
A Multi-objective Approach for the Multi-level
Scheduling of Large Workloads in Multicore

Distributed Systems

Santiago Iturriaga1, Bernabé Dorronsoro2, Andrei
Tchernykh3, Sergio Nesmachnow1, Pascal Bouvry4

1 Univ. de la República - UY	

3 CICESE Ensenada - MX

2 University of Cadiz - ES	

4 University of Luxembourg - LU

B. Dorronsoro, S. Nesmachnow, J. Taheri, A. Y. Zomaya, E.-G. Talbi, P. Bouvry, A hierarchical approach for
energy-efficient scheduling of large workloads in multicore distributed systems, Sustainable Computing:
Informatics and Systems, 4(4):252-261, 2014.

Introduction

• Resource management in large-scale geographically distributed
computing centers	

- Big supercomputers	

- High performance computing centers	

- Cloud infrastructures	

• Minimize energy consumption in conflict with	

- Performance	

- QoS (overdue deadlines)	

• Two-level approach	

- Higher level: decides the mapping between jobs and data-centers	

- Lower level: schedule jobs within each data-center with energy

consumption considerations	

• Use of multi-objective algorithms to analyze the quality of our
two-level schedulers

2

The Problem

3

8

4

1

2

7

3

5

9

10

6

Lower-level  
Scheduler

Set 1
of jobs

Higher-level
Scheduler

Grid

Customers Workflow

Front-end

Applications
Lower-level  
Scheduler

Lower-level  
Scheduler

Set i
of jobs

Set 2
of jobs

3

n
2

n
4

4

1

4 2

3

n
1

n
5

n
3

n
6

Cluster 1

Cluster 2

Cluster i

Applications	

• Heterogeneous	

• Deadlines

Clusters	

• Homogeneous	

• Clusters may be different

Minimize 	

‣ Makespan 

‣ Energy  
Consumption 

‣ Penalization  
Cost due to  
missed  
deadlines

Makespan Minimization

4

€

fM (
 x) =

0≤p≤k
maxCTp

 represents an allocation	

k is the number of available CNs	

CTp is the completion time of CNp

€

 x

Energy Minimization

5
S. Nesmachnow, B. Dorronsoro, J. Pecero, P. Bouvry, Energy-aware scheduling on multicore heterogeneous grid computing
systems, The Journal of Grid Computing 11(4):653-680, 2013.

Please cite this article in press as: B. Dorronsoro, et al., A hierarchical approach for energy-efficient scheduling of large workloads in
multicore distributed systems, Sustain. Comput.: Inform. Syst. (2014), http://dx.doi.org/10.1016/j.suscom.2014.08.003

ARTICLE IN PRESSG Model
SUSCOM-102; No. of Pages 10

B. Dorronsoro et al. / Sustainable Computing: Informatics and Systems xxx (2014) xxx–xxx 3

Table 1
Summary of the main features of the related papers.

[15] [16] [17] [18] [19] [20] [23] [25] [21] [22] [24] [26] [27] This work

Precedence-constrained
√ √ √ √ √ × × × √ √ √ × × √

Simultaneous optimization × × √ √ √ √ × √ √ √ √ √ √ √

Heterogeneous systems
√ √ √ √ √ √ √ √ × × √ √ √ √

Multi-core processors × × × × × × × × × × × × √ √

problems by considering larger jobs with tasks’ dependencies
(modeled as DAGs). Here, we also proposed a fully hierarchical
scheduler that operates in two levels to schedule large jobs on
distributed data-centers.

To summarize this section, we composed Table 1 to highlight
main characteristics of energy-aware scheduling approaches pro-
posed to date – to the best of our knowledge. For each relevant
work in this table, we particularly indicate (

√
/×) whether (1) they

deal with precedence-constrained tasks, (2) they simultaneously
optimize several objectives (typically makespan and energy con-
sumption), (3) they work with heterogeneous resources, and (4)
they consider multi-core processors.

3. Problem definition

The problem we defined in this work is the static scheduling
of a large number of workloads – each characterized by a DAGs
– on large distributed data-centers with heterogeneous clusters
and multi-core processors. Out optimization objectives are to con-
currently minimize (1) makespan for executing all workflows, (2)
global energy consumption of their execution, and (3) a QoS fac-
tor to penalize execution of overdue jobs. In our framework, we
assume a front-end server receives submitted workloads over a
period of time (e.g., few seconds), and then schedules them on its
underlying/connected computing data-centers.

Here, each large workloads consists of n independent heteroge-
neous jobs, J = {j0, j1, . . ., jn}, to be executed on a heterogeneous set
of k computing nodes, CN = {CN0, CN1, . . ., CNk}. Table 2 summarizes
mathematical notation and symbols we used in this work.

In the problem model we define:

• Each computing node CNr is a collection of NPr multicore pro-
cessors and is represented as a tuple (NPr, cr, opsr, Er

IDLE, Er
MAX)

to reflect its computing power; i.e., its number of processors, its
number of cores per processor, floating-point operations per sec-
ond (FLOPS) capacity for each core, its energy consumption at idle,

Table 2
Mathematical notation and symbols.

Symbol Description

J Set of jobs to schedule
n Number of jobs to schedule
jq A given job
Dq Deadline of jq
Tq Set of tasks composing jq
tq˛ A given task of jq
oq˛ The number of required operations for task ̨ in jq
ncq˛ The number of required cores for task ̨ in jq
CN Set of available computing nodes
k Number of available computing nodes
CNr A given computing node
NPr Number of processors in CNr

opsr FLOPS that processor r can perform
cr Number of cores for all processors in CNr

Er
IDLE Energy consumption of processors in CNr in idle state

Er
MAX Energy consumption of processors in CNr at peak usage

CTr Completion time of CNr

Fq Finishing time of job jq after assigned to a CN

and peak usage, respectively. Multicore processors may vary from
CN to another.

• Each job jq is a parallel application with a deadline (Dq) and is
composed of a set of dependent tasks Tq = {tq0, tq1, . . ., tqm} with
different computational requirements.

• Each task tq˛ is a duple tq˛ = (oq˛, ncq˛) to reflect its required num-
ber of operations as well as its processors requirements to be
executed in parallel, respectively.

Each job is describes as a Directed Acyclic Graphs (DAG) to rep-
resent its task graph jq = (V, E), where V is a set of m nodes, each
represents a task tq˛ (0 ≤ ̨ ≤ m) in a parallel job jq. E is the set of
directed edges between the tasks to maintain their partial order
(presented with ≺). For example, tq˛ ≺ tqˇ implies that there is an
edge e˛ˇ ∈ E, and thus task tqˇ can start its execution after task tq˛

is completed.
We model the aforementioned described scenario with the fol-

lowing multi-objective problem:

• Minimize the makespan, defined as:

fM(x⃗) = max
0≤r≤k

CTr,

where x⃗ represents an allocation/solution, k is the number of
available computing nodes, and CTr is the completion time of all
jobs in CNr.

• Minimize the energy consumption, defined in Nesmachnow
et al. [27]. Using the energy consumption model for multicore
architectures in Nesmachnow et al. [27], the total energy con-
sumption for executing a set of jobs is defined by the formulation
in Eq. (1), where f1 and f2 are the upper level and lower scheduling
functions, respectively.

fE(x⃗) =

⎧
⎪⎪⎨

⎪⎪⎩

∑

r∈CN

∑

jq∈J:
f1(jq)=CNr

∑

tqi∈Tq:

f2(tqi)=pj

EC(tqi, pj)

⎫
⎪⎪⎬

⎪⎪⎭
+

⎧
⎨

⎩
∑

pj∈CN

ECIDLE(pj)

⎫
⎬

⎭

(1)

The total energy consumption accounts for both the energy
required to execute all tasks assigned to each resource within
a CN, and the energy that each processor on the CN consumes in
its idle state.

The proposed model for the energy consumption is based on a
linear function on the number of cores used in the machine [28]
(Eq. (2)). Within each multicore computer, the energy consump-
tion linearly varies from EIDLE when the processor is idle, to EMAX
when the processor is fully used; UC is the number of used cores,
TC is the total number of cores in the machine, and E(TC) is the
energy consumed when using TC cores.

A simple method is applied to compute the energy consump-
tion for every single machine in each CN. By sorting the cores
according to their processing time, the energy consumption for a

Please cite this article in press as: B. Dorronsoro, et al., A hierarchical approach for energy-efficient scheduling of large workloads in
multicore distributed systems, Sustain. Comput.: Inform. Syst. (2014), http://dx.doi.org/10.1016/j.suscom.2014.08.003

ARTICLE IN PRESSG Model
SUSCOM-102; No. of Pages 10

4 B. Dorronsoro et al. / Sustainable Computing: Informatics and Systems xxx (2014) xxx–xxx

Fig. 1. Energy consumption for a fully loaded (a) or a partially loaded (b) CN.

given machine in a CN is computed by Eq. (3), where ti denotes
the sum of ET for all tasks assigned to core i.

E(UC) = EIDLE + (EMAX − EIDLE) × UC
TC

(2)

Total energy =
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t0 × EMAX +
TC−1∑

h=1

E(TC − h) ∗ [th − th−1] if UC = TC

tTC−UC × E(UC) +
UC−1∑

h=1

E(UC − h) × [tTC−UC+h − tTC−UC+h−1] if UC < TC

(3)

Fig. 1 shows the energy consumption for a given workflow
when the executing machine mj in a CN is fully (UC = TC, in (a)) or
partially loaded (UC < TC, in (b)) loaded.

Based on the findings in [27], here we also propose an energy
consumption model to calculate energy consumption of all work-
flows on all CNs on distributed data-centers for a given schedule.
For such calculation, we iterate on all CNs, and for each CN,
compute the total energy consumption of its assigned tasks
considering the total amount of resources these tasks used and
the total amount of holes/slack-times they left idle on all com-
puting machines in the CN.

We used the following two quality metrics to measure the qual-
ity of our solutions from both customers’/users’ and infrastructure
administrators’ point of view. Although these metrics are not con-
sidered as the main optimization objectives, we used them as
quality measurements to show the efficiency of our solutions in
various situations.

• Minimize the number of violated deadlines
For every job/application, jq, that is not executed by its deadline,

a penalty cost, Penaltyq(Fq), is defined proportional to the amount
of time is was overdue; i.e., no penalty if the application is finished
before its deadline, and Penaltyq(Fq) when it is overdue (Fq > Dq).

The total penalty cost of a given schedule is defined as the sum
of all individual penalty costs; i.e.,

fC (x⃗) =
∑

0≤q≤n

Cost(x⃗, q), (4)

where Cost(x⃗, q) is the cost of job jq in schedule x⃗, as follows:

Cost(x⃗, q) =

{
0 ifFq < Dq

Penaltyq(Fq) otherwise
(5)

The following three penalty functions are considered for our
evaluations – predefined before scheduling of each instance.

According to jobs’ priorities, more penalties are further considers
for higher priority jobs.

Penaltyq(Fq) =

⎧
⎪⎨

⎪⎩

SQRT =
√

Fq − Dq

LIN = Fq − Dq

SQR = (Fq − Dq)2

(6)

• Resources utilization For executing workflows, we also mea-
sured the percentage of time when resources were not idle for
all CNs.

4. Proposed scheduling methods

In this section, details of our hierarchical approach to divide
an overall scheduling problem into two levels are presented. As
shown in Fig. 2, in the higher-level, all workflows are first col-
lected by a front-end server, and then dispatched to available CNs
for execution. In the lower-level, each CN employs a local sched-
uler to dispatch its received jobs – from the front-end server –

among its multicore machines to minimize both execution and
energy consumption of its jobs. Four heuristics are used at each
level to compose 16 possible scheduling setups.

4.1. Higher level schedulers

Four strategies are used for the higher-level scheduler. Consid-
ering their number of available cores to execute all tasks of a job,
these schedulers assign jobs to available CNs for execution. Two
schedulers (round robin, and load balance) ignore the execution
time and energy consumption of executing a job on a CN, while
the other two (MaxMin and MaxMIN) use heuristics to minimize
these objectives before dispatching jobs to lower-level sched-
ulers. Round-robin an load-balance are classic approaches, whereas
MaxMin and MaxMIN are reported as the best two heuristics for
energy-aware independent tasks allocation in [27].

1 Round Robin (RR): This classic approach iteratively assigns jobs to
the next available CN. Should the selected CN cannot satisfy core
requirements for all tasks of a job, the CN will be skipped; this
iterative procedure is continued until the jobs can be assigned to
a CN.

Fig. 2. Scenario considered in this work.

Penalization Cost Minimization

6

€

fC (
 x)= Cost(x ,q)

0≤q≤n
∑

€

Cost(x ,q) =
0 if Fq < Dq

Penaltyq (Fq) otherwise
"

$

Please cite this article in press as: B. Dorronsoro, et al., A hierarchical approach for energy-efficient scheduling of large workloads in
multicore distributed systems, Sustain. Comput.: Inform. Syst. (2014), http://dx.doi.org/10.1016/j.suscom.2014.08.003

ARTICLE IN PRESSG Model
SUSCOM-102; No. of Pages 10

4 B. Dorronsoro et al. / Sustainable Computing: Informatics and Systems xxx (2014) xxx–xxx

Fig. 1. Energy consumption for a fully loaded (a) or a partially loaded (b) CN.

given machine in a CN is computed by Eq. (3), where ti denotes
the sum of ET for all tasks assigned to core i.

E(UC) = EIDLE + (EMAX − EIDLE) × UC
TC

(2)

Total energy =
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t0 × EMAX +
TC−1∑

h=1

E(TC − h) ∗ [th − th−1] if UC = TC

tTC−UC × E(UC) +
UC−1∑

h=1

E(UC − h) × [tTC−UC+h − tTC−UC+h−1] if UC < TC

(3)

Fig. 1 shows the energy consumption for a given workflow
when the executing machine mj in a CN is fully (UC = TC, in (a)) or
partially loaded (UC < TC, in (b)) loaded.

Based on the findings in [27], here we also propose an energy
consumption model to calculate energy consumption of all work-
flows on all CNs on distributed data-centers for a given schedule.
For such calculation, we iterate on all CNs, and for each CN,
compute the total energy consumption of its assigned tasks
considering the total amount of resources these tasks used and
the total amount of holes/slack-times they left idle on all com-
puting machines in the CN.

We used the following two quality metrics to measure the qual-
ity of our solutions from both customers’/users’ and infrastructure
administrators’ point of view. Although these metrics are not con-
sidered as the main optimization objectives, we used them as
quality measurements to show the efficiency of our solutions in
various situations.

• Minimize the number of violated deadlines
For every job/application, jq, that is not executed by its deadline,

a penalty cost, Penaltyq(Fq), is defined proportional to the amount
of time is was overdue; i.e., no penalty if the application is finished
before its deadline, and Penaltyq(Fq) when it is overdue (Fq > Dq).

The total penalty cost of a given schedule is defined as the sum
of all individual penalty costs; i.e.,

fC (x⃗) =
∑

0≤q≤n

Cost(x⃗, q), (4)

where Cost(x⃗, q) is the cost of job jq in schedule x⃗, as follows:

Cost(x⃗, q) =

{
0 ifFq < Dq

Penaltyq(Fq) otherwise
(5)

The following three penalty functions are considered for our
evaluations – predefined before scheduling of each instance.

According to jobs’ priorities, more penalties are further considers
for higher priority jobs.

Penaltyq(Fq) =

⎧
⎪⎨

⎪⎩

SQRT =
√

Fq − Dq

LIN = Fq − Dq

SQR = (Fq − Dq)2

(6)

• Resources utilization For executing workflows, we also mea-
sured the percentage of time when resources were not idle for
all CNs.

4. Proposed scheduling methods

In this section, details of our hierarchical approach to divide
an overall scheduling problem into two levels are presented. As
shown in Fig. 2, in the higher-level, all workflows are first col-
lected by a front-end server, and then dispatched to available CNs
for execution. In the lower-level, each CN employs a local sched-
uler to dispatch its received jobs – from the front-end server –

among its multicore machines to minimize both execution and
energy consumption of its jobs. Four heuristics are used at each
level to compose 16 possible scheduling setups.

4.1. Higher level schedulers

Four strategies are used for the higher-level scheduler. Consid-
ering their number of available cores to execute all tasks of a job,
these schedulers assign jobs to available CNs for execution. Two
schedulers (round robin, and load balance) ignore the execution
time and energy consumption of executing a job on a CN, while
the other two (MaxMin and MaxMIN) use heuristics to minimize
these objectives before dispatching jobs to lower-level sched-
ulers. Round-robin an load-balance are classic approaches, whereas
MaxMin and MaxMIN are reported as the best two heuristics for
energy-aware independent tasks allocation in [27].

1 Round Robin (RR): This classic approach iteratively assigns jobs to
the next available CN. Should the selected CN cannot satisfy core
requirements for all tasks of a job, the CN will be skipped; this
iterative procedure is continued until the jobs can be assigned to
a CN.

Fig. 2. Scenario considered in this work.

Multi-objective Optimization

• The goal is to find the Pareto front	

!

• Two key features to measure the quality of solutions	

‣ Convergence	

‣ Diversity

7

Bad$convergence$Bad$diversity$ Ideal$case$

Algorithms

8

NSGA-II

• Reference algorithm	

• Panmictic population	

• Selection of solutions	

- Ranking	

- Crowding

MOCell
• Cellular population	

- Only next individuals
can interact	

• External archive	

- Feedback to

population

NSGA-II

• Non-dominated Sorting Genetic Algorithm	

• Proposed by K. Deb (2002)	

• The most popular metaheuristic for multi-objective
optimization	

• Features	

- Ranking using non-dominated sorting	

- Crowding distance as density estimator

9

Area%represen)ng%the%crowding%distance%of%point%A%

Area%represen)ng%the%crowding%distance%of%point%B%

f2%

f1%

B%

A%

Point%B%is%in%a%less%crowded%region%than%point%A%

f2

f1

Rank 1

Rank 2
Rank 3

NSGA-II

10

Non$
dominated$
sor-ng$

Population

N
 in

di
vi

du
al

s

Auxiliar Population

N
 in

di
vi

du
al

s

Rank1

Rank2

Rank3

Rank4

Rank5

Crowding$
distance$
assignment$

GEN
ER

ATION M

GEN
ER

ATION M
+1

MOCell

11

Selection

Recombination

Mutation

Repeated  
for every 
individual

Insertion

•
Store?

External Archive with
Non-Dominated Solutons

•Feedback after
every generation

Problem Instances

• 125 randomly generated workflow batches	

- More than 1000 jobs	

- CNs: between 8 and 64 processors; 1 to 6 cores each

12

(a)

(b)

(c)

(d)

Fig 3. Jobs’ shapes: (a) Serious-Parallel, (b Homogenous-Parallel, (c) Heterogeneous-Parallel, and (d) Single-Task

Table 2: Tasks’s characteristics for Jobs is Fig. 3
Shape Width Height Num of Tasks Num of Processors Time to Execute
Serious-Parallel 6 12 62 7 491
Homogenous-Parallel 7 12 53 8 260
Heterogeneous-Parallel 9 14 65 6 470
Single-Task 1 1 1 4 20

Fig. 1: Framework

Fig. 2: A sample
computer center

Experiments

!
• NSGAII and MOCell	

- Map jobs into CNs and establish scheduling order	

- Lower level: EFTH	

‣ From previous work	

• Average results on 25 instances	

• Number of independent runs: 30	

• Statistical test: Wilcoxon

13

Table 3: Characteristics of the considered processors
processor frequency cores GFLOPS EIDLE EMAX GFLOPS/core
Intel Celeron 430 1.80 GHz 1 7.20 75.0W 94.0W 7.20
Intel Pentium E5300 2.60 GHz 2 20.80 68.0W 109.0W 10.40
Intel Core i7 870 2.93 GHz 4 46.88 76.0W 214.0W 11.72
Intel Core i5 661 3.33 GHz 2 26.64 74.0W 131.0W 13.32
Intel Core i7 980 XE 3.33 GHz 6 107.60 102.0W 210.0W 17.93

These workflows can be accessed/download by contacting the authors.
Our computing scenario is composed of five different clusters, also called

computing nodes, in which the workflows must be executed. Every cluster is
made of an homogeneous set of processors. In this work, we considered the
processors listed in Table 3, together with their characteristics.

5.2. Numerical results

Table 4 reports the numerical results computed for each scheduler and
each type of problem instances solved in the experimental analysis. We
report the average performance difference (in %) of every algorithm with re-
spect to the best result for every instance for the makespan (fM) and energy
consumption (fE) objectives. We also study the average performance differ-
ence on the penalizations” cost for violated deadlines (fC) and the average
utilization of the resources (U) (in % of the total computing time).

The results in Table 4 demonstrate that the list scheduling heuristics
from the previous work [27] are also the best strategies for the two-level
scheduling approach of DAG jobs applied in this work, clearly outperforming
the schedulers based on RR and LB.

MaxMin was consistently the best scheduler for Single-Task applications
regarding both makespan and energy, and the best utilization values were
obtained when applying the OLB and NOUR strategies in the low level.
For Series-Parallel DAGs, MaxMin and MaxMIN computed the best results
of makespan and energy, in both cases using OLB in the lower level, but
the penalizations” cost is significantly larger than when using a simple RR
strategy. MaxMin-EFTH was the best scheduler for Homogeneous-Parallel,
and MaxMIN-EFTH for Heterogeneous-Parallel instances, outperforming the
other combinations of higher-level/lower-level schedulers. Finally, in Mix
workflow instances, which could represent the most generic case of multi-
purpose high performance computing applications, MaxMIN (using both

18

• Based on HEFT 	

- Adapted for multicore case: backfilling	

• The whole that minimizes task finish time is selected

Lower Level Scheduler: EFTH

14

Problem Resolution
• Problem:	

- Allocate jobs to computing nodes 	

- Specify the jobs execution order in every CN	

- Evaluation based on EFTH  

!
• Problem representation	

- Permutation of size Njobs + NCN - 1	

- Job IDs ∈ [0, Njobs-1]	

- Splitters ∈ [Njobs, NCN-2]

15

4"#"5"#"2"#"10"#"0"#"3"#"1"#"12"#"7"#"8"#"9"#"11"#"6"

CN1" CN2" CN3" CN4"

10 Jobs	

4 CNs

Operators

• Partially Matched Crossover (PMX)	

!
!
!
!
!

• Swap Mutation	

!
!
!

• Solutions Repair: can all CNs execute all assigned jobs?	

- Number of cores

16

1 2 3 4 5 6 7 8

1 2 5 4 3 6 7 8

4"#"5"#"2"#"10"#"0"#"3"#"1"#"12"#"7"#"8"#"9"#"11"#"6"

5"#"0"#"6"#"4"#"10"#"7"#"2"#"9"#"12"#"1"#"3"#"8"#"11"

4"#"5"#"10"#"8"#"0"#"7"#"2"#"9"#"12"#"1"#"3"#"11"#"6"

5"#"0"#"6"#"4"#"10"#"3"#"1"#"12"#"7"#"8"#"9"#"8"#"11"
Parent 2

Parent 1

Offspring 2

Offspring 1

Comparison of the Performance of MOEAs

17

TABLA II

Valor promedio de HV, spread, e IGD para los algoritmos MOCell y NSGA-II.

tipo HV spread IGD
instancia MOCell NSGA-II MOCell NSGA-II MOCell NSGA-II

heterogéneo 0,43±0,06 0,59±0,07 1,00±0,02 1,32±0,03 0,06±0,03 0,04±0,01
homogéneo 0,57±0,07 0,65±0,06 0,80±0,05 0,90±0,02 0,04±0,01 0,03±0,01
serial 0,57±0,07 0,65±0,06 0,95±0,03 1,35±0,02 0,05±0,02 0,04±0,01
una tarea 0,57±0,07 0,65±0,06 0,87±0,02 0,98±0,04 0,04±0,01 0,03±0,01
mezcla 0,49±0,01 0,58±0,09 0,96±0,04 1,08±0,04 0,04±0,01 0,03±0,01

la solución más cercana a la solución calculada por
MaxMin-EFTH, i.e., aquella que se encuentra a me-
nor distancia Euclidiana. Luego se compararon los
valores objetivos de las soluciones seleccionadas de
los MOEA y la calculada por MaxMin-EFTH. La
Tabla III muestra la mejora promedio computada
por MOCell y NSGA-II para cada objetivo con res-
pecto a MaxMin-EFTH. En negrita se muestra el
mejor valor promedio computado.

La Tabla III muestra que MOCell y NSGA-II son
capaces de calcular valores más precisos a los calcula-
dos por MaxMin-EFTH para los objetivos de enerǵıa
y de penalización por violaciones. NSGA-II presenta
mejoras promedio de 5,6% en consumo energético y
47,1% en penalización por violaciones; mientras que
MOCell mejora el consumo energético en 4,8% y en
51,5% en penalización por violaciones. Las amplias
mejoras computadas por los MOEA en el objetivo de
penalización por violaciones se deben principalmen-
te a que la heuŕıstica MaxMin-EFTH no conside-
ra activamente la penalización por violaciones en la
planificación y planifica los trabajos siguiendo una
estrategia FIFO, mientras que MOCell y NSGA-II
consideran la reordenación de los trabajos durante
la planificación.

Por otro lado, MaxMin-EFTH mostró ser muy efi-
caz en términos de makespan, computando solucio-
nes en promedio 2,5% mejores que las computadas
por los MOEA en el objetivo de makespan.

Fig. 4. Mejora promedio con respecto a MaxMin-EFTH.

VI. Conclusiones

En este art́ıculo se introduce un enfoque multi-
objetivo para la planificación multinivel de lotes de
trabajos utilizando dominancia de Pareto y conside-
rando un orden arbitrario para la ejecución de los
trabajos. Se consideran simultáneamente los objeti-
vos de eficiencia energética, eficiencia en la utiliza-

ción de la infraestructura, y calidad de servicio. De-
bido al aumento en la complejidad del problema, en
este trabajo se propone la aplicación de dos MOEA
ampliamente conocidos: MOCell y NSGA-II.
Realizamos la evaluación experimental de ambos

MOEA utilizado tres métricas para la evaluación de
la calidad y la diversidad de los frentes de Pareto
computados. La evaluación experimental fue realiza-
da sobre un conjunto de 125 instancias del problema
con diferentes caracteŕısticas. Los resultados indican
que NSGA-II es capaz de computar resultados de
mejor calidad que los computados por MOCell para
la mayoŕıa de las métricas y en la mayoŕıa de las
instancias del problema.
Los resultados indican que NSGA-II y MOCell son

capaces de computar resultados más precisos que los
computados por MaxMin-EFTH para los objetivos
de enerǵıa y de penalización por violaciones.
Luego comparamos las soluciones computadas por

NSGA-II y MOCell con las computadas por la
heuŕıstica MaxMin-EFTH, en términos de makes-
pan, consumo energético, y penalización por viola-
ciones de plazos de ejecución. Los resultados obte-
nidos muestran que los algoritmos NSGA-II y MO-
Cell computan soluciones con los mejores valores de
consumo energético y penalización por violaciones
en plazos de ejecución. Por otro lado, la heuŕıstica
MaxMin-EFTH resulta altamente eficaz en términos
de makespan computando soluciones con los mejores
valores para este objetivo.
Las principales ĺıneas de trabajo futuro son dos.

La primera consiste en la mejora de los MOEA pro-
puestos mediante el uso de una versión estocástica
de la heuŕıstica MaxMin-EFTH para la inicialización
de la población y mediante la hibridación de un ope-
rador de búsqueda local. La segunda ĺınea de trabajo
se centra en la mejora de las heuŕısticas de planifi-
cación. Los resultados obtenidos muestran que hay
un gran espacio para la mejora de las heuŕısticas ac-
tualmente propuestas, principalmente en lo que res-
pecta al objetivo de penalización por violaciones en
los plazos de ejecución. Para esto se propone diseñar
nuevas y más complejas heuŕısticas que sean capa-
ces de computar soluciones más cercanas al frente de
Pareto.

Agradecimientos

S. Iturriaga y S. Nesmachnow son parcialmente
financiados por ANII y PEDECIBA (Uruguay). B.

Instance

Heterogeneous!
Homogeneous!
Serious Par.!
Single Task!
Mix

Sample Solutions for Heterogeneous Inst.

18

4.58

4.62
4.64

4.66

4.4

4.45

4.5

4.55

4.6

4.65

x 104

0

1

2

3

x 1010

4.6

0DNHVSDQ
(QHUJtD

9L
RO
DF
LR
QH
V

NSGA−II
MOCell
MaxMin−EFTH

D
ea

dl
in

e
Vi

ol
at

io
ns

Energy Used (KW/h) Makespan (hours)

Comparison of MOEAs vs Heuristic

19

-10

0

10

20

30

40

50

60

Makespan Energía Violaciones

Po
rc

en
ta

je
 d

e
m

ej
or

a

Objetivos del problema

MOCell NSGA-II

Im
pr

ov
em

en
t P

er
ce

nt
ag

e

Problem Goals

EnergyMakespan Deadline  
Violations

Conclusions

• Resource management in large geographically distributed data-
centers with multi-core architectures	

• Multiple objectives: Energy; Makespan; QoS	
 	
 	
 	
 	
 	
 	

• Solution techniques	

- Two-levels schedule	

- Two MOEAs	

• Results	

- NSGAII outperforms MOCell (accuracy)	

- Both outperform best known heuristic	

‣ Slightly worse in makespan (2.5%)	

‣ Better in energy (5%) and penalizations cost (50%)	

• Future work	

- Enhance MOEAs with population initialization and LS	

- Design better heuristics

20

Thank you

21

