THE UNIVERSITYW
%’*ﬁ
DISTAR Computing

Digital Stimulus Analogue Response
(inspired mostly by crypto)

John A Clark

LI, L LLLAALLLY

-+ RIS . [5S r - . : SO

—— o - e s ‘o ~L] LA) e ' S Y
e - - PRSPl . < —- ,. »
PYT NG R S - 2 2 . v i | Y il

THE UNIVERSITYW

Outline Model of Computation

Inputs

This is an outline model of
computation which allows us to
identify where to put effort.

Computational Engine

There are many choices over what
to seek control.

Environment

Going to take a general view of

analogue: radio frequency, timing,
power, heat, ...

Interpretation

THE UNIVERSITYW

Genetic algorithms and NMR

Ethanol What happens if you RF pulse
! a substance in magnetic field?

H—(.l'I—(IZ—OH
H

Over various pulsing
frequencies you get an
associated RF response from
the substance depending

‘HH what it contains.

Usually easy to identify
substance composition there
is a single molecule type but if
there are several the
composition is more
complicated.

A

Y
A
Y

THE UNW@%%”?TC algorithms and solid-state NMR

12 T1 2

K1 ¢1 K2 K1 (P]_ K2

w1 W w1 W

kl |71 |ol (k2 [©2 |02 @ @ @ Kr |tr |or

Genome (individual) here is decoded as a program to generate the
indicated RF pulse sequence.

Powdered substrate responds to the pulse sequence RF pulse
sequence with its own RF response in a way we hope is revealing in
some way (i.e. characterises its composition).

This is an example of evolving a program to induce analogue
responses of a desired form (BTW: we have broken existing theory.)

THE UNIVERSITYW

Seeking Control Over Timing Outputs

s David reported earlier on timing avalanches and PRNGs:
this an attempt to control both:

s Functional outputs (does it work like a good PRNG, e.g. pass
randomness tests?)

m Timing properties — to the extent that the execution times look
‘random’: the idea here is that NO (little) information should
leak via these times.

m Here it is simulated time but this is still a timing property of a
system — you would get different programs if you ran this with
real time measurements on real processors — but the principle is

the same.
m It does so by evolving a program seeking measurable
functional properties with desirable induced timing
responses properties.

THE UNIVERSITYW

Seeking Control Over Timing Outputs

= But can you find a program that solves a problem using
only the timing properties.

m Let's consider a pattern classification problem.

Loosely

Take two sets of data A={r,, r5,...r,} B={sy, S,, ..., S,)}-
Can you find a program P(data) such that

Timing (P(r;)) < Timing (P(sy)) for all j, k

Effectively, can timing act as an efficient and effective classifier?

THE UNIVERSITYW

Seeking Control Over Timing Outputs

s Program space is limited subset of expressions using
Integers with a primitive simulated timing model.

Instruction Timing Model

MUL(a,b) Hamming(a)*Hamming(b)
ADD(a,b) Hamming(a)+Hamming(b)
SUB(a,b) Hamming(a)-Hamming(b)

SHIFTL 1

SHIFTR 1

Problem: A={0,..,127} B={128,...,255}

THE UNIVERSITYW

Seeking Control Over Timing Outputs

Best Individual of Run:
Subpopulation 0:
Evaluated: true
Fitness: Standardized=914.0 Adjusted=0.001092896174863388
Hits=255
Tree 0:
(* (> (* (* (* (SHIFTR (SHIFTR (SHIFTR
(SHIFTR (SHIFTR (SHIFTR (SHIFTR x))))))
X) X) X) X) X)

May also be interesting things happening functionally regarding overflow.

Problem: A={0,..,127} B={128,...,255)

THE UNIVERSITYW

Seeking Control Over Timing Outputs

Possible that for complex tasks an ensemble of timing oriented
classifiers may be best
1 1 1 0 1

* * * * *

® ooe

Classified

Possible that this approach may also be power efficient, if it works...

THE UNIVERSITYW

Heat Profile as 10

— - Can we find a program P such

that when you run it on data D
v 5 57 T 7T 7T 71 classifies D as either A or B via
7 — the heat profile of the chip.

Top Hotter Than Bottom=>A

Bottom hotter than Top => B

Toggle frequency as a proxy
for heat.

Idea from 2004 tried in 2007 and it failed. But really this is an extraordinarily
bizarre goal. Why not have (evolve) a more sophisticated interpretation of
the heat profile? (See also more recent Cambrideg work on TOR system.)

THE UNIVERSITYW

IDS in MANETS (Sevil Sen)

Table 1. GP parameter settings

Objective Find a computer program to detect flooding and
route disruption attacks against MANET'Ss

Function set +,-,*, /, pow, min, max, percent sin, cos, log, In, sqrt,
abs, exp, ceil, floor, and, or, comparison operators

Terminal set The feature set in Appendix A

Populations Size 100

Generations 1000

Crossover Probability 0.9

Reproduction Probability | 0.1

Tournament Size 7

Fitness = detection rate — false positive rate (1)

THE UNIVERSITYW

IDS in MANETS (Sevil Sen)

Table 2. Performance of the Genetic Programming technique on simulated networks

Network Flooding Attack|Route Disruption

Scenarios Attack
DR FPR DR FPR

low mobility
low traffic 99.81% 0.34% 100% 0.51%
low mobility
medium traffic 99.24% 1.94% 100% 0.99%
medium mobility
low traffic 99.95% 0.36% 97.06% 0.46%
medium mobility
medium traffic 99.89% 1.88% 100% 0.88%
high mobility
low traffic 99.79% 0.66% 100% 0.52%
high mobility
medium traffic 98.62% 1.83% 100% 0.84%

THE UNIVERSITYW

IDS in MANETS (Sevil Sen)

) Flooding Attack Route Disruption Attack
0.5 0.024
3 & depth: 17 ° @ depth: 17
04 - " depth: 3 0.020 - ® depth: 5
¢ &
o)
g 03 B 0.016 -
= o
. &
é 0.2 € o1 ¢
T o - & 00 " ¢
0.1 0.008 1 " ¢
Im
. e ¢ o o ¢ . ¢
0.0 - CI) CI) ! CI) CI) CI> C‘> - 0.004 T T T T T T T 2
= a @ 3 2 2 = % a ? 3 2 g e 2 S g
Power Power

Fig. 2. Classification accuracy and energy consumption of the optimal evolved pro-
grams

THE UNIVERSITY@”/M) i
£ IDS in MANETSs (Sevil Sen)

Route Disruption Attack

Flooding Attack
3 | ; 0.03 |
0.026 - ‘ : | o 0.025 3
00244 + ; o+ : e 1
5 1% g : : # ot Co 0 o 8 o
z : o Wio g +o ¢ ! 2 0.02
5 0.022 B P Pt =
= + o010 8 b g T &g 9 =
' 0.015
0.01.]
0.4

Fig. 3. 3D-Pareto front for detection of each attack with the three objectives: detection

rate, false positive rate and energy consumption

THE UNIVERSITYW

IDS in MANETS (Sevil Sen)

Table 3. Example programs evolved by MOEA for each attack

Attack |Evolved Program DR |FPR |Energy

Type Usage

Flooding |(frw_aodvPs * frw_aodvPs) > 98.65%]1.23% |65.42
(4log(neighbours) + bupdated_routes)

Route ((2updated_routes - 2recv_aodvPs 100% [0.63% |43.05

Disruption/+ active_routes) * recv_rrepPs > (recv_aodvPs
+ updated_routes)

Both (((updated_routes * init_aodvPs) 93.29%14.65% |50.14
< frw_rreqPs) && (init_rrepPs # recv_rrepPs)
&& (exp(updated_routes) # recv_rrepPs))

| (updated_routes < frw_rreqPs)

THE UNIVERSITYW

Environment Manipulation

s Adrian Thompson did some really cool (or hot) stuff in the
late 1990s by evolving FPGA programs (cell matrix
configurations) using Genetic Algorithms.

m Evolved programs to distinguish 1kz and 10 kHz signals
using the unconstrained dynamics of the chip (switch off
lock step).

s Program worked for
around 20 minutes
until chip got hot!!!!

THE UNIVERSITYW

Environment Manipulation

s Consider RAM chips.
s We tell lies about how they work to our students.

n We tell them that if we remove the power then the contents
disappear.

» But for some memory chips if you reduce the temperature
to say -40 C and then remove the power, it powers up in
almost the state it was in before you remove the power.

= This could allow you to bypass security mechanisms that
boil down to “pulling the plug if you detect tampering”.

s More general point is that the info properties of hardware
are different under different environmental conditions.

THE UNIVERSITYW

Interpretation Needed

m Square and multiply with key (exponent)
KoKk, etc.

Sy := 1

for i = 0 to n-1
R; := (if k; = 1 then (s; * y) mod m else s;)
S;y1 = (R; * R;) mod m

endfor

return R__;

THE UNIVERSITYW

Kocher’s Timing Attack

dl
Time t1

I
I
B |

Time t2

dn
Time tn

Suppose we have the total times for exponentiation t1, t2,...,tn for the identified data
items d1, d2, ..., dn.

Assume you can calculate the time for the first round under the assumption that the

first key bit is 0 (blue) and under the assumption that the first key bit is 1 (green).
The time for the remaining rounds is then calculated (black and yellow respectively

THE UNIVERSITYW

Kocher’s Timing Attack

dl
Time t1

I
I
B |

Time t2

dn
Time tn

If the variance of the BLACK remaining times is less than the variance of the
YELLOW remaining times then the first bit WAS actually a 0. Otherwise the first bit
WAS actually a 1. Now repeat the process for the next round (in the context of the
choice you have now made)....

Strictly this can go wrong (detectably) and some degree of backtracking is needed.

This is an example of INTERPRETATION OF THE TIMING MEASUREMENTS.

20

THE UNIVERSITYW

= Let’s Do the Time Warp Again

s Simulations of this attack work even when the timing
model for multiplication is randomly generated lookup
table (e.g. mean 1000ns with a small variance) Thanks to
Susan Stepney).

= S0 why not EVOLVE THE TIMING MODEL?

= This is a fairly radical step, but we can leverage the
fact that we can simulate: we are not beholden to
actual hardware.

= With earlier example we could evolve the program and
the timing model together.

THE UNIVERSITYW

Input plaintext If you know K; then you know all
the intermediate text here,

because you can invert the round
round function indexed by K, precisely.

EEENEENEEERNRNEERENEENEE If you know a subset of the key
K; then you know a subset of
round function indexed by K, /

the the intermediate text here.
W [([[[[TTTTTIIITITTTITIT]

Suppose if you know the final 6
round function indexed by Kj bits of K5 you can reverse
engineer the FIRST intermediate

bit value.
Output ciphertext

THE UNIVERSITYW

Input plaintext So for each choice of final 6 bits you
get a predictor for the value of that

bit given a particular ciphertext.

round function indexed by K,

HEEEEEEERERR NN For each such guess of 6 key bits if
you guess the 6 bits correctly then

round function indexed by K, the predicted bit for each ciphertext
ACTUALLY TAKES THE VALUE its had

W [[[[T[T[TITITITITITITIT] during the encryption.

If there is an error in the key guess
this process essentially randomises

the result (half right and half wrong).
Output ciphertext

round function indexed by K;

THE UNIVERSITYW

£y Predictor acts as partitioner

N

0 1

3 DCKTL| | 3 1-D(C,K)L

gmq,fg) §<1—D<C,~,KS))

THE UNIVERSITYW

R Monitor power traces

C;: T,[1] T4[2] T,[3] T,[n]
C,: T,[1] T,[2] T,[3] T,[n]
Cn To[1] T,[2] T,[3] T[Nl

> DCKITL| | 30-DC. KL

gmq,Ks) 2(1-0@,@)

THE UNIVERSITYW

% Plotting the correlations

; J"WMWMWW“ /i* WM”MWWWNW(MMMW correct subkey guess

Current (uA)

EMWMWMW%M'WMWMN fWWr\WWMVMWW incorrect subkey guess
Z W\J\\M‘M ‘VWMWMWHWMEWWW%MW\\)V‘MM \| incorrect subkey guess

20 30 40 50 60 7 i (110 120 130 140 150 160 170

0 80 90 100
Time (uS)

0

THE UNIVERSITYW

Outline Model of Computation

Inputs So if we are to exploit analogue
phenomena we may need to be
eclectic and radical in what we
seek control over.

Computational Engine

It would not be outrageous to
seek to control simultaneously
the inputs, the program, the
timing model and the
interpretation function for

Breaking the Model: finalisation and a

Environment

taxonomy of security attacks. John A.
Clark, Susan Stepney, Howard Chivers.
REFINE 2005

Interpretation

