ENGINEER’S ENERGY OPTIMIZATION DECISION SUPPORT FRAMEWORK

Irene Manotas, Lori Pollock, and James Clause

University of Delaware
SOFTWARE ENERGY USAGE: WHY CARE?

Reducing energy consumption can:

- Extend battery life (mobile devices)
- Reduce electricity bills and related costs (data centers)
- Support sustainability
STATE OF THE ART

Can the software engineer help?

- Energy Reducing Transformations
- Manage Energy Usage
- Dynamic Voltage Frequency Scaling

Software Engineer

Source Code

Compiler

Operating System

Hardware cpu, disk, etc.
YES, THEY CAN

Many decisions made by developers impact energy usage:

• Algorithms:
 Increase or decrease energy usage up to 30%
 (Bunse et al., 2009; Zhuo and Chakrabarti, 2008)

• Design Patterns:
 Increase or decrease energy usage up to 700%
 (Sahin et al., 2012)

• Refactorings:
 Increase or decrease energy usage up to 7%
 (Sahin et al., 2014)
HOW CAN DEVELOPERS HELP?

Choose the most energy efficient implementation

Collection $x = \text{new ??}$
List $x = \text{new ??}$

- LinkedHashSet
- TreeSet
- HashSet
- EnumSet
- CopyOnWriteArraySet
 - ~ 40

- UnifiedSet
- UnifiedMap
- SetAdapter
- MultiReaderFastList
- InmutableUnifiedMap
 - ~ 40

- FastSet
- FastBitSet
- LocalMap
- FastMap
- FastList
 - ~ 10

- CharArraySet
- ObjectArraySet
- ObjectAVLTreeSet
- ObjectAVLTreeSet
 - ~ 700

- JCF

Hundreds of possibilities for each choice.
Collection x = new ?? Choose the most energy efficient implementation

Hundreds of decision points!
Help developers improve energy usage of their applications by making decisions about which source-level changes to apply
1. Automatically apply changes to explore decision space with regard to energy usage (many versions)
2. Abstract away tedious system level concerns:
 - create versions; monitor energy usage; select
3. Support different software engineering decisions
SEEDS APPROACH

Inputs
- Application Code
- Potential Changes
- Optimization Parameters
- Context Information

Define Application-Specific Search Space

Search

Outputs
- Energy Optimized Application Modifications
- Optimization Results
SEEDS FRAMEWORK COMPONENTS

Inputs
- Application Code
- Potential Changes
- Optimization Parameters
- Context Information

Define Application-Specific Search Space

Search
- Select Solution
- Transform Application
- Profile Energy Usage

Outputs
- Energy Optimized Application Modifications
- Optimization Results
AN INSTANTIATION: SEEDS_{api}

SEEDS_{api} supports the selection of Collections implementations to optimize Java applications.

- Define Application-Specific Search Space
- Search
 - Select Implementation
 - Transform Application
 - Profile Energy Usage

- Application Generalization
- Identify Collection Allocations
- Filter choices based on optimization parameters.

- Java Application
- Collections Libraries Implementations
- Set, List
- Application Test Suite

- Optimized Java Application
- Optimization Results
EVALUATION OF SEEDS

• RQ1: Effectiveness

 Can SEEDS improve the energy usage of applications?

• RQ2: Exploration Capability

 How does the size of the search space impact effectiveness?
 How often do developers choose the most energy efficient implementation?
 How often is an implementation the most energy efficient?

• RQ3: Cost

 What is the time required to find the best solution?
EVALUATION METHODOLOGY

- Independent Variable: Library Implementation
 157 implementations from 6 Collections Libraries

- Dependent Variable: Energy Usage (joule)

- Subjects
 Seven Java applications
 8k - 100k LoC

Barbecue, Jdepend, Apache-XML-Security, Jodatime, Commons-Lang, Commons-beanutils, Commons-cli

JCF
LEAP Machine
RQ1: EFFECTIVENESS

<table>
<thead>
<tr>
<th>Application</th>
<th>% Improvement (JCF only)</th>
<th>% Improvement (all 6 libraries)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barbecue</td>
<td>17*</td>
<td>17*</td>
</tr>
<tr>
<td>Jdepend</td>
<td>3*</td>
<td>6*</td>
</tr>
<tr>
<td>Apache-xml-security</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>JodaTime</td>
<td>8*</td>
<td>9</td>
</tr>
</tbody>
</table>

Interactions between transformations cancel out expected benefits

$\text{SEEDS}_{\text{api}}$ was able to improve the energy efficiency of 6/7 applications.
RQ2: EXPLORATION CAPABILITY

How does the size of the search space impact effectiveness?

<table>
<thead>
<tr>
<th>Application</th>
<th>% Improvement (JCF only)</th>
<th>% Improvement (all 6 libraries)</th>
<th>Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barbecue</td>
<td>17*</td>
<td>17*</td>
<td>–</td>
</tr>
<tr>
<td>Jdepend</td>
<td>3*</td>
<td>6*</td>
<td>3</td>
</tr>
<tr>
<td>Apache-xml-security</td>
<td>5</td>
<td>5</td>
<td>–</td>
</tr>
<tr>
<td>JodaTime</td>
<td>8*</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Commons-lang</td>
<td>10</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>Commons-beanutils</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Commons-cli</td>
<td>2*</td>
<td>2*</td>
<td>–</td>
</tr>
</tbody>
</table>

* only one change † multiple changes

More choices can result in larger improvements.
RQ2: EXPLORATION CAPABILITY

How often do developers choose the most energy efficient implementation?

- SEEDS analyzed a total of 123 decision points
- Switching from the developer’s original choice to a new choice improved the energy usage:
 - JCF only: 56% (69 times)
 - All Libraries: 72% (89 times)

Developers are unlikely to choose the most efficient implementation.
RQ2: EXPLORATION CAPABILITY

How often is a given implementation the most energy efficient?

No single implementation is the most energy efficient.
RQ3: COST OF SEEDS

Cost could be improved by using different energy measurement techniques.

Cost is reasonable.
CONCLUSIONS

- Designed SEEDS, a general framework for supporting decisions to improve applications’ energy usage.
- Demonstrated feasibility/usefulness:
 - \text{SEEDS}_{\text{api}}, an instantiation of SEEDS for API implementation selection.
- Evaluated SEEDS with 7 Applications:
 - effective at improving the energy usage of Java applications
 - supports asking and answering energy-usage related questions
FUTURE WORK

- Improve SEEDS search strategy
 - many decisions
 - many decision points in code
- Explore more instantiations
 - how general
IMPROVING SEEDS SEARCH

• What search-based techniques make the most sense?
• What properties does the search space have?
• How do we frame the problem to use a search-based technique?
ADDITIONAL RELATED WORK

- **Measure the Energy Consumption of Applications**

 Provide energy usage of application by different approaches (HW instrumentation, simulation, estimation) (e.g., Singh, 2010; Hao, 2013).

 Does not provide information about which changes could be made to reduce the energy.

- **Language Support**

 Implement energy management policies according to device status, tasks being executed, events or features (e.g., Cohen, 2012; Malakuti, 2014; Siegmund, 2010).

 Need to know which policies to implement and where and when to apply them manually.