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Part I

Introduction



Statistics as Principled Argument

Tutorial Topics



Statistics as Principled Argument

Robert P. Abelson,
“Statistics as Principled

Argument”, 1995

statistics as evidence supporting an
argument

. . . and this argument should be part of
an engaging narrative about the
quantitative research



Abelson’s MAGIC Criteria

Magnitude the size of the quantitative support for the claim

Articulation amount of comprehensible detail in the conclusions

Generality are the conclusions broadly applicable?

Interestingness how important is the result; does it change belief?

Credibility methodological soundness and coherence with theory



Effect of Reward Experiment

1 each participant performs a boring task

2 they are asked to tell the next subject that the task is
interesting, and paid $1 or $20 for doing so

3 later asked to rate the task from -5 (very boring) to +5 (very
interesting)

amount paid mean rating

$1 1.35
$20 -0.05



Effect of Reward Experiment

Magnitude difference in mean score of
t-test gave a p-value < 0.03

Articulation “smaller reward causes greater tendency to
change belief to conform to behaviour”

Generality does it only occur in this specific situation?
only under lab conditions?

Interestingness counter to expectations

Credibility coherency with cognitive dissonance theory
some minor questions as to statistical analysis

open to other interpretations



Magnitude Example

Fraser and Arcuri, “The Seed is Strong: Seeding Strategies in
Search-Based Software Testing”, ICST 2012



Articulation Example

“Our experiments show with strong statistical confidence that,
even for a testing tool that is already able to achieve high

coverage, the use of appropriate seeding strategies can further
improve performance.”

Fraser and Arcuri, “The Seed is Strong: Seeding Strategies in
Search-Based Software Testing”, ICST 2012



Generality Example

“To avoid a bias in our case study class selection, we therefore
randomly chose 20 classes out of the SF100 corpus of Java

projects randomly selected from Sourceforge . . . ”

Pavlov and Fraser, “Semi-Automatic Search-based Test
Generation”, SBST 2012



Interestingness Example

“This paper presents an approach in which examples of inputs are
sought from the Internet by reformulating program identifiers into

web queries.”

McMinn, Shahbaz, and Stevenson, “Search-Based Test Input
Generation for String Data Types Using the Results of Web
Queries”, ICST 2012



Credibility Example

“One of the critical aspects of the application of search based
techniques is finding the right configuration of parameters. We

sampled the set of all parameter values combinations . . . by
selecting all pair-wise interactions between values . . . ”

Gómez, Baudry, Sahraoui, “Searching the boundaries of a
modeling space to test metamodels”, ICST 2012



Abelson’s Rule of Two Criticism

MAGI Criteria

Two or more criticisms in Magnitude, Articulation, Generality, and
Interestingness should lead to rejection.

C Criterion

Lack of Credibility should lead to debate.



Statistics as Principled Argument

Tutorial Topics



Tutorial Topics - Motivation

1 techniques I use myself in my research

2 topics similarly suggested by Mark

3 topics covered in Arcuri and Briand, “A Hitchhiker’s guide to
statistical tests for assessing randomized algorithms in
software engineering”, Software Testing, Verification and
Reliability 2014; 24:219–250



Tutorial Topics - MAGIC Criteria

Hypothesis Testing Credibility
Effect Size Magnitude
Confidence Intervals Credibility
Sample Size Credibility

Linear Models Magnitude
Relationships between Variables Magnitude
Controlling Nuisance Factors Credibility
Visualisation Articulation



Part II

Introduction to R



Objects and Expressions

R
> foo <- 42

> bar = 19

> baz = log(7)

> foo + bar

[1] 61

> baz

[1] 1.94591



Vectors

R
> x <- c(1, 1, 2, 3, 5, 8, 13, 21)

> x[7]

[1] 13

> 2*x

[1] 2 2 4 6 10 16 26 42

> x+10

[1] 11 11 12 13 15 18 23 31

> length(x)

[1] 8

> z = 1:10

> z

[1] 1 2 3 4 5 6 7 8 9 10



Some Statistics

R
> y <- c(6.1, 4.2, 4.6, 3.9, 5.8, 6.2, 5.4)

> mean(y)

[1] 5.171429

> median(y)

[1] 5.3

> sd(y)

[1] 0.9357961

> IQR(y)

[1] 1.55

> summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.900 4.400 5.400 5.171 5.950 6.200



Data Frames

R
> y1 <- c(10.3, 11.2, 5.3, 7.7, 8.0)

> y2 <- c(230, 251, 173, 174, 209)

> df <- data.frame(time=y1, memory=y2)

> df

time memory

1 10.3 230

2 11.2 251

3 5.3 173

4 7.7 174

5 8.0 209

> df$memory

[1] 230 251 173 174 209

> names(df)

[1] "time" "memory"



Importing Data

R
> df <- read.table("cow38A.dat")

> df

time memory

1 111.1 225.34

2 96.7 189.54

3 115.6 241.86

4 86.4 158.39

5 84.0 179.93

6 106.4 219.67



Plotting Data

R
> hist(df$time)

Histogram of df$time
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Plotting Data

R
> plot(df)
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Executing Scripts

cow38Aplot.R

df <- read.table("cow38A.dat")

pdf("cow38_time_v_memory.pdf", height=4, width=5)

plot(df)

dev.off()

R
> source("cow38Aplot.R")



Getting Help

R
> help(plot)

> ?plot

> help.start()



Workspace and Exiting

R
> q()

Save workspace image? [y/n/c]:



Practical

Background

Experiment cow38B measured the coverage obtained by a testing
tool.
Experiment cow38C measured the time taken to perform
automated refactorings

For each datasets cow38B.dat and cow38C.dat:

1 Import the data into R. [Note: cow38C.dat has no row nor
column names.]

2 Calculate the mean, median, standard deviation, and
interquartile range.

3 Create a histogram.

4 Create a boxplot.



Part III

Statistical Inference



Experiments, Factors and Responses

Example Experiments

Parametric and Non-Parametric Techniques



Experiments on Algorithms

Algorithm
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Response

Definition

The response is the quantity that we are interested in.

Examples

the quality of the solution that algorithm finds

whether or not the algorithm finds a solution

how long the algorithm takes to find a solution

the power consumed by the processor while running the
algorithm



Factors

Definition

A factor is anything that could affect the response.

Examples

the input to the algorithm

the setting of the algorithm parameters

the language used to implement the algorithm

CPU and memory specs of the server

other users on the server



Stochastic Algorithms

Stochastic algorithms use a Pseudo-Random Number Generator
(PRNG) to make random choices. Since the choices made affect
the output of the algorithm, the initial state of the PRNG is a
factor.

The initial state is typically set by:

seeding from a source of entropy from the computing
environment (e.g. the system clock)

explicitly setting the seed each time the algorithm is run from
a source of entropy such as random.org



Controlled and Uncontrolled Factors

Controlled

Factors such as the inputs, parameter settings, language of
implementation can be controlled.
However only some of these may be of interest for the purpose of
the experiment; the others are nuisance factors.

Uncontrolled

Some factors, such other users on the server, may not be in our
control.

Choosing an appropriate response can limit controlled and
uncontrolled factors that are not of interest.



Research Questions

Research questions are typically about the probability of
distribution of the response.

Examples

What is the mean quality of the solutions found by the
algorithm?

For what proportion of runs is the algorithm successful?

How long do I need to run the algorithm to get a solution
90% of the time?

What is the variance in the power consumed by the processor
when running the algorithm?



Population

The research question is typically posed over all values of one or
more factors.

For example, “What is the mean coverage achieved by the test
data generation algorithm?” is implicitly over a set of possible
software-under-test, e.g. all Java programs.

If the algorithm is stochastic, it is implicitly over all set of initial
states of the PRNG.

Using the terminology of statistics, the response over all the values
of these factors is the population distribution.



Sample

Typically we cannot consider the entire population: the set of Java
programs is infinite; the set of PRNG states is extremely large.

Therefore we measure the response for a small sample taken from
the population.

We then infer properties of the population distribution from sample
distribution.



Experiments, Factors and Responses

Example Experiments

Parametric and Non-Parametric Techniques



Example 1: ScandiTest Quality

Background

ScandiTest is a search-based algorithm for creating tests for
structural coverage.

Research Question

What is the average coverage achieved by ScandiTest?



Example 2: ScandiTest Robustness

Background

Although ScandiTest typically achieves high coverage, it only
finished successfully on 70% of the runs, even on the same SUT.
ScandiTest2 is an improved algorithm that is designed to finish
more often.

Research Question

Have the improvements in ScandiTest2 had an effect on
robustness?



Example 3: ScandiTest versus BritTest Performance

Background

BritTest is the current state-of-the-art algorithm that uses a
genetic algorithm.

Research Question

For a given coverage, does ScandiTest achieve this coverage more
quickly than BritTest?



Example 4: ScandiTest Parameter Settings

Background

ScandiTest uses a novel bio-inspired optimisation technique called
Reindeer Herd Search. There are three categorical parameters that
can be on or off: rednose, heavysnow, pullingsleigh.

Research Question

The coverage of ScandiTest does not depend on any of these
parameter settings.



Example 5: ScandiTest (Memory) Scalability

Background

A major practical constraint on using ScandiTest is the amount of
memory it appears to consume.

Research Question

How does the memory used scale with the number of structural
elements in the SUT?



Example 6: ScandiTest (Time) Performance

Background

Anecdotal evidence is that the slowest runs of ScandiTest are also
the ones that consume most memory.

Research Question

Is the the time performance of ScandiTest correlated with its
memory performance?



Example 7: ScandiTest Parameters

Background

ScandiTest uses a novel bio-inspired optimisation technique called
Reindeer Herd Search. It has 5 numeric parameters.

Research Question

What are the best setting of the parameters?



Experiments, Factors and Responses

Example Experiments

Parametric and Non-Parametric Techniques



Parametric and Non-Parametric Techniques

Parametric

Parametric techniques assume that the population distribution has
a particular form.

Non-Parametric

Non-parametric techniques make few assumptions about the
population distribution.



Normal Distribution
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often denoted N (µ, σ2)



Binomial Distribution
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distribution parameters

number of trials: N
probability of success: p

properties (moments)

population mean: Np
population variance: Np(1− p)



Arguments in Favour of Parametric Techniques

Parametric techniques can make ‘stronger’ inferences than
non-parametric techniques for a given sample size.

Some types of analysis are only possible when parametric
assumptions are made.

Parametric techniques are more widely understood that
non-parametric.



Arguments in Favour of Non-Parametric Techniques

There is often no theoretical justification for expecting a
response to have a particular distribution.

Instead you must demonstrate empirically the assumptions of
parametric techniques are met.

Small deviations from parametric assumptions may make any
conclusions unreliable.



Key Points

The response is the output of the experiment and it depends
on input factors.

Research questions are often concerned with properties of the
population distribution.

Experiments take samples from which properties of the
population distribution can be inferred.

Parametric statistical techniques make assumptions as to the
form of the population distribution.



Part IV

Hypothesis Testing



Example 2: ScandiTest Robustness

Background

Although ScandiTest typically achieves high coverage, it only
finished successfully on 70% of the runs, even on the same SUT.
ScandiTest2 is an improved algorithm that is designed to finish
more often.

Research Question

Have the improvements in ScandiTest2 had an effect on
robustness?



Example 3: ScandiTest versus BritTest Performance

Background

BritTest is the current state-of-the-art algorithm that uses a
genetic algorithm.

Research Question

For a given coverage, does ScandiTest achieve this coverage more
quickly than BritTest?



Hypothesis Testing
General Principle
Hypothesis Testing Example
Formal Process

Significance and Power

Variants of Hypothesis Test

Standard Tests

Multiple Comparisons



Informal Process

1 Sample responses from the algorithm(s).

2 Calculate an appropriate statistic on the observed data.

3 Determine the probability of the observed value of the
statistic or a more extreme value, assuming no difference
between the algorithms.

4 If the probability is small, assume that there is a difference in
algorithms.



Example 2: ScandiTest Robustness

Background

Although ScandiTest typically achieves high coverage, it only
finished successfully on 70% of the runs, even on the same SUT.
ScandiTest2 is an improved algorithm that is designed to finish
more often.

Research Question

Have the improvements in ScandiTest2 had an effect on
robustness?



Step 1 - Sample responses

Method

Run the algorithm 10 times. For each trial, record whether
algorithm finished successfully or not.



Step 2 - Calculate a statistic

Statistic

X = the number of algorithm trial for which the algorithm
completed successfully. We observed the algorithm finishing
successfully 4 times.



Step 3 - Determine the probability of observed (or more
extreme) value

Distribution

Distribution of X is Binomial with N = 10 and p = 0.7.
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Step 3 - Determine the probability of observed (or more
extreme) value

Observed Probability

P (X = 4) =

(
10

4

)
(0.7)4(0.3)6

=
10!

6!4!
(0.7)4(0.3)6

≈ 0.0368



Step 3 - Determine the probability of observed (or more
extreme) value

. . . Or More Extreme Probability

0 5 10
0

0.2

x

P
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)

P (X = 4 or more extreme) ≈ 0.0756



Step 4 - Is the probability small?

Decision

Is 0.0756 a small probability?
It depends, but traditionally this isn’t quite small enough to show
that there is a difference in the robustness of ScandiTest2.



Slightly More Formal Process

1 Define null and alternative hypotheses

2 Decide an appropriate statistic (to be calculated from the
observed data)

3 Assuming null hypothesis to be true, determine the statistic’s
probability distribution

4 Identify values for the statistic that are unlikely (‘extreme’) if
the hypothesis is true

5 If the observed statistic falls in this critical region, reject the
hypothesis; otherwise, accept it



Step 1 - Hypotheses

Definition (Null Hypothesis - H0)

Often the ‘default’ or current state of knowledge which is retained
unless there is good evidence to the contrary.
It is normally convenient to express this as an equality.

Definition (Alternative Hypothesis - H1)

A competing hypothesis - usually a hypothesis put forward as new
knowledge.

Example

H0: p = 0.7
H1: p 6= 0.7



Step 2 - Test Statistic

Choice of test statistic depends on:

What data is being observed

What assumptions can be made about the data (underlying
probability distributions etc.)

Form of the hypotheses

We often use standard hypothesis test in which this decision has
already been made.

Example

X = the number of algorithm trial for which the algorithm
completed successfully.



Step 3 - Test Statistic Distribution

In reality, we consider this in conjunction with steps 1 and 2:

In step 1, choose a null hypothesis which enables the
distribution to be determined completely.

In step 2, choose a test statistic whose distribution is
relatively easy to calculate.

Again if we use a standard test, the distribution of test statistic
will be calculated for us.

Example

X has a Binomial Distribution with N = 10, p = 0.7



Step 4 - Unlikely Test Statistic Values

More precisely: identify values where the alternative hypothesis is
much more likely to be true than the null hypothesis.

Example
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Step 4 - Unlikely Test Statistic Values

More precisely: identify values where the alternative hypothesis is
much more likely to be true than the null hypothesis.

Example
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Step 5 - Decision Rule

Decision Rule

If test statistic is in critical region, reject H0 (and accept H1).
Otherwise accept H0 (and reject H1).



Hypothesis Testing

Significance and Power

Variants of Hypothesis Test

Standard Tests

Multiple Comparisons



Errors

Definition (Type I Error)

H0 is really true, but it is rejected by the test.
. . . a type of false positive

Definition (Type II Error)

H0 is really false, but it is accepted by the test.
. . . a type of false negative

Well-designed tests attempt to minimise both type I and type II
errors.



Type I Errors

Occur when test statistic (by unfortunate chance) happens to fall
in the critical region.
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Definition (Significance)

If total probability for values in the critical region is α, then this is
the chance of a type I error. It is the significance of the test.



p-value

Analysis tools will return the p-value of a hypothesis test.

Definition (p-value)

The p-value is the probability of the observed data – or data more
‘extreme’ – occurring by chance given that null hypothesis is true.

If the p-value is smaller than the significance of the test, then the
observed data is inside the critical region, and the null hypothesis
can be rejected.

Example

P (X = 4 or more extreme) ≈ 0.0756



p-value Thresholds

Set an a priori threshold

Choose the significance level of the test before calculating the
p-value. Traditionally a significance level of 5% is used.

. . . OR . . .

Set no threshold

Report the p-value and interpret as part of your overall argument.



A Common Misinterpretation

p-value

The p-value is not the likelihood that the hypothesis test returns
an erroneous result.



Type II Errors

Easiest to consider when H1 is a simple hypothesis:

Example

H0: p = 0.7
H1: p = 0.4
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Type II Errors and Power
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The chance of a type II error is denoted β. (In example above,
β ≈ 0.367.)

Definition (Power)

The power of a test is the chance that a type II will not occur, i.e.
1− β.

(The power is equivalent to the probability of values being in the
critical region if H1 is true.)



Best Tests

Typically, the significance α is chosen, and a critical region of this
size found that minimises the size of β (or, equivalently, maximises
the power). This is called the ‘best’ test.

The value of β is typically larger than the significance (α). For
example, β may be chosen as 20%; or equivalently, a power of
80%.

Standard hypothesis tests have already determined the optimal
critical region and therefore the ‘best’ test.



Hypothesis Testing

Significance and Power

Variants of Hypothesis Test
One- and Two-Sample Tests
Paired Tests
One-Tailed Tests

Standard Tests

Multiple Comparisons



One- and Two-Sample Tests

One-Sample Tests

The hypotheses compare a property of one sample against a known
value.
Example: H0: mean run time is 121 seconds.

Two-Sample Tests

The hypotheses compare the same property of two different
samples - e.g. the responses of two different algorithms.
Example: H0: mean run time the two algorithms are the same.



Example 3: ScandiTest versus BritTest Performance

Background

BritTest is the current state-of-the-art algorithm that uses a
genetic algorithm.

Research Question

For a given coverage, does ScandiTest achieve this coverage more
quickly than BritTest?



Practical

My experiment showed that ScandiTest achieves coverage more
quickly than BritTest. H0 — that the two algorithms have the
same performance — was rejected at the 5% significance level. β,
the type II error probability, was 30%.

If I now take a new sample of timings, what is the probability that
I’ll get the same result, i.e. that hypothesis test will again reject
H0?



Practical

Depends on whether H0 is really correct or not:

If H0 is really true (the algorithms have the same performance):
probability is 5% that the new sample will also reject H0.

If H0 is really false (the algorithms have difference performance):
probability is 70% that the new sample will also reject H0



Paired Samples

When comparing two algorithms, the samples may be paired: for
corresponding members in each sample, one or more of the
controlled factors are the same.

Some standard hypothesis tests can be more sensitive if the
samples are known to be paired.

Example

When comparing the performance of ScandiTest and BritTest, the
same set of software-under-test is used.

Software ScandiTest BritTest

triangle 10.4 9.3
replace 12.3 11.8

tcas 8.7 8.9
...

...
...



One-Tailed Tests
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If the alternative hypothesis is not inequality, but instead has a
good reason to be either less than or more than, then the critical
region should only on the corresponding tail.



Example 2: ScandiTest Robustness

Background

ScandiTest2 is an improved algorithm that is designed to finish
more often. Owing to the nature of the changes, we know that the
improved algorithm must have a robustness at least as good the
original ScandiTest.

Research Question

Have the improvements in ScandiTest2 had an effect on
robustness?

Example

H0: p = 0.7
H1: p > 0.7



Example 2: ScandiTest Robustness

H0: p = 0.7 H1: p > 0.7
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A Word of Caution

For a given significance level (e.g. 5%), a one-tailed test will have
a larger critical region on that tail than it would have using a
two-tailed test.

two-tailed but should have been one-tailed

The effective significance of the two-tailed test is smaller than the
5% expected.

one-tailed but should have been two-tailed

If the observed data falls on tail containing the critical region, the
effective significance is too large. If it falls in the other tail, the
effective significance is too small.



Hypothesis Testing

Significance and Power

Variants of Hypothesis Test

Standard Tests

Multiple Comparisons



Rank Sum Test (Mann-Whitney-Wilcoxon, also U-test

Characteristics

non-parametric

two-sample unpaired

Hypotheses

H0: YA and YB are ‘stochastically the same’
H1: YA or YB is ‘stochastically larger’

Example (R)

> wilcox.test(y1, y2)



What hypotheses does Rank Sum test?

“The null hypothesis is that A and B have the same distribution . . . The
alternative hypothesis, H1, . . . is that A is stochastically larger than B, a
directional hypothesis . . . For a two-tailed test, i.e., for a prediction of
differences which does not state direction, H1 would be that p(a > b) 6= 1/2” –
Siegel, Nonparametric Statistics for the Behavioral Sciences, 1956

“the hypotheses may be stated as: H0: F (x) = G(x) for all x, H1:
F (x) 6= G(x) for some x. The test is sensitive for H1: E(X ) 6= E(Y ) and can
be used as a test for means. In many real situations any difference between
distributions implies P(X > Y ) is no longer equal to 1/2.” – Conover,
Practical Nonparametric Statistics, 1999

“the null hypothesis is that the distributions of x and y differ by a location shift
of mu and the alternative is that they differ by some other location shift” – R
help

“a two-sided rank sum test of the null hypothesis that data in the vectors x and
y are independent samples from identical continuous distributions with equal
median” – MATLAB help

“a non-parametric test for assessing whether two independent samples come
from the same distribution” – Wikipedia



Signed Rank Test (Wilcoxon)

Characteristics

non-parametric

one-sample, or two-sample paired

Hypotheses (One Sample)

H0: median(Y ) = µ
H1: median(Y ) 6= µ

Example (R)

> wilcox.test(y1, mu=...)

> wilcox.test(y1, y2, paired=TRUE)



t-Test (Student) – One Sample

Characteristics

parametric: assumes a Normal distribution

Hypotheses

H0: mean of Y is µ
H1: mean of Y is not µ

Example (R)

> t.test(y, mu=...)



t-Test (Student) – Two Sample

Characteristics

parametric: assumes a Normal distribution

Hypotheses

H0: mean of Y1 and Y2 are the same
H1: mean of Y1 and Y2 differ

Example (R)

> t.test(y1, y2)

Set var.equal=TRUE if the variances of the two populations are
known to be the same; set var.equal=FALSE (the default) for the
Welch correction is applied.
Set paired=TRUE for paired samples.



Shapiro-Wilk Test of Normality

Characteristics

one-sample

Hypotheses

H0: sample is from a Normal distribution
H1: sample is not form a Normal distribution

Example (R)

> shapiro.test(y)



Practical (part 1)

Experiment cow38D

Research question: does ScandiTest attain coverage more quickly
that BritTest?
Method: 80 SUTs (software-under-test) were randomly split into
two sets, one set of 40 for each algorithm. The time taken by the
algorithm to attain 80% coverage of each SUT in its set was
measured.

1 Download the datasets cow38D.dat and import the data into
R.

2 Perform a hypothesis test (or tests) to analyse whether the
data supports our research question.

3 Create side-by-side boxplots using the parameter notch=TRUE.



Practical (part 2)

Experiment cow38E

Research question: does ScandiTest use more memory that
BritTest?
Method: 40 SUTs were chosen at random and each algorithm was
run against each of the 40 SUT. The total memory required by the
algorithm was measured.

1 Download the datasets cow38E.dat and import the data into
R.

2 Perform a hypothesis test (or tests) to analyse whether the
data supports our research question.



Hypothesis Testing

Significance and Power

Variants of Hypothesis Test

Standard Tests

Multiple Comparisons



Example 4: ScandiTest Parameter Settings

Background

ScandiTest uses a novel bio-inspired optimisation technique called
Reindeer Herd Search. There are three categorical parameters that
can be on or off: rednose, heavysnow, pullingsleigh.

Research Question

The coverage of ScandiTest does not depend on any of these
parameter settings.



Possible Experiment Method

1 Perform three individual experiments – one for each parameter
– that compares the paremeter on and off.

2 Compare the samples using three hypothesis tests, each one
at the 5% significance level.

H0: no difference between rednose on and off; H1 . . .
H0: no difference between heavysnow on and off; H1 . . .
H0: no difference between pullingsleigh on and off; H1 . . .

3 If any one of the three tests rejects its H0, then reject research
question hypothesis.



A Problem

Assume that in reality none of the parameters have an effect, i.e.
each of the H0 is true.

Then each hypothesis tests, considered individually, has a
probability of 5% of rejecting H0

The probability that one or more of the three tests rejects its null
hypothesis is:

P (≥ 1 test rejects H0) = 1− (1− 0.05)3

≈ 0.143

So taken as a whole, our family of tests has a significance level of

only 14.3%.



Bonferroni Correction

Definition (Bonferroni Correction)

The significance level of each individual test is reduced by a factor
of 1

N where N is the number of tests.

Example

For the three tests of the nasal colour parameter, the significance
level would be reduced to 5%

3 ≈ 1.667%.
Take as a whole, the overall family of tests now has a significance
level of:

P (≥ 1 test rejects H0) = 1− (1− 0.01667)3

≈ 0.049

Conservative

Especially when there are many tests the Bonferroni correction is
conservative.



Benjamini-Hochberg Procedure

False Discovery

A false discovery is an individual hypothesis test that incorrectly
reject the null hypothesis (i.e. a false positive).

Benjamini-Hochberg Procedure

The Benjamini-Hochberg procedure determines which individual
tests should be regarded as significant based on an acceptable false
discovery rate (i.e. the proportion of significant tests that are false
positive) that the experimenter chooses.

False Discovery Rate

The false discovery rate is not the significance of the overall family
of tests. It is a measure of how many false positive are acceptable
to the experimenter - for example, depending on how easy it is to
follow up on significant tests using further experiments.



Benjamini-Hochberg Procedure - Example

1 Decide on an acceptable false discovery rate, Q (e.g. 20%)

2 Sort the p-value of the individual tests in ascending order.

3 For each, calculate a critical value of iQ
N where i is the index of

the sorted p-value (starting at 1), and N the number of tests.

4 Find the largest p-value that is lower than its corresponding
critical value.

5 That test and all tests with smaller p-values are considered
significant (even if the p-value is not less than its
corresponding critical value).



Benjamini-Hochberg Procedure - Example

Q = 20%, N = 10

i p-value iQ
N

1 0.62% 2%
2 2.9% 4%
3 6.3% 6%
4 7.7% 8%
5 13.2% 10%
6 27.8% 12%
7 40.5% 14%
8 66.9% 16%
9 72.2% 18%

10 76.2% 20%



Multiple Comparisons in R

Example (Bonferroni Correction)

> p.adjust(c(0.09,0.21,0.01),"bonferroni")

[1] 0.27 0.63 0.03

Example (Benjamini-Hochberg Procedure)
> p.adjust(c(0.0062,0.029,0.063,0.077,0.132,0.278,0.405,0.669,0.722,0.762),"BH")

[1] 0.0620000 0.1450000 0.1925000 0.1925000 0.2640000 0.4633333 0.5785714

[8] 0.7620000 0.7620000 0.7620000



Key Points

Hypothesis testing is a principled method of comparison.

Small p-values indicate that the observed effect are unlikely to
be a result of chance.

There are a number of standard non-parametric and
parametric tets.

When multiple comparisons are made the significance levels
must be adjusted.



Part V

Effect Size



Effect Size

Standardised Effect Size

Relationship to Statistical Significance

Calculating Standardised Effect Sizes



Effect Size

Definition (Effect Size)

The magnitude of the change in the response as a result of
different ‘treatments’.



Example 3: ScandiTest versus BritTest Performance

Background

BritTest is the current state-of-the-art algorithm that uses a
genetic algorithm.

Research Question

For a given coverage, does ScandiTest achieve this coverage more
quickly than BritTest?



Experiment Results
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Effect Size

Standardised Effect Size

Relationship to Statistical Significance

Calculating Standardised Effect Sizes



Experiment Results
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Experiment Results
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Standardised Effect Size

Definition (Standardised Effect Size)

Standardised effect size measures normalise the effect in relation to
the variability in the data, and calculate a scale-free measure that
may be used to compare effect sizes across multiple different
experiments.



Cohen’s d

d =
y1 − y1

s

where y1, y2 are the sample means, and s the (pooled) sample
variance

0.2 ‘small’
0.5 ‘medium’
0.8 ‘large’



Vargha-Delaney A

A has a nice real-world interpretation: it is the probability that if a
single response is sampled from algorithms 1 and 2, then the value
of algorithm 1’s response will be the larger one.

0 algorithm 2 is always the larger
0.29 ‘large’ (if favour of algorithm 2)
0.36 ‘medium’
0.44 ‘small’
0.5 no difference between algorithms

0.56 ‘small’
0.64 ‘medium’
0.71 ‘large’ (in favour of algorithm 1)

1 algorithm 1 is always the larger



Effect Size

Standardised Effect Size

Relationship to Statistical Significance

Calculating Standardised Effect Sizes



Effect Size and Statistical Significance

Best Practice

Statistical analysis should report both results of hypothesis tests
and effect size.

Relationship

Effect size and statistical significance are different metrics: an
experiment may be statistically significant but still have a small
effect size.



Effect Size

Standardised Effect Size

Relationship to Statistical Significance

Calculating Standardised Effect Sizes



‘Long Form’ Data in R

Example

> y1 <- c(10.3, 11.2, 5.3)

> y2 <- c(23.0, 25.1, 17.3)

> df <- data.frame(Y1=y1, Y1=y2)

> df

Y1 Y2

1 10.3 23.0

2 11.2 25.1

3 5.3 17.3

> library(reshape2)

> melt(df, measure.vars=1:2)

variable value

1 Y1 10.3

2 Y1 11.2

3 Y1 5.3

4 Y2 23.0

5 Y2 25.1

6 Y2 17.3



Effect Size in R

Example (Cohen’s D)

> mdf <- melt(df, measure.vars=1:2)

> library(effsize)

> cohen.d(mdf$value, mdf$variable)

Example (Vargha-Delaney’s A)

> mdf <- melt(df, measure.vars=1:2)

> library(effsize)

> VD.A(mdf$value, mdf$variable)



Practical (part 1)

Experiment cow38D

Research question: does ScandiTest attain coverage more quickly
that BritTest?
Method: 80 SUTs (software-under-test) were randomly split into
two sets, one set of 40 for each algorithm. The time taken by the
algorithm to attain 80% coverage of each SUT in its set was
measured.

1 Download the datasets cow38D.dat and import the data into
R.

2 Calculate standardised effect size(s) for this dataset.



Practical (part 2)

Experiment cow38E

Research question: does ScandiTest use more memory that
BritTest?
Method: 40 SUTs were chosen at random and each algorithm was
run against each of the 40 SUT. The total memory required by the
algorithm was measured.

1 How would you calculate the effect size for this experiment?



Key Points

The effect size is a measure of the magnitude.

Standardised effect sizes measures compare the effect size to
the variability in the data.

Effect sizes should be reported in addition to p-values.



Part VI

Confidence Intervals



Statistics as Random Variables

Confidence Intervals

Bootstrapping



Statistics are Random Variables Too

Example

Measured 100 samples, each of 10 responses, and calculated the
sample mean, Y of each sample:

Sample Y

1 7.4 10.0 13.5 15.3 7.5 16.5 15.1 10.1 8.5 17.8 12.17
2 4.2 7.0 7.1 9.1 18.1 26.7 8.2 5.7 21.2 1.1 10.84
...

...
...

100 14.9 10.2 6.5 18.6 11.9 13.9 11.4 23.3 11.2 11.7 13.35



Example 1: ScandiTest Quality

Background

ScandiTest is a search-based algorithm for creating tests for
structural coverage.

Research Question

What is the average coverage achieved by ScandiTest?



Statistics as Random Variables

Confidence Intervals

Bootstrapping



Confidence Intervals

Often we want to use the sample mean, Y , to estimate the
population mean, µY , of the response Y . We take a set of
observations, and calculate a single value of the sample mean: y .

But since Y is a random variable, the particular value y is unlikely
to be equal to the population mean of Y .

Confidence intervals are a way of expressing how ‘close’ we expect
the true population mean to be to our estimate, y .



Sample Mean Probability Distribution

Following results hold for any distribution of Y with population
mean µ and population variance σ2.

Theorem

For the sample mean Y calculated from samples of size n:

µY = µY

σ2
Y

=
1

n
σ2Y



Confidence Intervals - Principle I

1 Want a confidence interval for the mean of the response, µY .
Since µY = µY , this is equivalent to finding a confidence
interval for µY . For simplicity, call the value µ.

2 Derive a range (expressed in terms of µ) that contains a
certain percentage, α, of the distribution of Y , i.e.:

P(µ− A ≤ Y ≤ µ+ B) = α
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Confidence Intervals - Principle II

3 Calculate a single sample mean value, y .

4 If we can show that α percent of the time:

µ− A ≤ y ≤ µ+ B

Equivalently, α percent of the time:

y − B ≤ µ ≤ y + A

5 This gives a confidence interval for µ.



Confidence Intervals - Example I

Sample

3.7 12.6 13.4 6.3 18.0 17.9 11.8 13.6 12.9 11.1

1 Find the 95% confidence interval for the mean of the response
Y .

We may assume:

response has a Normal distribution

variance of response, σ2
Y , is 25



Confidence Intervals - Example II

2 We make use of the following mathematical result:

Distribution of the Sample Mean

In general, the distribution of the sample mean, Y , is not the same
as the distribution of Y . But when Y has a Normal distribution,
so does Y .

Y is therefore Normally distributed with variance 25/10 = 2.5.



Confidence Intervals - Example III

For a Normal distribution, (approximately) 95% of the
distribution is contained within 2 standard deviations of the
mean.
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Confidence Intervals - Example IV

Now,

σY =
√

2.5 ≈ 1.5811

Giving,

P(µ− 3.16 ≤ Y ≤ µ+ 3.16) = 0.95

3 From sample, calculate y = 12.13.

4 So 95% percent of the time:

µ− 3.16 ≤ 12.13 ≤ µ+ 3.16

Equivalently, 95% percent of the time:

12.13− 3.16 ≤ µ ≤ 12.13 + 3.16

5 This gives a 95% confidence interval for µ of 12.13± 3.16
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Statistics as Random Variables

Confidence Intervals

Bootstrapping



General Principle

We want to estimate a population parameter θ (e.g. the mean µ)
and use an appropriate estimator, t, calculated from the sample
(e.g. the sample mean, y). Assume the sample is y1, y2, . . . , yn
(size n).

1 From the original sample, draw a new sample of size n,
y∗1 , y

∗
2 , . . . , y

∗
n by picking randomly with replacement

2 Calculate t∗, the value of the estimator for this new sample
3 Repeat m times, to give t∗1 , t

∗
2 , . . . , t

∗
m

4 The set t∗1 , t
∗
2 , . . . , t

∗
m gives information about the distribution

of the estimator, t, e.g.:

t∗ =
1

m

m∑
j=1

t∗j

s2t∗ =
1

m − 1

m∑
j=1

(t∗j − t∗)2



Simple Example

Original Sample

0.8 0.5 5.3 7.8 9.3 1.3 5.7 4.7 0.1 3.4
y = 3.89

Bootstrap Samples

j bootstrap sample y∗j
1 0.5 4.7 7.8 1.3 0.5 5.7 5.3 5.7 5.7 4.7 4.19
2 9.3 0.8 5.3 3.4 0.5 0.1 1.3 3.4 0.8 9.3 3.42
3 0.5 3.4 0.8 4.7 0.1 0.1 0.8 7.8 5.3 0.1 2.36
4 9.3 3.4 0.5 5.3 0.5 0.5 0.1 1.3 1.3 0.5 2.27
5 0.1 5.7 7.8 1.3 9.3 0.8 5.3 0.5 0.5 5.3 3.66

sample mean of y∗: 1
5

∑5
i=1 y

∗
j = 3.18

sample variance of y∗: 1
4

∑5
i=1(y∗j − 3.18)2 = 0.702



Parametric BootStrapping

So far, when picking bootstrap samples, each point in the original
sample has had the same chance of being selected. This is
non-parametric bootstrapping.

But if distribution for the original sample points is already known
(e.g. from theory) and can estimate distribution parameters from
original sample, then can assign chances of a sample point being
picked for a bootstrap sample according to its probability in this
distribution. This is parametric bootstrapping.



Balanced Bootstrapping

Balanced Bootstrapping ensures that the number of times that
each original sample point is picked across all bootstrap samples is
the same for every sample point.

Example

Original Sample: A B C D

Bootstrap Sample 1: B C C A
Bootstrap Sample 2: C D A D
Bootstrap Sample 3: A D B A
Bootstrap Sample 4: C B B D



Bootstrapping Confidence Intervals in R

Example

> library(boot)

> y <- c(10.3, 11.2, 5.3, 7.7, 8.0)

> medianfn <- function(d,i) { median(d[i]) }

> y.median.boot <- boot(y, medianfn, 1000)

> boot.ci(y.median.boot, type="perc")

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 1000 bootstrap replicates

CALL :

boot.ci(boot.out = y.median.boot, type = "perc")

Intervals :

Level Percentile

95% ( 5.3, 11.2 )

Calculations and Intervals on Original Scale



Practical

Background

Experiment cow38B measured the coverage obtained by a testing
tool.

1 Download the dataset cow38B.dat and import into R

2 Calculate a 95% confidence interval for the mean coverage.



Key Points

Confidence intervals indicate the accuracy of a statistic.

Bootstrapping is one (non-parametric) method of deriving a
confidence interval.



Part VII

Sample Size



Confidence Intervals

Effect Size

Hypothesis Tests

Central Limit Theorem



Confidence Intervals

The larger the sample size, the tighter the bounds of the
confidence interval.

Example

For the sample mean Y calculated from samples of size n:

σ2
Y

=
1

n
σ2Y



Confidence Intervals

Effect Size

Hypothesis Tests

Central Limit Theorem



Effect Size

How does sample size affect the effect size?



Confidence Intervals

Effect Size

Hypothesis Tests

Central Limit Theorem



Example: ScandiTest Performance

Research Question

Does ScandiTest take 100 seconds or 110 seconds to achieve 80%
coverage?

Example

Y = time taken to achieve 80% coverage
H0: µY = 100
H1: µY = 110



Different Sample Sizes

N = 1 β = 0.844 N = 10 β = 0.361

N = 30 β = 0.0344 N = 50 β = 0.00235



Different Variances (N = 30)

σ2
Y = 60 β = 2.88× 10−8 σ2

Y = 250 β = 0.0344

σ2
Y = 1000 β = 0.467 σ2

Y = 4000 β = 0.782



Different Effect Sizes (N = 30, σ2
Y = 250)

H1: µY = 101 β = 0.903 H1: µY = 105 β = 0.465

H1: µY = 110 β = 0.0344 H1: µY = 115 β = 0.000192



Different Significances (N = 30, σ2
Y = 250, H1: µY = 110)

α = 0.01 β = 0.128 α = 0.05 β = 0.0344

α = 0.10 β = 0.0145 α = 0.20 β = 0.00436



Summary

The sample size required to obtain a given power depends on:

the variance in the data

the effect size

the significance level



Estimating Sample Size

a priori

If these factors are known ahead of time, might be able to estimate
the sample size required.

post hoc

Otherwise, if (estimates of) the factors are obtained by the test
itself (e.g. the variance in the data, or the actual effect size), then
can estimate the power after performing the test.

If sample size is inadequate, could take further samples until a
sufficient test power is obtained.



Calculating Sample Size and Power in R

R
> power.t.test(n=30,power=NULL,delta=10,sd=16,sig.level=0.05)

Two-sample t test power calculation

n = 30

delta = 10

sd = 16

sig.level = 0.05

power = 0.6629097

alternative = two.sided

NOTE: n is number in *each* group

One of n, delta, power, sd, sig.level must be NULL, and is
the value that will be estimated.



Practical

Experiment

Research question: does ScandiTest use more memory that
BritTest?
Method: n SUTs will be separately chosen at random for each
algorithm, and the total memory required by the algorithm will be
measured.

1 Assume the difference in means is 100, and the standard
deviation is 230.

2 Estimate the sample size (i.e., the value of n) for a paired
t-test to have a power of 80% at a 5% significance level.



Confidence Intervals

Effect Size

Hypothesis Tests

Central Limit Theorem



Central Limit Theorem

Theorem (Central Limit Theorem)

For independent random variables Y1,Y2,Y3, . . . ,YN with any
distribution, the distribution of the sum,

∑N
i=1 Yi , gets closer to a

Normal distribution as N increases.

Theorem (Corollary)

For large samples, the sample mean Y is approximately Normally
distributed for any distribution of Y .



Key Points

A larger sample size improves the accuracy of confidence
intervals.

A larger sample size does not change the magnitude of the
effect size.

For a given significance, a larger sample size will improve the
power of a hypothesis test.

At larger sample size, some statistics will be approximately
Normally distributed.



Part VIII

Correlation



Multivariate Probability Distributions

Correlation (Pearson)

Rank Correlation (Spearman)



Multivariate Probability Distributions

So far have considered population distribution of a single variable -
univariate probability distributions.

In this section, we consider distributions of two or more variables -
multivariate probability distributions.



Example

I’m interested in the relationship between IQ and the amount of
tea a person drinks.

For a sample of 1000 regular tea drinkers, I record the average
number of cups they drink per day and also measure their IQ.

Sample Data

cups of tea IQ

6.3 109
3.2 73
4.7 95
4.9 114
5.0 90

...
...



Marginal Distributions
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Joint Distribution



Example 6: ScandiTest (Time) Performance

Background

Anecdotal evidence is that the slowest runs of ScandiTest are also
the ones that consume most memory.

Research Question

Is the the time performance of ScandiTest correlated with its
memory performance?



Multivariate Probability Distributions

Correlation (Pearson)

Rank Correlation (Spearman)



Sample Estimators

Mean

Sample Estimator for µX :

X =
1

n

∑
xi

Variation

Sample Estimator for σ2X :

s2X =
1

n − 1

∑
i

(xi − X )2



Sample Estimators for Covariance and Correlation

Covariance

sXY =

∑
i (xi − X )(yi − Y )

n − 1

(Pearson) Correlation Coefficient ρ

r =
sXY
sX sY

Note: −1 ≤ r ≤ 1



Examples of ρ

As |ρ| gets closer to 1, X and Y get closer to a linear dependence:
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ρ = ±1

If ρ = ±1 then X and Y are exactly linearly related: all the
probability lies along a line in the x-y plane:
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ρ = 0

if X and Y are independent, then ρ = 0

converse does not hold—X,Y can be dependent but
nevertheless have ρ = 0:
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Scatter Plots
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Interpretation of r

|r | > 0 is evidence that there is a linear dependence between
the two variables

the larger the magnitude of r , the closer the dependence is to
exactly linear

r = 0 is not necessarily evidence that the variables are
independent

But . . .
1 Evidence of a statistical dependence between the variables is

not, by itself, evidence of a causal relationship

2 Since it is a sample estimator, r is a random variable



Multivariate Probability Distributions

Correlation (Pearson)

Rank Correlation (Spearman)



Spearman’s Rank Correlation

1 Rank the observations, xi of X in order; denote the rank
(1, 2, . . . , n) of observation i as x ′i

2 Do the same for observations, yi of Y

3 Calculate the (Pearson) correlation between x ′i and y ′i : this
gives the Spearman Rank Correlation, r ′ for the sample



Calculating Pearson Correlation Using R

Example (R)

x <- c(10.2, 12.4, 8.4, 9.7)

y <- c(3.5, 3.6, 3.1, 3.0)

cor(x,y,method="pearson")

[1] 0.7951368

> cor(x,y,method="spearman")

[1] 0.8



Practical

Experiment cow38F

Research Question: Is the the time performance of ScandiTest
correlated with its memory performance?
Method: Ran scandiTest against a set of SUTs, and for each
measured the time taken, and the memory consumed by the
algorithm.

1 Download the dataset cow38F.dat and import into R.

2 Create a scatter plot of the data.

3 Calculate the Pearson and Spearman correlation for this
dataset.

4 If you have time, use bootstrapping to calculate a confidence
interval for the correlation.



Key Points

Correlation measures one form of dependency between
random variables.

Correlation does not imply causation.

Considered two measures: Pearson correlation and Spearman
(rank) correlation



Part IX

Linear Models



Motivation

Linear Models

Experimental Designs

Model Fitting (Analysis)

ANOVA

Model Interpretation



Example 5: ScandiTest (Memory) Scalability

Background

A major practical constraint on using ScandiTest is the amount of
memory it appears to consume.

Research Question

How does the memory used scale with the number of structural
elements in the SUT?



Example 7: ScandiTest Parameters

Background

ScandiTest uses a novel bio-inspired optimisation technique called
Reindeer Herd Search. It has 5 numeric parameters.

Research Question

What are the best setting of the parameters?



Motivation

Linear Models
Linear Models
Higher Order Linear Models

Experimental Designs

Model Fitting (Analysis)

ANOVA

Model Interpretation



Experimental Model

If we are interested in how the mean response changes, we can
express this mathematically as:

µY = f (x)

But f (x) could be any function of x .

Such a generic function is difficult to analyse, so often assume a
simpler model.



Linear Model

Linear Model

Y = β0 + β1x1 + β2x2 + . . .+ βnxn + ε

βi are model parameters

β0 is the intercept

ε is the noise term



Noise Term Assumptions

Assumes noise term, ε, is a random variable that it is:

independent Each time a response is measured, the value
of the error term is independent of the
values it took for previous responses.

identically distributed The probability distribution is the same
regardless of the factor values.

Normally distributed The distribution is Normal with zero mean
(and constant variance σ2)



Noise Term Assumptions
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Linear Model - Mean Response

Linear Model

Y = β0 + β1x1 + β2x2 + . . .+ βnxn + ε

The linear terms (β0 +
∑

i βixi ) explain the mean response.
The noise term (ε) explains the variance in the response.

Linear Model

µY = β0 + β1x1 + β2x2 + . . .+ βnxn



Linear Model - 2 Factors
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Higher Order Linear Models

Model is linear in terms of model parameters.

Other forms include:

Interaction

Y = β0 +
n∑

i=1

βixi +
n∑

i=1

n∑
j=i+1

βijxixj + ε

Quadratic

Y = β0 +
n∑

i=1

βixi +
n∑

i=1

n∑
j=i+1

βijxixj +
n∑

k=1

βkx
2
k + ε

These forms are useful as they can express different forms of
‘curvature’ in the response.



Quadratic Model - 2 Factors
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Motivation

Linear Models

Experimental Designs
Experimental Designs
Factorial Design
Fractional Factorial Designs

Model Fitting (Analysis)

ANOVA

Model Interpretation



Experimental Designs

Definition (Experimental Design)

An experimental design is a set of factor settings (design points)
for experimental trials.

Generally, experimental designs are chosen that:

enable the effect of each factor to be identified;

require as few experimental trials as possible to achieve a
desired level of accuracy.

Many designs are possible - the choice depends on the objective of
the experiment.



Experimental Designs
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Factorial Design

Pick high (+) and low (-) values for each factor.
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Factorial Design - Example

mutation rate values in range 0.05 to 0.2 appear to be good;

crossover rate values 0.4 to 0.8 give a good response;

population size found populations 100 to 260 give the best
response.

mutation rate crossover rate population rate

0.07 0.45 120
0.07 0.45 230
0.07 0.75 120
0.07 0.75 230
0.18 0.45 120
0.18 0.45 230
0.18 0.75 120
0.18 0.75 230



Factorial Design in R

R
> library(AlgDesign)

> des <- gen.factorial(levels=c(2,2,3))

> des

X1 X2 X3

1 -1 -1 -1

2 1 -1 -1

3 -1 1 -1

4 1 1 -1

5 -1 -1 0

6 1 -1 0

7 -1 1 0

8 1 1 0

9 -1 -1 1

10 1 -1 1

11 -1 1 1

12 1 1 1



Fractional Factorial Designs

Factorial design of n factors: 2n trials

Fractional factorial designs use special subsets of a full fractional
design to reduce number of trials.

Advantage: fewer experiments
Disadvantage: some β parameters cannot be distinguished from
one another in higher order models



Fractional Factorial Designs
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Fractional Factorial Design in R

R
> library(FrF2)

> FrF2(nfactors=10, nruns=16)

A B C D E F G H J K

1 1 1 1 1 1 1 1 1 1 1

2 -1 1 1 -1 -1 -1 1 1 -1 1

3 1 1 -1 1 1 -1 -1 1 -1 -1

4 1 -1 1 -1 -1 1 -1 -1 1 1

5 -1 -1 1 1 1 -1 -1 -1 -1 1

6 1 1 1 -1 1 1 1 -1 -1 -1

7 1 1 -1 -1 1 -1 -1 -1 1 1

8 -1 -1 -1 -1 1 1 1 1 -1 1

9 -1 -1 -1 1 1 1 1 -1 1 -1

10 1 -1 -1 -1 -1 -1 1 -1 -1 -1

11 1 -1 -1 1 -1 -1 1 1 1 1

12 -1 -1 1 -1 1 -1 -1 1 1 -1

13 -1 1 -1 1 -1 1 -1 -1 -1 1

14 -1 1 1 1 -1 -1 1 -1 1 -1

15 -1 1 -1 -1 -1 1 -1 1 1 -1

16 1 -1 1 1 -1 1 -1 1 -1 -1
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Least Squares Linear Regression

Minimises square of distance from predicted and observed
responses.

0 5 10 15 20
0

5

10

x
1

y

Returns estimate of parameters, β̂, and variance, σ̂2, of noise term.



Least Squares Linear Regression - Example

Linear Model

y = β0 + β1x1 + β2x2 + β3x3 + ε

x1 x2 x3 y

60 12 3 107
60 12 6 114
60 18 3 86
60 18 6 72
90 12 3 163
90 12 6 173
90 18 3 138
90 18 6 143



Least Squares Linear Regression in R

R
> x1 = c(60,60,60,60,90,90,90,90)

> x2 = c(12,12,18,18,12,12,18,18)

> x3 = c(3,6,3,6,3,6,3,6)

> y = c(107,114,86,72,163,173,138,143)

> lm.ex = lm(y~x1+x2+x3)

> lm.ex

Call:

lm.default(formula = y ~ x1 + x2 + x3)

Coefficients:

(Intercept) x1 x2 x3

46.5000 1.9833 -4.9167 0.6667

Fitted Linear Model

y = 46.5 + 1.98x1 − 4.92x2 + 0.67x3



Residuals

ŷ is the predicted response for particular setting of the factors.

The residual is difference between observed and predicted response:

ε̂ = y − ŷ

Residuals are instances of the random variable ε constituting the
noise term.



Residuals

Fitted Linear Model

y = 46.5 + 1.98x1 − 4.92x2 + 0.67x3

Example

x1 x2 x3 y ŷ ε̂

60 12 3 107 108.5 -1.5
60 12 6 114 110.5 3.5
60 18 3 86 79.0 7.0
60 18 6 72 81.0 -9.0
90 12 3 163 168.0 -5.0
90 12 6 173 170.0 3.0
90 18 3 138 138.5 -0.5
90 18 6 143 140.5 2.5
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ANOVA (Analysis of Variance)

Used to determine which factors influence the response.

For each factor in linear model, gives p-value for the hypothesis
test:

Hypotheses

H0: different levels of factor xi have no effect on distribution of
response
H1: different levels of factor xi do have an effect

In terms of the linear model:

y = β0 + β1x1 + β2x2 + β3x3 + ε

Hypotheses are similar to: H0: βi = 0 H1: βi 6= 0



ANOVA - Example

Linear Model

y = β0 + β1x1 + β2x2 + β3x3 + ε

x1 x2 x3 y

60 12 3 107
60 12 6 114
60 18 3 86
60 18 6 72
90 12 3 163
90 12 6 173
90 18 3 138
90 18 6 143



ANOVA in R

R
> x1 = c(60,60,60,60,90,90,90,90)

> x2 = c(12,12,18,18,12,12,18,18)

> x3 = c(3,6,3,6,3,6,3,6)

> y = c(107,114,86,72,163,173,138,143)

> aov.ex = aov(y~x1+x2+x3)

> summary(aov.ex)

Df Sum Sq Mean Sq F value Pr(>F)

x1 1 7080 7080 153.092 0.000245 ***

x2 1 1740 1740 37.632 0.003579 **

x3 1 8 8 0.173 0.698828

Residuals 4 185 46

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1



Kruskal-Wallis in R

R
> x = c(1,1,2,2,3,3,4,4)

> y = c(107,114,86,72,163,173,138,143)

> kruskal.test(y,x)

Kruskal-Wallis rank sum test

data: y and x

Kruskal-Wallis chi-squared = 6.6667, df = 3, p-value = 0.08332
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Model Interpretation
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Tuning Optimise resulting model (using calculus or
deterministic optimisation methods) to find factors that
give best response.

Scalability Express response in terms of scale factor, e.g.:

y = β0 + β1x
2
1

where x1 is the scale (problem characteristic factor).



Practical

Background

Research Question: How does the performance (the time required
to achieve a given coverage) of ScandiTest depend on the 5
numeric parameters of Reindeer Herd Search?
Method: Created a two-level factorial design, and measured the
performance at each design point.

1 Download the dataset cow38G.dat and import into R.

2 Use linear regression to fit a first-order linear model to the
data.

3 Use ANOVA to identify which of the parameters has an effect
of the performance.



Key Points

Linear models - simple (but very widely used) models.

Experimental designs - factorial, fractional factorial.

Model fitting - parameter estimation using linear regression.

ANOVA and Kruskal-Wallis test - to identify significant
factors.

Model interpretation - scalability, algorithm tuning.



Part X

Selected Resources



Resources I

website NIST/SEMATECH e-Handbook of Engineering
Statistics
http://www.itl.nist.gov/div898/handbook/

book R Abelson
Statistics as Principled Argument, 1995

paper D Johnson
A Theoretician’s Guide to the Experimental
Analysis of Algorithms
Proc. 5th and 6th DIMACS Implementation
Challenges, 59:215–250, 2002

example paper D White and S Poulding
A Rigorous Evaluation of Crossover and Mutation
in Genetic Programming,
Proc. 12th European Conference on Genetic
Programming (EuroGP), 220-231, 2009

http://www.itl.nist.gov/div898/handbook/


Resources II

example paper Simon Poulding, John A Clark, and Hélène
Waeselynck
A Principled Evaluation of the Effect of Directed
Mutation on Search-Based Statistical Testing,
Proc. 4th International Workshop on Search-Based
Software Testing (SBST), 184–193, 2011
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