
DISTAR Computing
Digital Stimulus Analogue Response

(inspired mostly by crypto)
John A Clark

Outline Model of Computation

Inputs

Computational Engine

Functional
Response

Analogue
Response

Pr
og

ra
m

Interpretation

En
vi

ro
nm

en
t

This is an outline model of
computation which allows us to
identify where to put effort.

There are many choices over what
to seek control.

Going to take a general view of
analogue: radio frequency, timing,
power, heat, …

Genetic algorithms and NMR

What happens if you RF pulse
a substance in magnetic field?

Over various pulsing
frequencies you get an
associated RF response from
the substance depending
what it contains.

Usually easy to identify
substance composition there
is a single molecule type but if
there are several the
composition is more
complicated.

Genetic algorithms and solid-state NMR

κ1 τ1 ω1 κ2 τ2 ω2 κr τr ωr

Genome (individual) here is decoded as a program to generate the
indicated RF pulse sequence.

Powdered substrate responds to the pulse sequence RF pulse
sequence with its own RF response in a way we hope is revealing in
some way (i.e. characterises its composition).

This is an example of evolving a program to induce analogue
responses of a desired form (BTW: we have broken existing theory.)

Seeking Control Over Timing Outputs

n  David reported earlier on timing avalanches and PRNGs:
this an attempt to control both:
n  Functional outputs (does it work like a good PRNG, e.g. pass

randomness tests?)
n  Timing properties – to the extent that the execution times look

‘random’: the idea here is that NO (little) information should
leak via these times.

n  Here it is simulated time but this is still a timing property of a
system – you would get different programs if you ran this with
real time measurements on real processors – but the principle is
the same.

n  It does so by evolving a program seeking measurable
functional properties with desirable induced timing
responses properties.

Seeking Control Over Timing Outputs

n  But can you find a program that solves a problem using
only the timing properties.

n  Let’s consider a pattern classification problem.

Loosely

Take two sets of data A={r1, r2,…rn} B={s1, s2, …, sn}.

Can you find a program P(data) such that

Timing (P(rj)) < Timing (P(sk)) for all j, k

Effectively, can timing act as an efficient and effective classifier?

Seeking Control Over Timing Outputs

n  Program space is limited subset of expressions using
integers with a primitive simulated timing model.

MUL(a,b)

ADD(a,b)

SUB(a,b)

SHIFTL

SHIFTR

Hamming(a)*Hamming(b)

Hamming(a)+Hamming(b)

Hamming(a)-Hamming(b)

1

1

Instruction Timing Model

Problem: A={0,…,127} B={128,…,255}

Seeking Control Over Timing Outputs

n  Example program evolved……

Best Individual of Run:
Subpopulation 0:
Evaluated: true
Fitness: Standardized=914.0 Adjusted=0.001092896174863388
Hits=255
Tree 0:
 (* (* (* (* (* (SHIFTR (SHIFTR (SHIFTR
 (SHIFTR (SHIFTR (SHIFTR (SHIFTR x)))))))
 x) x) x) x) x)

Problem: A={0,…,127} B={128,…,255}

May also be interesting things happening functionally regarding overflow.

Seeking Control Over Timing Outputs

Possible that for complex tasks an ensemble of timing oriented
classifiers may be best

1 1 1 0 1

Data To Be
Classified

Possible that this approach may also be power efficient, if it works…

Heat Profile as IO

Can we find a program P such
that when you run it on data D
classifies D as either A or B via
the heat profile of the chip. ….

Top Hotter Than Bottom=>A

Bottom hotter than Top => B

Toggle frequency as a proxy
for heat.

Idea from 2004 tried in 2007 and it failed. But really this is an extraordinarily
bizarre goal. Why not have (evolve) a more sophisticated interpretation of
the heat profile? (See also more recent Cambrideg work on TOR system.)

IDS in MANETs (Sevil Sen)

6 Sevil Şen et al.

as added routes in the last period). Packet-related features include the number
of routing protocol control packets sent, received, forwarded by a node in a time
interval. The average hop count feature is used only for the route disruption
attacks. The functions used together with the major GP parameters are given
in Table 1. Population size is the number of individuals in a population in any
generation. Generations defines when (at which generation) the evolution process
stops. Crossover probability shows how likely individuals selected for mating will
exchange elements. Reproduction probability shows how likely an individual will
be copied without any modification to the new generation. Tournament selection
is one of the methods used for selecting individuals for mating. In this method,
a group of individuals is chosen randomly from the population and the best
individual from this group (i.e. the fittest) is selected as parent. Tournament

size defines the number of the individuals in this group. ECJ 18 [2] toolkit is
used for the GP implementation. The parameters not listed here are the default
parameters of the toolkit.

Table 1. GP parameter settings

Objective Find a computer program to detect flooding and
route disruption attacks against MANETs

Function set +,-,*, /, pow, min, max, percent sin, cos, log, ln, sqrt,
abs, exp, ceil, floor, and, or, comparison operators

Terminal set The feature set in Appendix A

Populations Size 100

Generations 1000

Crossover Probability 0.9

Reproduction Probability 0.1

Tournament Size 7

The fitness function is very important in evolutionary computation since it
evaluates how good the individual is. The fitness function used in the experi-
ments is defined below. The detection rate shows the ratio of correctly detected
intrusions to the total intrusions on the network. The false positive rate shows
the ratio of normal activities that are incorrectly marked as intrusions to the
total normal activities on the network. A high false positive rate will cause a
good deal of time to be wasted and will likely destroy confidence in the IDS.

Fitness = detection rate° false positive rate (1)

Each individual in GP is represented by a tree. Here we use strongly-typed
GP, which enforces data type constraints and whose use of genetic functions
and generic data types [17]. In order to evaluate an individual we translate the
individual tree to a C program.

Experimental Results The networks are simulated by ns-2 [3] where mobility
patterns of the nodes on the network are created using BonnMotion [1]. DiÆerent

6 Sevil Şen et al.

as added routes in the last period). Packet-related features include the number
of routing protocol control packets sent, received, forwarded by a node in a time
interval. The average hop count feature is used only for the route disruption
attacks. The functions used together with the major GP parameters are given
in Table 1. Population size is the number of individuals in a population in any
generation. Generations defines when (at which generation) the evolution process
stops. Crossover probability shows how likely individuals selected for mating will
exchange elements. Reproduction probability shows how likely an individual will
be copied without any modification to the new generation. Tournament selection
is one of the methods used for selecting individuals for mating. In this method,
a group of individuals is chosen randomly from the population and the best
individual from this group (i.e. the fittest) is selected as parent. Tournament

size defines the number of the individuals in this group. ECJ 18 [2] toolkit is
used for the GP implementation. The parameters not listed here are the default
parameters of the toolkit.

Table 1. GP parameter settings

Objective Find a computer program to detect flooding and
route disruption attacks against MANETs

Function set +,-,*, /, pow, min, max, percent sin, cos, log, ln, sqrt,
abs, exp, ceil, floor, and, or, comparison operators

Terminal set The feature set in Appendix A

Populations Size 100

Generations 1000

Crossover Probability 0.9

Reproduction Probability 0.1

Tournament Size 7

The fitness function is very important in evolutionary computation since it
evaluates how good the individual is. The fitness function used in the experi-
ments is defined below. The detection rate shows the ratio of correctly detected
intrusions to the total intrusions on the network. The false positive rate shows
the ratio of normal activities that are incorrectly marked as intrusions to the
total normal activities on the network. A high false positive rate will cause a
good deal of time to be wasted and will likely destroy confidence in the IDS.

Fitness = detection rate° false positive rate (1)

Each individual in GP is represented by a tree. Here we use strongly-typed
GP, which enforces data type constraints and whose use of genetic functions
and generic data types [17]. In order to evaluate an individual we translate the
individual tree to a C program.

Experimental Results The networks are simulated by ns-2 [3] where mobility
patterns of the nodes on the network are created using BonnMotion [1]. DiÆerent

IDS in MANETs (Sevil Sen)

EC 7

network scenarios are created with diÆerent mobility levels and tra±c loads.
50 nodes are placed in a topology of 1000m by 500m. TCP tra±c is used for
communication. The maximum number of connections is set to either 20 or 30 to
simulate diÆerent tra±c loads. The maximum speed of nodes is set to 20 m/sec
and the pause time between movements is set to 40, 20, and 5 sec to simulate
low, medium, and high mobility respectively. AODV is chosen as the routing
protocol and AODV periodic hello messages are used for local link connectivity.
The simulations run 5000 seconds for training and 2000 seconds for testing.

The algorithm is evolved using the training data collected from a network un-
der medium mobility with 30 TCP connections. The same network with attacks
and without attacks is used together for training to reduce false positives. The
best result of ten runs is chosen for each attack type and evaluated on diÆerent
network scenarios.

We evolve separate programs for each attack. Intrusion detection programs
are distributed to each node on the network. Each node gathers the features
every time interval. We assume that attacks are detected by the nodes that the
attacks aÆect directly. In flooding attacks, the nodes who are flooded by route
request messages detect the attack. In route disruption attacks, the victim node
is assumed to detect malicious change in its routing table. Table 2 shows the
performance of the evolved program (the best individual of ten runs of GP) for
each attack type on networks with varying mobility and tra±c patterns.

Table 2. Performance of the Genetic Programming technique on simulated networks

Network Flooding Attack Route Disruption

Scenarios Attack

DR FPR DR FPR
low mobility
low tra±c 99.81% 0.34% 100% 0.51%
low mobility
medium tra±c 99.24% 1.94% 100% 0.99%
medium mobility
low tra±c 99.95% 0.36% 97.06% 0.46%
medium mobility
medium tra±c 99.89% 1.88% 100% 0.88%
high mobility
low tra±c 99.79% 0.66% 100% 0.52%
high mobility
medium tra±c 98.62% 1.83% 100% 0.84%

Some conclusions can be drawn from these figures. Apparently, route disrup-
tion attacks seem to be easier to detect than flooding attacks. In all cases but
one the detection rate (DR) is 100% and the false positive rate (FPR) is less
than 1%. Note that in the case with medium mobility and low tra±c perfect
detection is not reached, but the FPR is low (0.46%). It seems reasonable to
suppose that a 100% DR can be achieved with a small increase in the FDR. The

IDS in MANETs (Sevil Sen)

EC 11

Fig. 2. Classification accuracy and energy consumption of the optimal evolved pro-
grams

sized programs. Nevertheless programs with bigger program size and accordingly
higher energy consumption show a slightly better performance detection ability.

Another eÆect on the size of the individuals in GP is bloat. Bloat is a phe-
nomenon whereby the size of individuals in a GP population increases dramati-
cally over the duration of a run, largely due to redundant code [20]. The eÆect of
bloat has also been noticed in our experiments where there are individuals with
the same fitness but with diÆerent sizes due to code redundancy, which tends
to evolve programs with higher energy consumption. Fortunately, ”the archiving
in SPEA2 is eÆectively elitist, and counteracts the emergence of bloat in GP,
because a larger individual will only survive if it makes an improvement over the
existing archive in at least one objective” [31]. This feature is very important in
our experiments since it supports our goal to evolve small-sized programs, and
programs with low energy consumption presumably.

In the second part of our experiments, we evolve programs for flooding and
route disruption attacks separately by using multi-objective evolutionary com-
putation. The parameters used are the same as in Table 1 except the population
size (150) and SPEA2 archive size (100). Figure 3 shows the optimal solutions
found for each attack at the end of 1000 generations. The circle points show the
Pareto front. In the case of flooding attacks, Pareto front moves towards higher
energy consumption for higher detection rate and lower false positive rate. It has
been observed that it is the false positive rate that is most clearly aÆected by en-
ergy consumption. Allowing an increase in false positive rate causes decrease in
energy consumption. For route disruption attacks, programs closer to optimum
solution which have higher detection ability and lower energy consumption are
achieved by using MOEA techniques. Moreover we have compared the energy
consumption of programs which have highly-accurate detection ability with that
of the programs evolved using GP in Figure 2. It is observed that programs
with lower energy consumption stand out in the results obtained by MOEA
techniques. Particularly for flooding attacks energy consumption is significantly
reduced. Lastly we evolve programs to detect flooding and route disruption at-
tacks together by using MOEA techniques. We aim to investigate if it is better
to evolve one program to detect both attacks or evolve two programs each with
half the resource usage. Figure 4 shows the 3D-Pareto front for the three objec-

IDS in MANETs (Sevil Sen)
12 Sevil Şen et al.

Fig. 3. 3D-Pareto front for detection of each attack with the three objectives: detection
rate, false positive rate and energy consumption

tives. The results demonstrate that a detection program for both attacks can be
more energy-e±cient than two programs which detect these attacks separately,
it does not show high classification accuracy as much as two programs do sepa-
rately. There is a trade-oÆ to be made based on the requirements of the MANET
application used. In the results of five runs, there is no program evolved for de-
tecting both attacks which simultaneously has detection rate and false positive
rate (1-FPR) more than 94%. Table 3 shows some example programs evolved
using MOEA. (There are many other programs on the Pareto front which have
diÆerent trade-oÆs.)

Fig. 4. 3D-Pareto front for detection both attacks with the three objectives: detection
rate, false positive rate and energy consumption

IDS in MANETs (Sevil Sen)
EC 13

Table 3. Example programs evolved by MOEA for each attack

Attack

Type

Evolved Program DR FPR Energy

Usage

Flooding (frw aodvPs * frw aodvPs) > 98.65% 1.23% 65.42
(4log(neighbours) + 5updated routes)

Route ((2updated routes - 2recv aodvPs 100% 0.63% 43.05
Disruption + active routes) * recv rrepPs > (recv aodvPs

+ updated routes)
Both (((updated routes * init aodvPs) 93.29% 4.65% 50.14

∑ frw rreqPs) && (init rrepPs 6= recv rrepPs)
&& (exp(updated routes) 6= recv rrepPs))
k (updated routes < frw rreqPs)

6 Conclusions and Future Work

We have evolved programs using GP to detect known flooding and route dis-
ruption attacks against AODV and have evaluated them on simulated networks
with varying mobility and tra±c levels. We used both single fitness functions
and multiple fitness functions. We have shown how in some circumstances a
multiple objective approach provides a more eÆective means of searching the
tradeoÆ space. Our work is unusual in that we trade oÆ security performance
(detection and false positive rates) against resources (power). It is likely that for
some types of networks (e.g. sensor networks) the ability to make good tradeoÆs
will be particularly important. Our techniques can be used to generate solu-
tion sets with the best (or near best) tradeoÆs possible. A final choice between
solutions making diÆerent tradeoÆs rests with the designer. The inherent com-
plexity of MANET operations makes it di±cult to see how IDS programs with
optimal tradeoÆs could be obtained by standard system development practices.
An optimisation based approach seems a natural and eÆective candidate for the
problem we seek to solve. We recommend the use of GP and MOEA for further
consideration by the IDS and MANET research communities.

References

1. Bonnmotion: A mobility scenario generation and analysis tool.
http://web.informatik.uni-bonn.de/IV/Mitarbeiter/dewaal/BonnMotion/.

2. Ecj18: A java-based evolutionary computation research system.
http://cs.gmu.edu/ eclab/projects/ecj/.

3. Ns-2: The network simulator. http://www.isi.edu/nsnam/ns.
4. Simplescalar. http://www.simplescalar.com/.
5. A. Abraham and C. Grosan. Evolving intrusion detection systems. In Genetic

Systems Programming: Theory and Experiences, volume 13, pages 57–79. Springer,
2006.

6. A. Abraham, C. Grosan, and C. Martiv-Vide. Evolutionary design of intrusion
detection programs. Int. Journal of Network Security, 4:328–339, 2007.

Environment Manipulation

n  Adrian Thompson did some really cool (or hot) stuff in the
late 1990s by evolving FPGA programs (cell matrix
configurations) using Genetic Algorithms.

n  Evolved programs to distinguish 1kz and 10 kHz signals
using the unconstrained dynamics of the chip (switch off
lock step).

n  Program worked for
around 20 minutes
until chip got hot!!!!

Environment Manipulation

n  Consider RAM chips.
n  We tell lies about how they work to our students.
n  We tell them that if we remove the power then the contents

disappear.

n  But for some memory chips if you reduce the temperature
to say -40 C and then remove the power, it powers up in
almost the state it was in before you remove the power.

n  This could allow you to bypass security mechanisms that
boil down to “pulling the plug if you detect tampering”.

n  More general point is that the info properties of hardware
are different under different environmental conditions.

18

Interpretation Needed

n  Square and multiply with key (exponent)
k0k1k2 etc.

s0 := 1

for i = 0 to n-1

 Ri := (if ki = 1 then (si * y) mod m else si)

 si+1 := (Ri * Ri) mod m

endfor

return Rn-1

19

Kocher’s Timing Attack

d1
Time t1

d2
Time t2

dn
Time tn

Suppose we have the total times for exponentiation t1, t2,…,tn for the identified data
items d1, d2, …, dn.

Assume you can calculate the time for the first round under the assumption that the
first key bit is 0 (blue) and under the assumption that the first key bit is 1 (green).
The time for the remaining rounds is then calculated (black and yellow respectively

20

Kocher’s Timing Attack

d1
Time t1

d2
Time t2

dn
Time tn

If the variance of the BLACK remaining times is less than the variance of the
YELLOW remaining times then the first bit WAS actually a 0. Otherwise the first bit
WAS actually a 1. Now repeat the process for the next round (in the context of the
choice you have now made)….

Strictly this can go wrong (detectably) and some degree of backtracking is needed.

This is an example of INTERPRETATION OF THE TIMING MEASUREMENTS.

21

Let’s Do the Time Warp Again

n  Simulations of this attack work even when the timing
model for multiplication is randomly generated lookup
table (e.g. mean 1000ns with a small variance) Thanks to
Susan Stepney).

n  So why not EVOLVE THE TIMING MODEL?
n  This is a fairly radical step, but we can leverage the

fact that we can simulate: we are not beholden to
actual hardware.

n  With earlier example we could evolve the program and
the timing model together.

round function indexed by K1

Apply round function round function indexed by K2

round function indexed by K3

Output ciphertext

Input plaintext If you know K3 then you know all
the intermediate text here,
because you can invert the round
precisely.

If you know a subset of the key
K3 then you know a subset of
the the intermediate text here.

Suppose if you know the final 6
bits of K3 you can reverse
engineer the FIRST intermediate
bit value.

round function indexed by K1

Apply round function round function indexed by K2

round function indexed by K3

Output ciphertext

Input plaintext So for each choice of final 6 bits you
get a predictor for the value of that
bit given a particular ciphertext.

For each such guess of 6 key bits if
you guess the 6 bits correctly then
the predicted bit for each ciphertext
ACTUALLY TAKES THE VALUE its had
during the encryption.

If there is an error in the key guess
this process essentially randomises
the result (half right and half wrong).

24

Predictor acts as partitioner

C1 C2 C3 Cm

0 1

[]
()

() ⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

−
−

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=Δ

∑

∑

∑

∑

=

=

=

=
m

i
si

m

i
isi

m

i
si

m

i
isi

D

KCD

jTKCD

KCD

jTKCD
j

1

1

1

1

),(1

][),(1

),(

][),(

25

Monitor power traces

T1[1] T1[2] T1[3] T1[n]

T2[1] T2[2] T2[3] T2[n]

Tm[1] Tm[2] Tm[3] Tm[n]

C1:

C2:

Cm:

Kocher et al give examples where m=1000/
m=10000 and n=10000

[]
()

() ⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

−
−

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=Δ

∑

∑

∑

∑

=

=

=

=
m

i
si

m

i
isi

m

i
si

m

i
isi

D

KCD

jTKCD

KCD

jTKCD
j

1

1

1

1

),(1

][),(1

),(

][),(

26

Plotting the correlations

[Kocher 1999, fig 4]

correct subkey guess

incorrect subkey guess

incorrect subkey guess

Utter genius!!!!!

Outline Model of Computation

Inputs

Computational Engine

Functional
Response

Analogue
Response

Pr
og

ra
m

Interpretation

En
vi

ro
nm

en
t

So if we are to exploit analogue
phenomena we may need to be
eclectic and radical in what we
seek control over.

It would not be outrageous to
seek to control simultaneously
the inputs, the program, the
timing model and the
interpretation function for
example.

 Breaking the Model: finalisation and a
taxonomy of security attacks. John A.
Clark, Susan Stepney, Howard Chivers.
REFINE 2005

