
Where Does My Sensitive Data Go? 
Mining Apps for Abnormal Information Flow

Andreas Zeller
Saarland University, Saarbrücken, Germany

Joint work with Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla,
Steven Arzt, Siegfried Rasthofer, and Eric Bodden

Specifying Correctness

SPECMATE 1 The Principal Investigator: Andreas Zeller 7

1 public class XMLElement implements IXMLElement, Serializable
2 {
3 // The name.
4 private String name;
5
6 // The child elements.
7 private Vector children;
8
9 // Returns an enumeration of all child elements.

10 public Enumeration enumerateChildren() { ... }
11
12 // Returns the number of children.
13 public int getChildrenCount() { ... }
14
15 // Removes a child element.
16 public void removeChild(IXMLElement child) { ... }
17
18 // more methods and attributes...
19 }

Figure 1: The XMLElement class from the NanoXML parser

This is precisely what our proposed approach produces: Given a program, we automatically produce
a high-level specification. In the Z specification language, the mined specification for removeChild() is
shown in Figure 2

removeChild
�XMLElement
child? : XML ELEMENT

child? ⇥ enumerateChildren
child? ⇤= null
enumerateChildren0 = enumerateChildren \ child?
getChildrenCount0 = getChildrenCount � 1

Figure 2: Mined specification for removeChild as set forth in this proposal

Note how the specification captures two important preconditions not stated in the documentation—
that child be a child of the target node, and that child be non-null. Both properties are essential for
generating test cases, for instance. The postconditions precisely describe the effect of removeChild()
and could be used as test oracles or as a base for program synthesis.

1d.3 State of the Art

1d.3.1 Static Analysis How does one obtain a specification like this? Static analysis takes the
program code and infers properties. The removeChild() code indeed reveals some insights:

From this code, any static analysis can easily deduce precondition 2, child? ⇤= null. But how would
(a) Executable Program

(b) Specification

(c) Test

Normality

Mining Normality

SPECMATE 1 The Principal Investigator: Andreas Zeller 7

1 public class XMLElement implements IXMLElement, Serializable
2 {
3 // The name.
4 private String name;
5
6 // The child elements.
7 private Vector children;
8
9 // Returns an enumeration of all child elements.

10 public Enumeration enumerateChildren() { ... }
11
12 // Returns the number of children.
13 public int getChildrenCount() { ... }
14
15 // Removes a child element.
16 public void removeChild(IXMLElement child) { ... }
17
18 // more methods and attributes...
19 }

Figure 1: The XMLElement class from the NanoXML parser

This is precisely what our proposed approach produces: Given a program, we automatically produce
a high-level specification. In the Z specification language, the mined specification for removeChild() is
shown in Figure 2

removeChild
�XMLElement
child? : XML ELEMENT

child? ⇥ enumerateChildren
child? ⇤= null
enumerateChildren0 = enumerateChildren \ child?
getChildrenCount0 = getChildrenCount � 1

Figure 2: Mined specification for removeChild as set forth in this proposal

Note how the specification captures two important preconditions not stated in the documentation—
that child be a child of the target node, and that child be non-null. Both properties are essential for
generating test cases, for instance. The postconditions precisely describe the effect of removeChild()
and could be used as test oracles or as a base for program synthesis.

1d.3 State of the Art

1d.3.1 Static Analysis How does one obtain a specification like this? Static analysis takes the
program code and infers properties. The removeChild() code indeed reveals some insights:

From this code, any static analysis can easily deduce precondition 2, child? ⇤= null. But how would
(a) Executable Program

(b) Specification

(c) Test

Outliers

App Mining

• For 100,000s of apps:

• Gather descriptions

• Gather metadata

• Gather execution features

• Find what is common 
and what is uncommon

App Features

Description

Reviews

Downloads

Permissions

Resources

Frameworks

Store MetadataApp MetadataApp Binary

APIs

Code

Executions

Analyzing App Code

• Easy to extract (grep)
• Easy to process
• Initial classification of program behavior

• Comes in binary form (Dalvik / ARM / both)
• Hard to analyze statically (scale, components)
• Code may be adverse (malware)

• Need test generators (on binaries) to assess
• Instrument binary and/or environment
• Code may be adverse (malware)

APIs

Code

Executions

• Use FlowDroid for analysis (object-, flow-, and context-sensitive)

• Use SuSI list of sensitive sources and sinks

Static Taint Analysis
void onCreate() {
 TelephonyManager mgr = (TelephonyManager)
 this.getSystemService(TELEPHONY_SERVICE);
 String devId = mgr.getDeviceId();
 String a = devId;
 String str = prefix(a);
 SmsManager sms = SmsManager.getDefault();
 sms.sendTextMessage("+1 234", null, str, null, null);
}
String prefix(String s) {
 return "DeviceId: " + s;
}

Sensitive Data Flow

• Downloaded 2,940 apps 
(top 100 per store category)

• Extracted sensitive data flows

• Two months of server time

Twitter 
Sensitive Data Flow

AccountManager.get() → ContentResolver.setSyncAutomatically()

AccountManager.get() → AccountManager.addOnAccountsUpdatedListener()

AccountManager.get() → Activity.setResult()

AccountManager.get() → Log.w()

AccountManager.getAccountsByType() → ContentResolver.setSyncAutomatically()

AccountManager.getAccountsByType() → Activity.setResult()

AccountManager.getAccountsByType() → Log.w()

Uri.getQueryParameter() → Activity.startActivity()

Uri.getQueryParameter() → Activity.setResult()

Uri.getQueryParameter() → Activity.startActivityForResult()

Uri.getQueryParameter() → Log.d()

Uri.getQueryParameter() → Log.v()

Uri.getQueryParameter() → Log.w()

SQLiteDatabase.query() → Log.d()

SQLiteOpenHelper.getReadableDatabase() → Log.d()

SQLiteOpenHelper.getWritableDatabase() → Log.d()

24 hours
64 cores

768 GB RAM

Danti604 
Sensitive Data Flow

TelephonyManager.getSubscriberId() → URL.openConnection()
TelephonyManager.getDeviceId() → URL.openConnection()

1 minute
1 core

1 GB RAM

• Which sensitive APIs does the device ID flow to?

Sensitive Data Flow

Network + SMS
1 %

Intent
38 %

Log
60 %

Network + SMS
37 %

Intent
6 %

Log
57 %

Benign Apps Malicious Apps

MUDFLOW

LOG1ID4 ID4 SMS2

Mining Unusual Data Flow

LOG1ID4 ID4 SMS2

App1

✔ LOG1ID4

App2

✔

App

?
ID4

ID4? SMS2

... ...
✔ LOG2ID2

App1

App3

Outlier DetectionTraining

d = 0.76

Outlier Detector
✔ ✘

Outlier Detection

Malware Classification

App1

✔
App2

✔

App

??

... ...
✔

App1

App3

ClassifyingTraining

Classifier
✔ ✘

App

✘

Correctly Classified
10,552 malicious apps with at least one sensitive leak

0 %

25 %

50 %

75 %

100 %

Malware Benignware All

86 %87.3 %86.4 %

Accurate malware recognition 
without needing malware samples

Food for Thoughts
Check your legal situation

• Apps may not be reverse engineered

• Apps are copyrighted; cannot be “shared”

• App behavior must not be changed

Industry is not dumb at all

• Vendors do monitor their stores

• Vendors do analyze apps, usage, sales

• Vendors want control over security and privacy

Where Does My Sensitive Data Go? 
Mining Apps for Abnormal Information Flow

Andreas Zeller
Saarland University, Saarbrücken, Germany

http://www.st.cs.uni-saarland.de/appmining/

Joint work with Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla,
Steven Arzt, Siegfried Rasthofer, and Eric Bodden

App1

✔ LOG1ID4

App2

✔

App

?
ID4

ID4? SMS2

... ...

✔ LOG2ID2

App1

App3

Outlier DetectionTraining

d = 0.76

Outlier Detector
✔ ✘

Outlier Detection

App Mining

• For 100,000s of apps:

• Gather descriptions

• Gather metadata

• Gather execution features

• Find what is common 
and what is uncommon

Correctly Classified

10,552 malicious apps with at least one sensitive leak

0 %

25 %

50 %

75 %

100 %

Malware Benignware All

86 %87.3 %86.4 %

Accurate malware recognition 
without needing malware samples

Analyzing App Code

APIs

Code

Executions

• Easy to extract (grep)
• Easy to process
• Initial classification of program behavior

• Comes in binary form (Dalvik / ARM)
• Hard to analyze statically (scale, components)
• Code may be adverse (malware)

• Need test generators to assess
• Instrument binary and/or environment
• Code may be adverse (malware)

http://www.st.cs.uni-saarland.de/chabada/

