University College London

Reducing Energy Consumption Using Genetic Improvement

Bobby R. Bruce Justyna Petke Mark Harman

How Many Wind Turbines do you need to Power the entire ICT infrastructure?

 Average 2MW wind turbine will generate 3.7GWh per year (20% capacity factory)

Bobby R. Bruce. Reducing Energy Consumption Using Genetic Improvement

The Answer

.012 (4.7%)*

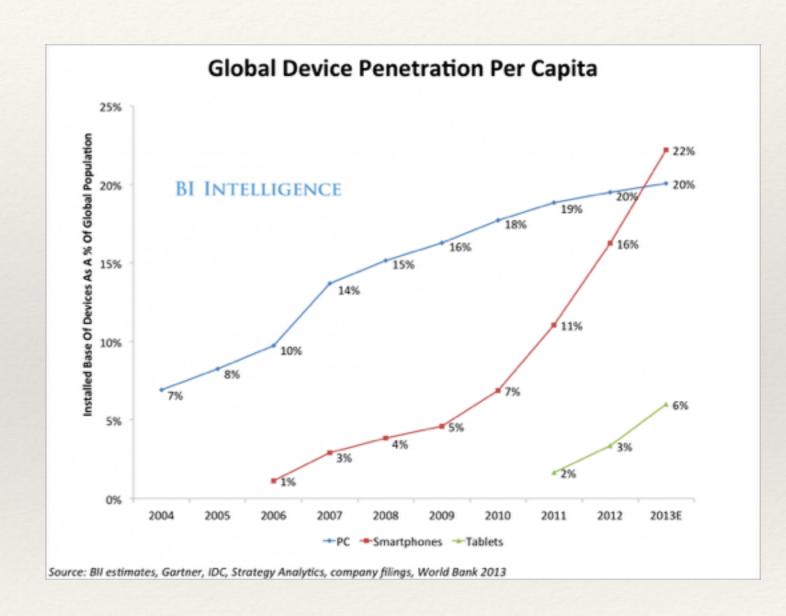
required

ilometres of

* Therefore, 2

* This would land

*Lannoo, Bart, et al. "Overview of ICT energy consumption" (2013)


Current Electricity Generation is not so green...

2011 Total Emissions Country Rank	Country	2011 Total Carbon Dioxide Emissions from the Consumption of Energy (Million Metric Tons)
1.	China	8715.31
2.	United States	5490.63
3.	Russia	1788.14
4.	India	1725.76
5.	Japan	1180.62
6.	Germany	748.49
7.	Iran	624.86
8.	South Korea	610.95
9.	Canada	552.56
10.	Saudi Arabia	513.53
11.	United Kingdom	496.80
12.	Brazil	475.41

- * ICT infrastructure generated 1.9% of CO2 Emissions in 2011
- Would be ranked as the 7th largest CO2 Emitter

Then there are mobile devices

- There are now more Smartphone in the world that PCs
- Each has a limited store of energy between charges
- * How can Software Developers efficiently utilise this energy?

What is the current state of things?

- * There exists a disconnect between the source code written and the energy consumed when compiled.
- * Tools have been developed to guide users to inefficient areas of their software: vLens, eLens, J-RAPL, etc.
- * These tools offer great guidance but leave responsibility of fixing inefficiencies to developers.
- * We argue for an automated approach

Genetic Improvement

- * A Search-Based Software Engineering technique
- * Treats program code as if it were genetic material that can then be evolved
- * Shown effective at reducing execution time.
- * Effectiveness at improving other attributes is currently unknown
- * Previously used to optimise MiniSAT's execution time

Research Questions

- * RQ1 To What extent can MiniSAT's Energy
 Consumption be reducing using Genetic Improvement?
- * RQ2 Do different downstream MiniSAT applications require different optimisations?
- * **RQ3** Does reduction in energy consumption correlate to reduction in execution time when GI is applied?

Source-code

```
Lit p; int i, j;
for(i = j = 0, p = lit_Undef;i < ps.size();i++)
{
    if(value(ps[i]) == l_True || ps[i] == ~p)
    {
        return true;
    }
    else if(value(ps[i]) != l_False && ps[i] != p)
    {
        ps[j++] = p = ps[i];
    }
}</pre>
```

Lines 105 to 116 from Solver.C

Converted to...

```
<Solver 105>
                        "Lit p; int i, j;\n"
                ::=
                        "for(" <for1_Solver_106> ";" <for2_Solver_106> ";" <for3_Solver_106> ") \n"
<Solver_106>
                ::=
                                 "i = j = 0, p = lit_Undef"
<for1_Solver_106>
                         ::=
                                 "i < ps.size()"
<for2_Solver_106>
                         ::=
                                 "i++"
<for3_Solver_106>
                         ::=
<Solver_107>
                        "{\n"
                ::=
<Solver_108>
                ::=
                        " if" <IF_Solver_108> " \n"
#"if
                        "(value(ps[i]) == l_True || ps[i] == ~p)"
<IF_Solver_108> ::=
<Solver_109>
                        "{\n"
                ::=
<Solver_110>
                        " return true;\n"
                ::=
<Solver_111>
                ::=
                        "}\n"
                        "else if" <IF_Solver_112> " \n"
<Solver_112>
                ::=
#if2
                        "(value(ps[i]) != l_False && ps[i] != p)"
<IF_Solver_112> ::=
<Solver 113>
                        "{\n"
                ::=
<Solver 114>
                        "" < Solver 114> "\n"
                ::=
#other
                        "ps[j++] = p = ps[i];"
< Solver 114>
                ::=
                         "}\n"
<Solver 115>
                ::=
<Solver_116>
                         "}\n"
                ::=
```

Genotype Representation

- * Genotypes are simply lists of modifications made to source code. There exists three possible mutations
- DELETE: Removes a line.
 <IF_Solver_108>
- * COPY: Copies a line from one location to another <Solver_108>+<_Solver_114>
- * REPLACE: Replaces one line of code with another <IF_Solver_108><IF_Solver_112>

Example Genotype

Consider the following genotype

```
<Solver_108>+<_Solver_114</td><IF_Solver_108><IF_Solver_112>
```

```
<Solver_105>
                         "Lit p; int i, j;\n"
                 ::=
                         "for(" <for1_Solver_106> ";" <for2_Solver_106> ";" <for3_Solver_106> ") \n"
<Solver_106>
                 ::=
                                 "i = j = 0, p = lit_Undef"
<for1_Solver_106>
                                 "i < ps.size()"
<for2_Solver_106>
                         ::=
                                 "i++"
<for3_Solver_106>
                         ::=
                         "{\n"
<Solver_107>
                 ::=
                         " if" <IF Solver 108> " \n"
<Solver_108>
                 ::=
#"if
                          <del>"(value(ps[i]) == l_True || ps[i] == ~p</del>)"
<IF_Solver_108> ::=
                         "{\n"
<Solver_109>
                 ::=
                         " return true;\n"
<Solver_110>
                 ::=
<Solver_111>
                         "}\n"
                 ::=
                         "else if" <IF_Solver_112> " \n"
<Solver_112>
                 ::=
#if2
                         "(value(ps[i]) != l False && ps[i] != p)
<IF Solver_112> ::=
<Solver_113>
                         "{\n"
                 ::=
                         "" < Solver 114> "\n"
<Solver 114>
                 ::=
#other
                         "ps[j++] = p = ps[i];"
< Solver 114>
                 ::= <
                         "}\n"
<Solver 115>
                 ::=
<Solver_116>
                         "}\n"
                 ::=
```

```
Lit p; int i, j;
for(i = j = 0, p = lit_Undef;i < ps.size();i++)
{
    if(value(ps[i]) == l_True || ps[i] == ~p)
    {
        return true;
    }
    else if(value(ps[i]) != l_False && ps[i] != p)
    {
        ps[j++] = p = ps[i];
    }
}</pre>
```



```
Lit p; int i, j;
for(i = j = 0, p = lit_Undef;i < ps.size();i++)
{
    ps[j++] = p = ps[i];
    if(value(ps[i]) != l_False && ps[i] != p)
    {
        return true;
    }
    else if(value(ps[i]) != l_False && ps[i] != p)
    {
        ps[j++] = p = ps[i];
    }
}</pre>
```

Bobby R. Bruce. Reducing Energy Consumption Using Genetic Improvement

Fitness Function

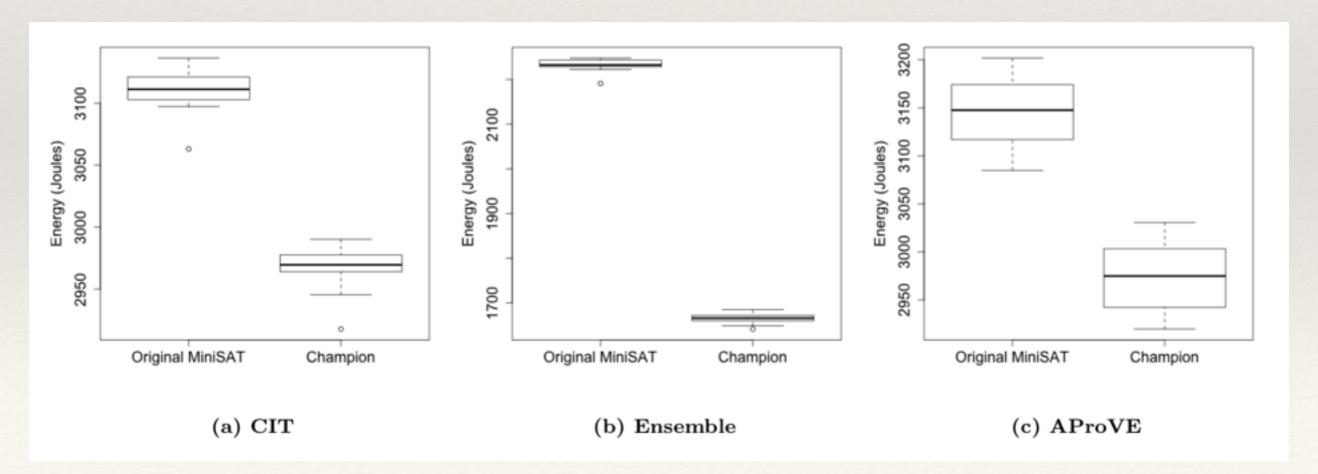
$$Fitness = rac{\sum\limits_{i=1}^{n}energy(O,T_i)}{\sum\limits_{i=1}^{n}energy(C,T_i)}$$

- * For n tests (T) selected from the training set, the original Minisat (O) is compared to the candidate solution (C)
- * Fitness > 1 indicates more energy efficient candidate
- Energy consumption estimated using Intel Power Gadget API

Selection

Genotype		Tests Passed
<_Solver_102>	1.20	5
<if_solver_5><if_solver_13></if_solver_13></if_solver_5>	1.04	4
	- 1.0 3	2
<if_solver_35></if_solver_35>	0.98	5
Col 10F Col F(> Col 102>	0.90	5
WITHEL_OUIVEI_2> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.87	4
Solver 6	0.86	2
WHILE Solver 2 WHILE Solver 45>	0.83	4
	0.75	3
Colver 10x Colver 54x Colver 6x IE Colver 25x	0.65	5

Crossover and Mutation


Genotype

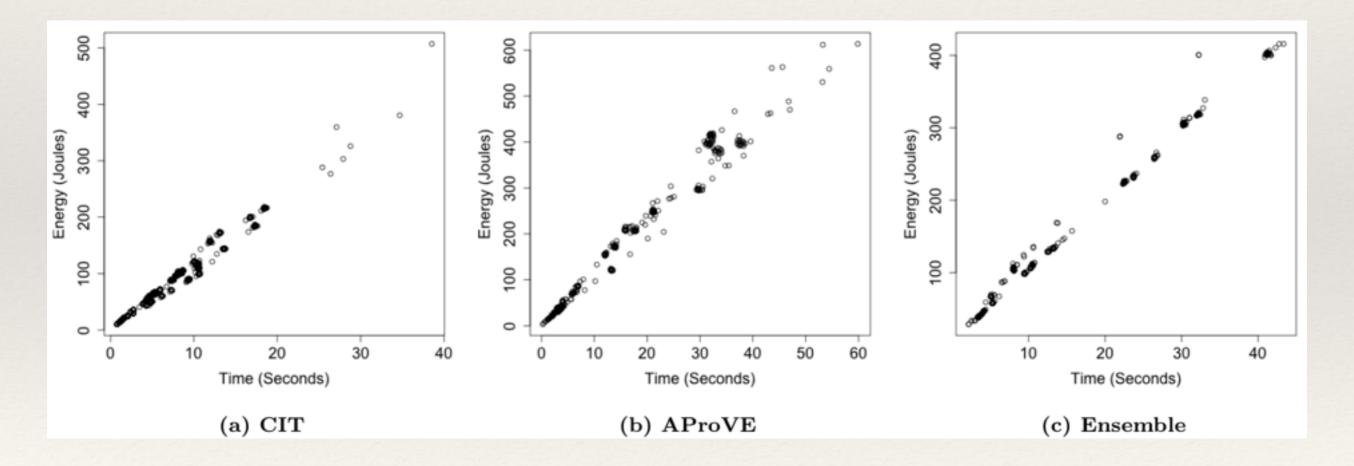
Our Experiments

- * Each Experiment optimises MiniSAT but for a different test set, representative of a unique downstream application.
- Three downstream applications: AProVE;
 Combinatorial Interaction Testing(CIT); Ensemble
 Computation of Equivalent Circuits
- * Evolved 100 individuals for 20 generations

RQ1: To What extent can MiniSAT's Energy Consumption be reducing using Genetic Improvement?

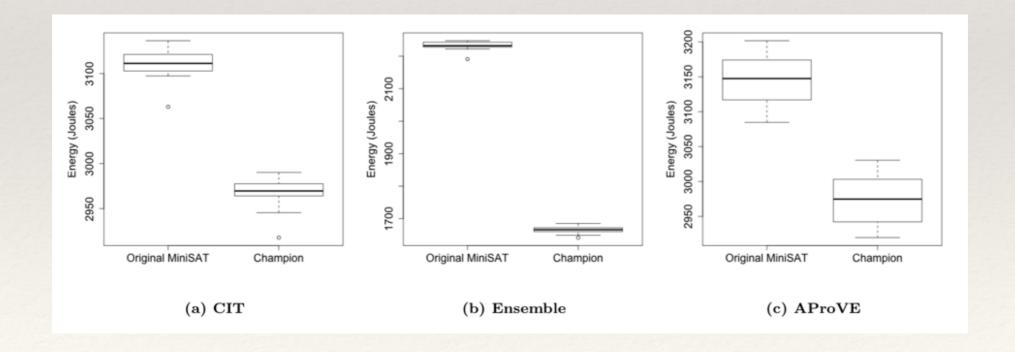
Application	Original(J)	$\operatorname{Champ}(J)$	Reduction(%)
CIT	3111	2969	4.58
Ensemble	2232	1665	25.39
AProVE	3145	2973	5.44

Bobby R. Bruce. Reducing Energy Consumption Using Genetic Improvement


RQ2: Do different downstream MiniSAT applications require different optimisation?

-	On CIT	On Ensemble	On AProVE
CIT	-	X	X
Ensemble	X	-	X
AProVE	3.56%	3.86%	-

- * AProVE champion solution simply removes an assert statement
- * CIT champion solution disables if statement in MiniSAT's "pickBranch" function.
- * Ensemble champion solution makes a change to a switch statement, equivalent to changing MiniSAT's polarity mode from polarity_false to polarity_true


RQ3: Does reduction in energy consumption correlate to reduction in execution time when GI is applied?

Application	Unmodified(s)	Champion(s)	Reduction
CIT	268	261	2.58%
Ensemble	219	162	25.89%
AProVE	280	261	6.69%

In Summary

- * Energy consumption can be reduced by as much as 25%
- Specialised solutions found
- Some optimisations may be hard for a human to find
- * Strong correlation between energy usage and execution time

Bobby R. Bruce. Reducing Energy Consumption Using Genetic Improvement