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Specifying Correctness
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1 public class XMLElement implements IXMLElement, Serializable
2 {
3 // The name.
4 private String name;
5
6 // The child elements.
7 private Vector children;
8
9 // Returns an enumeration of all child elements.

10 public Enumeration enumerateChildren() { ... }
11
12 // Returns the number of children.
13 public int getChildrenCount() { ... }
14
15 // Removes a child element.
16 public void removeChild(IXMLElement child) { ... }
17
18 // more methods and attributes...
19 }

Figure 1: The XMLElement class from the NanoXML parser

This is precisely what our proposed approach produces: Given a program, we automatically produce
a high-level specification. In the Z specification language, the mined specification for removeChild() is
shown in Figure 2

removeChild
�XMLElement
child? : XML ELEMENT

child? ⇥ enumerateChildren
child? ⇤= null
enumerateChildren0 = enumerateChildren \ child?
getChildrenCount0 = getChildrenCount � 1

Figure 2: Mined specification for removeChild as set forth in this proposal

Note how the specification captures two important preconditions not stated in the documentation—
that child be a child of the target node, and that child be non-null. Both properties are essential for
generating test cases, for instance. The postconditions precisely describe the effect of removeChild()
and could be used as test oracles or as a base for program synthesis.

1d.3 State of the Art

1d.3.1 Static Analysis How does one obtain a specification like this? Static analysis takes the
program code and infers properties. The removeChild() code indeed reveals some insights:

From this code, any static analysis can easily deduce precondition 2, child? ⇤= null. But how would
(a) Executable Program

(b) Specification

(c) Test



Normality



Mining Normality
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Outliers



App Mining

• For 100,000s of apps: 

• Gather descriptions 

• Gather metadata 

• Gather execution features 

• Find what is common 
and what is uncommon



App Features

Description

Reviews

Downloads

Permissions

Resources

Frameworks 

Store MetadataApp MetadataApp Binary

APIs

Code

Executions



Analyzing App Code

• Easy to extract (grep) 
• Easy to process 
• Initial classification of program behavior

• Comes in binary form (Dalvik / ARM / both) 
• Hard to analyze statically (scale, components) 
• Code may be adverse (malware)

• Need test generators (on binaries) to assess 
• Instrument binary and/or environment 
• Code may be adverse (malware)

APIs

Code

Executions



• Use FlowDroid for analysis (object-, flow-, and context-sensitive)  

• Use SuSI list of sensitive sources and sinks

Static Taint Analysis
void onCreate() { 
  TelephonyManager mgr = (TelephonyManager) 
    this.getSystemService(TELEPHONY_SERVICE); 
  String devId = mgr.getDeviceId(); 
  String a = devId; 
  String str = prefix(a); 
  SmsManager sms = SmsManager.getDefault(); 
  sms.sendTextMessage("+1 234", null, str, null, null); 
} 
String prefix(String s) { 
  return "DeviceId: " + s; 
}



Sensitive Data Flow

• Downloaded 2,940 apps 
(top 100 per store category) 

• Extracted sensitive data flows 

• Two months of server time





Twitter 
Sensitive Data Flow

AccountManager.get() → ContentResolver.setSyncAutomatically()  

AccountManager.get() → AccountManager.addOnAccountsUpdatedListener()  

AccountManager.get() → Activity.setResult()  

AccountManager.get() → Log.w()  

AccountManager.getAccountsByType() → ContentResolver.setSyncAutomatically()  

AccountManager.getAccountsByType() → Activity.setResult()  

AccountManager.getAccountsByType() → Log.w()  

Uri.getQueryParameter() → Activity.startActivity()  

Uri.getQueryParameter() → Activity.setResult()  

Uri.getQueryParameter() → Activity.startActivityForResult()  

Uri.getQueryParameter() → Log.d()  

Uri.getQueryParameter() → Log.v()  

Uri.getQueryParameter() → Log.w()  

SQLiteDatabase.query() → Log.d()  

SQLiteOpenHelper.getReadableDatabase() → Log.d()  

SQLiteOpenHelper.getWritableDatabase() → Log.d()

24 hours 
64 cores 

768 GB RAM



Danti604 
Sensitive Data Flow

TelephonyManager.getSubscriberId() → URL.openConnection() 
TelephonyManager.getDeviceId() → URL.openConnection()

1 minute 
1  core 

1 GB RAM



• Which sensitive APIs does the device ID flow to?

Sensitive Data Flow
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MUDFLOW

LOG1ID4 ID4 SMS2



Mining Unusual Data Flow

LOG1ID4 ID4 SMS2
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Malware Classification
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Correctly Classified
10,552 malicious apps with at least one sensitive leak
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Accurate malware recognition 
without needing malware samples





Food for Thoughts
Check your legal situation 

• Apps may not be reverse engineered 

• Apps are copyrighted; cannot be “shared” 

• App behavior must not be changed 

Industry is not dumb at all 

• Vendors do monitor their stores 

• Vendors do analyze apps, usage, sales 

• Vendors want control over security and privacy



Where Does My Sensitive Data Go? 
Mining Apps for Abnormal Information Flow 

Andreas Zeller 
Saarland University, Saarbrücken, Germany

http://www.st.cs.uni-saarland.de/appmining/

Joint work with Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, 
Steven Arzt, Siegfried Rasthofer, and Eric Bodden

App1

✔ LOG1ID4

App2

✔

App

?
ID4

ID4? SMS2

... ...

✔ LOG2ID2

App1

App3

Outlier DetectionTraining

d = 0.76

Outlier Detector
✔ ✘

Outlier Detection

App Mining

• For 100,000s of apps: 

• Gather descriptions 

• Gather metadata 

• Gather execution features 

• Find what is common 
and what is uncommon

Correctly Classified

10,552 malicious apps with at least one sensitive leak
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Analyzing App Code

APIs

Code

Executions

• Easy to extract (grep) 
• Easy to process 
• Initial classification of program behavior

• Comes in binary form (Dalvik / ARM) 
• Hard to analyze statically (scale, components) 
• Code may be adverse (malware)

• Need test generators to assess 
• Instrument binary and/or environment 
• Code may be adverse (malware)

http://www.st.cs.uni-saarland.de/chabada/

