Understanding and Improving the Energy Efficiency of Hybrid Mobile Applications

William G.J. Halfond University of Southern California

Together with Ding Li, Jiaping Gui, Angelica Huyen Tran, Shuai Hao, and Ramesh Govindan

Work supported by NSF grant 1321141

Energy Measurement Goals

- 1. Accurate
- 2. Fast
- 3. Fine-grained
- 4. Lightweight

Measurement & Estimation Tools

eLens – estimate energy consumption

- Combines program analysis and perinstruction cost modeling
- Accurate to within 8.8% of ground truth
- But creating models is hard!
- vLens visualize energy consumption
 - Combines program analysis, statistical analysis, and coarse-grained measurements
 - Accurate to within 10% of ground truth

Insight into Code-level Energy Usage

4

Energy Consumption of System APIs vs. Bytecode vs. Outliers

Breakdown of app execution energy

Energy Consumed by the Idle State of An Application

Smartphone Display: OLED

- Popular technology for smartphone displays
- More energy efficient than prior technologies
- Different energy consumption patterns

Display Oriented Techniques

- Dim the display
 - Good start, but more can be done
- Invert colors:

Goal

Automatically transform the implementation of a web application so that the web pages it generates consume less energy, but maintain aesthetics, when displayed on an OLED smartphone.

Challenges

Approach Overview

- 1. Compute the set of generated HTML pages
- 2. Determine visual relationships in pages
 - Example: adjacent and contained
- 3. Identify colors that have visual relationships

Phase 1

Phase 2

- 4. Solve for a new color scheme
 - Is more energy efficient
 - Maintains similar color differences
- 5. Rewrite application to use new color scheme Phase

Phase 1: HTML Output Analysis

- A. Compute the set of HTML pages that could be generated by the application at runtime
- B. Determine visual relationships among HTML elements in the pages
 - Example: adjacent and contained

Phase 1A: HTML Output Graph

Phase 1B: Visual Relationship Graph

Color Conflict Graph (CCG)

- Shows visual relationships of colors in a page
- BCCG: weights are in {a,b,c}
 - a>b>c>0
 - a: parent-child
 - b: siblings
 - c: everything else

- Building the Color Conflict Graph
- 1. Basic unit is color definition (CD)
 - CSS based
 - HTML based
- 2. Perform reachability analysis over visual relationship graph
- 3. "Reaching CDs" define edges in CCG

BCCG: weights are in {a,b,c}, a>b>c>0

- a: parent-child
- b: siblings
- c: everything else

Generate the color transformation scheme (CTS)

- 1. Let $S = \langle C_0, C_1, C_2, ..., C_k \rangle$ nodes of the CCG
- 2. Let S' be the new coloring, where C_0 =black
- 3. Compute *S'* that results in similar color differences as in *S*, i.e. minimize:

$$\sum_{i=0}^{k} \sum_{j=0}^{k} w_{ij} \left| Dist(C_i, C_j) - Dist(C_i', C_j') \right|$$

4. Optimization problem is NP-Hard, use simulated annealing to approximate optimal solution

Phase 3: Output Modification

- 1. Dynamically generated HTML pages
 - Insert instrumentation to replace HTML printing instructions
 - Replace original colors with new colors
- 2. Template based frameworks
 - Use CSS parser to identify entries to be replaced
 - Replace entries by rewriting CSS and HTML

Evaluation

- RQ 2: How much energy is saved by the transformed web pages?
- **RQ 3:** To what degree do users accept the appearance of the transformed web pages?

RQ2: Energy Savings

RQ3: User Acceptance

Users asked to rate before/after color transformation produced by our approach

University of Southern California

- 60% choose transformed app for general usage
- 97% choose transformed app for battery critical

Summary

Visualize energy consumption

– eLens: program analysis + cost models

- vLens: program analysis + regression analysis
- Understand energy consumption
 - Idle state energy consumption is significant
 - Display is a major part of this
- Change energy consumption
 - Automatically rewrite web pages so they use more energy efficient color scheme

Subject Applications

Name	Framework	SLOC
Bookstore	JSP	24,305
Portal	JSP	21,393
JavaLibrary	JSP & Servlet	73,468
ClassRoom	JSP	5,127
Roller	JSP & Struts	154,065
Scarab	Velocity & Turbine	145,435
jForum	Velocity	31,841

- Four embed color information in HTML, three use CSS
- Three heavily use JavaScript in the user interface
- Three use Model-View-Controller style

RQ1: Time Cost

- Most of the load time was Soot processing
- Load times varies because some apps use templates
- Transform time varies based on complexity of HTML page structure