
On the Impact of API Change- and	

Fault-proneness on the User Ratings of	

Android Apps	

Denys Poshyvanyk
Software Engineering Maintenance

and Evolution Research Unit - SEMERU
!

• Chartered on February 8,
1693, by King William III
and Queen Mary II of
England

!

• The second oldest
college in America

!

• One of the 8 “Public Ivy”

Research at the
SEMERU lab

Supporting evolution
and maintenance of

Android apps

Mining Android
Software

Repositories

Factors impacting
apps’ success

!

Software reuse
!

Detecting similar
Android apps

!

Energy consumption

!

Crowdsource-based
requirements

!

GUI - based testing
!

Automatic generation
of crash reports

!

MSR 2013

FSE 2013

MSR 2014

ICPC 2014

TSE 2015
minor revision

MSR 2014

The App Economy

http://de.my-walls.net/android-os-robot/

http://de.my-walls.net/android-os-robot/

Android Markets

1.3 Million+ apps (Google Play)

Several unofficial and fake
markets

Thousands of open source apps
(GitHub, Google Code, etc)

2012: average monthly revenue of o v e r $ 4 , 8 0 0 (i O s) , $ 3 , 7 0 0 (BlackBerry), $3,300 (Android)

2014: around 50 billion downloads (Google Play)

Tremendous success ...

2013: global app economy was

worth $68 billion and projected

to $143 billion (2016)

Revenue models

Low cost of handsets

Tremendous
success ...

Customer loyalty

Apps are built using
APIs... and....

THERE ARE SOME

ISSUES RELATED

TO APIS

Breaking changes

Instability

Bugs

Backward compatibility

562  API usability  
issues

Among 1513 bug
reports:

175 API  
correctness

Among 1513 bug
reports:

17 releases in 4 years
(2008-2012)

3,269  
classes

1.0
1.1
1.5
1.6
2.0

2.0.1
2.1
2.2
2.3

2.3.3
3.0
3.1
3.2
4.0

4.0.3
4.1
4.2 44

72
15

118
3
22

229
16

117
127

7
0

107
43

110
3

2,236

New classes

96,524
changes in

methods

17 releases in 4 years
(2008-2012)

1.0
1.1
1.5
1.6
2.0

2.0.1
2.1
2.2
2.3

2.3.3
3.0
3.1
3.2
4.0

4.0.3
4.1
4.2 4,766

4,259
1,122

2,600
675

1,940
1,411

4,170
11,092
10,935

899
811
1,259

5,178
42,789

2,618

Changes in
methods

May API instability and
fault-proneness impact
the success of Android
applications ?

Free Apps
analyzed

5,848

Domain
categories from
Google play

30

Categories and Apps
Others
Productivity
Communication
Business
Finance
Sports
News-and-magazine
Photography
Cards
Media-and-video
Racing
Sports-games
Music-and-audio
Education
Arcade
Casual
Brain
Lifestyle
Tools
Personalization
Entertainment

Third party
librares

68

developers’
commits85k+

bug-fixing
activities39k+

1M+ method’s
changes

developers’
commits85k+

Android API35k+
49k+ Third party

libraries

Android API
developers1,068

1,232 Third party
libraries devs

85k+ developers’
commits

App’s success:

API change-
proneness:

Number of changes at
method level in the
Android API

API fault-
proneness:

Number of bugs
fixed in the
Android API

Average users
rating

android.app.ActionBar
 .
 .
 .
android.gesture.Gesture

Considered version
Next version or last rating

time...

Bug-fixes, and changes in
the used APIs

Bug-fixes
in APIs

Changes
at method level

MARKOS code
analyzer

- Generic changes
- Method signature
- Exceptions

http://www.cs.wm.edu/semeru/
data/tse-android/

All the data are available at...

http://www.cs.wm.edu/semeru/data/fse-android-api/.categories

6

In general, the user ratings are very high: 3,251
apps (55.59%) exhibit an average rating greater than
4 stars. Nevertheless, due to quite large corpus of
apps considered in our study, we also have 425 apps
with an average rating lower than 3 stars. Thus, we
can verify a possible relationship between fault- and
change-proneness of used APIs and apps average user
rating. One might be tempted to believe that such
apps received high scores because of being free, i.e.,
the user is less disappointed when an app is unreliable
or useless, because she did not spend money for it or,
on the contrary, a good and free functionality is highly
rewarded. To verify this conjecture, we analyzed the
ratings for 5,848 paid (non-free) apps randomly se-
lected from the Google Play Market8. Figure 2 depicts
the distribution of ratings for these commercial apps.
The number of ratings received by each commercial
app vary between 10 and 96,460, with a first quartile
= 16, median = 30, third quartile = 85, and mean =
267. As in the case of the free apps, user ratings are
generally very high: 3,359 commercial apps (57.44%)
exhibit an average rating greater than 4 stars. Also,
similarly to free apps, 438 commercial apps have an
average rating lower than 3 stars. In summary, the
average rating for free apps is 3.97, whereas for paid
apps it is 4.02. Although Mann-Whitney test reports
a significant difference between the two distributions
(p-value< 0.0001), the difference has a negligible effect
size (Cliff’s d=0.05).

Coming back to the 5,848 free apps object of our
study, we group them in three different sets on the
basis of their average user rating (ra). In particular,
given Q1 = 3.667 and Q3 = 4.395 the first and the
third quartile of the distribution of the average user
ratings assigned to the 5,848 apps considered in our
study, we cluster the apps into the following three
sets:

1) Apps having high rating: apps having ra > Q3.
2) Apps having medium rating: apps having Q3 ⇤

ra > Q1.
3) Apps having low rating: apps having ra ⇥ Q1.
To address our research questions, we use descrip-

tive statistics to provide an overview of data, then
followed by the use of statistical tests and effect size
measures. First, we depict boxplots of the distribution
of the average number of faults and changes for APIs
used by apps that received average scores in the
three categories described above. It is very important
to note that, for each app, we compute the average
(mean) number of changes across all APIs used by
that app. In this way, we do not bias the study because
of apps using too many (and possibly change-prone)
or too few (and possibly stable) APIs. Then, we plot
and compare distributions of such averages.

In addition to showing boxplots, we compare such

8. Further information about these apps is in our online ap-
pendix.

App success

Fr
eq

ue
nc

y

1 2 3 4 5

0
50

0
10

00
15

00
20

00

average rating

Fig. 1: Average user ratings for the 5,848 analyzed
apps.

App success

Fr
eq

ue
nc

y

1 2 3 4 5

0
50

0
10

00
15

00
20

00

average rating

Fig. 2: Average user ratings for 5,848 paid apps.

distributions using Mann-Whitney test [13]. For the
latter, we pairwise compared the fault-and change-
proneness for the three groups. The results were
statistically significant at � = 0.05. Since we per-
formed multiple tests, we adjusted our p-values using
the Holm’s correction procedure [14]. This procedure
sorts the p-values resulting from n tests in ascending
order, multiplying the smallest by n, the next by n�1,
and so on.

We also estimated the magnitude of the difference

Free vs. Paid (5,848 apps)6

In general, the user ratings are very high: 3,251
apps (55.59%) exhibit an average rating greater than
4 stars. Nevertheless, due to quite large corpus of
apps considered in our study, we also have 425 apps
with an average rating lower than 3 stars. Thus, we
can verify a possible relationship between fault- and
change-proneness of used APIs and apps average user
rating. One might be tempted to believe that such
apps received high scores because of being free, i.e.,
the user is less disappointed when an app is unreliable
or useless, because she did not spend money for it or,
on the contrary, a good and free functionality is highly
rewarded. To verify this conjecture, we analyzed the
ratings for 5,848 paid (non-free) apps randomly se-
lected from the Google Play Market8. Figure 2 depicts
the distribution of ratings for these commercial apps.
The number of ratings received by each commercial
app vary between 10 and 96,460, with a first quartile
= 16, median = 30, third quartile = 85, and mean =
267. As in the case of the free apps, user ratings are
generally very high: 3,359 commercial apps (57.44%)
exhibit an average rating greater than 4 stars. Also,
similarly to free apps, 438 commercial apps have an
average rating lower than 3 stars. In summary, the
average rating for free apps is 3.97, whereas for paid
apps it is 4.02. Although Mann-Whitney test reports
a significant difference between the two distributions
(p-value< 0.0001), the difference has a negligible effect
size (Cliff’s d=0.05).

Coming back to the 5,848 free apps object of our
study, we group them in three different sets on the
basis of their average user rating (ra). In particular,
given Q1 = 3.667 and Q3 = 4.395 the first and the
third quartile of the distribution of the average user
ratings assigned to the 5,848 apps considered in our
study, we cluster the apps into the following three
sets:

1) Apps having high rating: apps having ra > Q3.
2) Apps having medium rating: apps having Q3 ⇤

ra > Q1.
3) Apps having low rating: apps having ra ⇥ Q1.
To address our research questions, we use descrip-

tive statistics to provide an overview of data, then
followed by the use of statistical tests and effect size
measures. First, we depict boxplots of the distribution
of the average number of faults and changes for APIs
used by apps that received average scores in the
three categories described above. It is very important
to note that, for each app, we compute the average
(mean) number of changes across all APIs used by
that app. In this way, we do not bias the study because
of apps using too many (and possibly change-prone)
or too few (and possibly stable) APIs. Then, we plot
and compare distributions of such averages.

In addition to showing boxplots, we compare such

8. Further information about these apps is in our online ap-
pendix.

App success

Fr
eq

ue
nc

y

1 2 3 4 5

0
50

0
10

00
15

00
20

00

average rating

Fig. 1: Average user ratings for the 5,848 analyzed
apps.

App success

Fr
eq

ue
nc

y

1 2 3 4 5

0
50

0
10

00
15

00
20

00

average rating

Fig. 2: Average user ratings for 5,848 paid apps.

distributions using Mann-Whitney test [13]. For the
latter, we pairwise compared the fault-and change-
proneness for the three groups. The results were
statistically significant at � = 0.05. Since we per-
formed multiple tests, we adjusted our p-values using
the Holm’s correction procedure [14]. This procedure
sorts the p-values resulting from n tests in ascending
order, multiplying the smallest by n, the next by n�1,
and so on.

We also estimated the magnitude of the difference

Average App Rating

1 2 3 4 5

0

 50
0

10
00

 15
00

 20
00

0

 50
0

10
00

 15
00

 20
00

1 2 3 4 5

00 0
0 00 0
0 00 0

101 10 1
1 1 1 1 1
1 1 1 1
0 0 0 0 0

00 0
1 1 1 1

111 11 1

0

00 0
0 00 0
0 00 0

101 10 1
1 1 1 1 1
1 1 1 1
0 0 0 0 0

00 0
1 1 1 1

111 11 1

0

Does the fault-proneness
of APIs affect the success
of Android Apps?

Average App Rating

Bu
g-

fix
es

 in
 us

ed
 AP

Is

7

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●
●

●●
●
●

●
●
●●

●

●
●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●●●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●
●
●●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

High Medium Low

0
5

10
15

20
25

30

App rating

Av
er

ag
e

bu
g−

fix
es

 in
 u

se
d

AP
Is

●

●

●

Fig. 3: Boxplots of average number of bug fixes in API
classes used by apps having different levels of rating.
The red dot indicates the mean.

between fault- and change-proneness of the APIs used
by different groups of apps; we used the Cliff’s Delta
(or d), a non-parametric effect size measure [15] for
ordinal data. We followed the guidelines in [15] to
interpret the effect size values: small for d < 0.33
(positive as well as negative values), medium for
0.33 � d < 0.474 and large for d ⇥ 0.474.

2.1.6 Replication Package
The data set used in our study is publicly available at
http://www.cs.wm.edu/semeru/data/tse-android/.
Specifically, we provide: (i) the list (and URLs) of the
studied 5,848 apps, together with the user ratings
distributions; (ii) the list of APIs used by each app;
(iii) complete information on the bugs fixed and
changes that occurred in the APIs considered in our
study (both official Android as well as third-party
APIs); (iv) the R scripts and working data sets used
to run the statistical tests and produce the plots and
tables presented.

2.2 Results
This section reports the results aimed at answering the
two research questions formulated in Section 2.1.2.

2.2.1 Does the fault-proneness of APIs affect the user
ratings of Android Apps?
Boxplots in Figure 3 show the distribution of average
number of bug fixes in API classes used by apps
having different levels of rating (i.e., high, medium, and
low rating as defined in Section 2.1.5). Note that we

TABLE 3: Use of fault-prone APIs by apps having
different levels of rating: Mann-Whitney test (adj. p-
value) and Cliff’s Delta (d).

Test adj. p-value d
high rating vs medium rating <0.0001 0.10 (Small)
high rating vs low rating <0.0001 0.37 (Medium)
medium rating vs low rating <0.0001 0.18 (Small)

set 30 as a limit for the y-axis (i.e., average number of
bug fixes in API classes) for readability purposes.

The boxplots reported in Figure 3 highlight that
apps having a higher average user rating use APIs
having a lower bug-proneness. In particular, apps
having a high rating use APIs with 6.1 bug-fixes on
average. This number grows up to 9.8 (+61%) for apps
having a medium rating and reaches 12 (+111%) for
apps having a low rating. Overall, the difference in
terms of APIs fault-proneness between apps having
different levels of rating is very clear by looking to
the distributions depicted in Figure 3.

We also compared the difference in terms of API
bugs between the 50 most and the 50 least successful
apps (in terms of achieved average user rating). The
50 most successful apps are those having an average
rating higher than 4.946, while the 50 least successful
exhibit an average rating lower than 2.068. For the
former, the average number of bug fixes in the used
APIs is 4.4, while for the latter we measured an
average of 24.5 bug fixes in the used APIs (+457%).

Table 3 reports the results of the Mann-Whitney test
(p-value) and the Cliffs d effect size. We compared
each set of apps (grouped by level of rating) with all
other sets having a lower rating (e.g., high rating vs.
the other). As we can see from the table, apps having
a higher rating always exhibit a statistically significant
lower number of bug fixes in the used APIs than apps
having a lower rating (p-value always < 0.0001). The
Cliff’s d is small (0.10) when comparing apps having
a high rating and apps having a medium rating, and
medium (0.37) when the comparison is performed
between apps having a high rating and apps having a
low rating. The effect size is small (d=0.18) when com-
paring apps having a medium rating and those having
low rating. As expected, also the comparison of the 50
most and the 50 least successful apps shows statistical
significant difference, with a p-value < 0.0001 and a
large effect size (d=0.66).

With the achieved results, we can reject our null
hypothesis H01 , i.e., APIs used by apps having higher
user ratings are, on average, significantly less fault-
prone than APIs used by low rated apps. However, it
is interesting to understand if the observed difference
in terms of APIs fault-proneness between apps having
different levels of rating is due to the used official
Android APIs, third-party APIs, or to both of them.
To this aim, we separately investigated the fault-
proneness of the official Android APIs and of the

High Medium Low

Mann-Whitney: significant
difference when comparing two

groups (e.g., high vs medium)

Avg bug-fixes in used APIs

0

5

10

15

20

25

12

9.8

6.1

High Medium Low

+61%

+111%

50 most successful vs  
50 least successful apps

+457%

APIs used by successful apps are
significantly less fault-prone than

APIs used by unsuccessful apps

Does the change-proneness
of APIs affect the success of
Android Apps?

Average App Rating

Ov
er

al
l m

et
ho

d c
ha

ng
es

 in
 us

ed
 AP

Is

9

●

●●

●●

●

●
●

●

●

●

●

●
●
●●
●
●

●●

●
●

●
●●
●●●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●●

●

●

●●●

●●

●
●

●

●●

●●●●●●●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●●●●

●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

High Medium Low

0
50

10
0

15
0

App rating

M
et

ho
d

ch
an

ge
s

●

●

●

(a)

●

●●

●

●

●
●

●

●

●
●

●
●
●●
●
●
●●

●
●

●●●
●●●●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●●●●

●●

●●●●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

High Medium Low

0
5

10
15

20

App rating

C
ha

ng
es

 in
 m

et
ho

d
si

gn
at

ur
es

●

●

●

(b)

●
●●

●

●●

●

●

●

●●●●
●
●
●●

●
●

●●●●●●●
●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●●

●●

●

●

●

●●●

●

●●

●

●

●

●

●●●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●●

●

●●●●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●●●●●●●●●●

●●●●

●

●

●

●

●

●

●●

●

●

●
●●

●

●●

●

●●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●●

●

●●●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●●
●

●

●

●

●
●
●

●

●

●

●

High Medium Low

0
50

10
0

15
0

App rating

Pu
bl

ic
 m

et
ho

d
ch

an
ge

s

●

●

●

(c)

●
●●

●

●

●●

●

●

●
●

●●●●●●●●

●
●

●●●●●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●
●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●●●●●●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●
●●●●●

●●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●●
●

●

●

●

●
●

●

High Medium Low

0
5

10
15

20

App rating

C
ha

ng
es

 in
 p

ub
lic

 m
et

ho
d

si
gn

at
ur

es

●

●

●

(d)

Fig. 4: Boxplots of change-proneness in API classes used by apps having different levels of rating. The red
dot indicates the mean.

Similarly to the case of bug fixes, we also compared
the 50 most and the 50 least successful apps (in terms
of their average rating), and the results for the four
types of changes are:

1) the overall number of method changes in API
methods are, on average, 20 for the most suc-
cessful and 83 (+315%) for the least successful
apps;

2) the number of changes in public methods is 12
for the most successful, and 44 (+267%) for the
least successful apps;

3) changes to method signatures are 4 vs. 16
(+300%) considering all methods, and 3 vs. 11
(+266%) by considering public methods only.

Table 6 reports the results of the Mann-Whitney
test and the Cliff’s d when comparing the change-
proneness of APIs used by apps belonging to different
groups of average user ratings. Table 6 shows that: (i)
there is statistically significant difference (p-value <
0.0001) when comparing apps having a higher rating
with those having a lower one, and (ii) Cliff’s delta is
small for all comparison. However, when comparing

High Medium Low

Mann-Whitney: significant
difference when comparing two

groups (e.g., high vs medium)

9

●

●●

●●

●

●
●

●

●

●

●

●
●
●●
●
●

●●

●
●

●
●●
●●●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●●

●

●

●●●

●●

●
●

●

●●

●●●●●●●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●●●●

●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

High Medium Low

0
50

10
0

15
0

App rating

M
et

ho
d

ch
an

ge
s

●

●

●

(a)

●

●●

●

●

●
●

●

●

●
●

●
●
●●
●
●
●●

●
●

●●●
●●●●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●●●●

●●

●●●●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

High Medium Low

0
5

10
15

20

App rating

C
ha

ng
es

 in
 m

et
ho

d
si

gn
at

ur
es

●

●

●

(b)

●
●●

●

●●

●

●

●

●●●●
●
●
●●

●
●

●●●●●●●
●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●●

●●

●

●

●

●●●

●

●●

●

●

●

●

●●●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●●

●

●●●●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●●●●●●●●●●

●●●●

●

●

●

●

●

●

●●

●

●

●
●●

●

●●

●

●●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●●

●

●●●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●●
●

●

●

●

●
●
●

●

●

●

●

High Medium Low

0
50

10
0

15
0

App rating

Pu
bl

ic
 m

et
ho

d
ch

an
ge

s

●

●

●

(c)

●
●●

●

●

●●

●

●

●
●

●●●●●●●●

●
●

●●●●●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●
●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●●●●●●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●
●●●●●

●●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●●
●

●

●

●

●
●

●

High Medium Low

0
5

10
15

20

App rating

C
ha

ng
es

 in
 p

ub
lic

 m
et

ho
d

si
gn

at
ur

es

●

●

●

(d)

Fig. 4: Boxplots of change-proneness in API classes used by apps having different levels of rating. The red
dot indicates the mean.

Similarly to the case of bug fixes, we also compared
the 50 most and the 50 least successful apps (in terms
of their average rating), and the results for the four
types of changes are:

1) the overall number of method changes in API
methods are, on average, 20 for the most suc-
cessful and 83 (+315%) for the least successful
apps;

2) the number of changes in public methods is 12
for the most successful, and 44 (+267%) for the
least successful apps;

3) changes to method signatures are 4 vs. 16
(+300%) considering all methods, and 3 vs. 11
(+266%) by considering public methods only.

Table 6 reports the results of the Mann-Whitney
test and the Cliff’s d when comparing the change-
proneness of APIs used by apps belonging to different
groups of average user ratings. Table 6 shows that: (i)
there is statistically significant difference (p-value <
0.0001) when comparing apps having a higher rating
with those having a lower one, and (ii) Cliff’s delta is
small for all comparison. However, when comparing

9

●

●●

●●

●

●
●

●

●

●

●

●
●
●●
●
●

●●

●
●

●
●●
●●●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●●

●

●

●●●

●●

●
●

●

●●

●●●●●●●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●●●●

●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

High Medium Low

0
50

10
0

15
0

App rating

M
et

ho
d

ch
an

ge
s

●

●

●

(a)

●

●●

●

●

●
●

●

●

●
●

●
●
●●
●
●
●●

●
●

●●●
●●●●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●●●●

●●

●●●●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

High Medium Low

0
5

10
15

20

App rating

C
ha

ng
es

 in
 m

et
ho

d
si

gn
at

ur
es

●

●

●

(b)

●
●●

●

●●

●

●

●

●●●●
●
●
●●

●
●

●●●●●●●
●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●●

●●

●

●

●

●●●

●

●●

●

●

●

●

●●●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●●

●

●●●●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●●●●●●●●●●

●●●●

●

●

●

●

●

●

●●

●

●

●
●●

●

●●

●

●●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●●

●

●●●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●●
●

●

●

●

●
●
●

●

●

●

●

High Medium Low

0
50

10
0

15
0

App rating

Pu
bl

ic
 m

et
ho

d
ch

an
ge

s

●

●

●

(c)

●
●●

●

●

●●

●

●

●
●

●●●●●●●●

●
●

●●●●●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●
●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●●●●●●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●
●●●●●

●●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●●
●

●

●

●

●
●

●

High Medium Low

0
5

10
15

20

App rating

C
ha

ng
es

 in
 p

ub
lic

 m
et

ho
d

si
gn

at
ur

es

●

●

●

(d)

Fig. 4: Boxplots of change-proneness in API classes used by apps having different levels of rating. The red
dot indicates the mean.

Similarly to the case of bug fixes, we also compared
the 50 most and the 50 least successful apps (in terms
of their average rating), and the results for the four
types of changes are:

1) the overall number of method changes in API
methods are, on average, 20 for the most suc-
cessful and 83 (+315%) for the least successful
apps;

2) the number of changes in public methods is 12
for the most successful, and 44 (+267%) for the
least successful apps;

3) changes to method signatures are 4 vs. 16
(+300%) considering all methods, and 3 vs. 11
(+266%) by considering public methods only.

Table 6 reports the results of the Mann-Whitney
test and the Cliff’s d when comparing the change-
proneness of APIs used by apps belonging to different
groups of average user ratings. Table 6 shows that: (i)
there is statistically significant difference (p-value <
0.0001) when comparing apps having a higher rating
with those having a lower one, and (ii) Cliff’s delta is
small for all comparison. However, when comparing

Me
th

od
 ch

an
ge

s

Ch
an

ge
s i

n m
et

ho
d s

ig
na

tu
re

s
Ch

an
ge

s i
n p

ub
. m

et
ho

d s
ig

na
tu

re
s

Pu
bl

ic
 m

et
ho

d c
ha

ng
es

Avg changes in used APIs

0

10

20

30

40

50

60

70

80

47

36

25

High Medium Low

+44%
+88%

50 most successful vs  
50 least successful apps

+315%

Average App Rating

Ch
an

ge
s i

n e
xc

ep
tio

ns
 th

ro
wn

 by
 m

et
ho

ds

10

TABLE 6: Change-proneness of APIs for apps having
different levels of rating: Mann-Whitney test (p-value)
and Cliff’s delta (d).

Test adj. p-value d
Overall Method Changes

high rating vs medium rating <0.0001 0.08 (Small)
high rating vs low rating <0.0001 0.25 (Small)
medium rating vs low rating <0.0001 0.18 (Small)

Changes to Public Methods
high rating vs medium rating <0.0001 0.08 (Small)
high rating vs low rating <0.0001 0.25 (Small)
medium rating vs low rating <0.0001 0.17 (Small)

Overall Changes in Method Signatures
high rating vs medium rating <0.0001 0.07 (Small)
high rating vs low rating <0.0001 0.24 (Small)
medium rating vs low rating <0.0001 0.17 (Small)

Changes in Public Method Signatures
high rating vs medium rating <0.0001 0.08 (Small)
high rating vs low rating <0.0001 0.24 (Small)
medium rating vs low rating <0.0001 0.17 (Small)

the top 50 and the least 50 successful apps (i) the p-
value is confirmed < 0.0001, and (ii) we get a large
Cliff’s d (� 0.474) for all change types.

Then, we analyzed another category of changes that
might occur in the Android APIs, i.e., changes to
the set of exceptions thrown by methods. In total,
we identified 2,799 changes to exceptions thrown by
methods; 1,735 (62%) were aimed at adding new ex-
ceptions to a method. Results are reported in Figures
5-(a) and 5-(b) for all methods and public methods
only, respectively. Differently from the trends ob-
served for the other kinds of changes shown in Figure
4, for what concerns changes to exceptions we do not
observe (also according to Mann-Whitney tests per-
formed) any significant difference between different
levels of apps’ rating. This result is not surprising,
since robust Java programs generally make a massive
use of exception handling mechanisms [16].

On summary, we can reject our null hypothesis H02

i.e., APIs used by apps having high user ratings are on
average less prone to changes occurred to API signatures
and implementation than APIs used by low rated apps.
Instead, there is no significant difference when the changes
are on the exceptions thrown by API methods.

As already done for the fault-proneness, we also
analyzed the change-proneness of APIs used by the
different categories of apps by isolating official An-
droid APIs and third-party APIs. Concerning the of-
ficial Android APIs, we observed that those used by
apps having high user ratings are significantly less
change prone than those used by low rated apps, as
also confirmed by the results of the Mann-Whitney
test reported in Table 7 (p-value always <0.0001 with
a small effect size). In particular:

• In terms of overall method changes, apps having
a high rating use APIs that underwent, on aver-
age, 25 changes, as compared to the 37 (+48%) of

●●●

●

●

●

●

●●

●●●

●

●

●

●●
●
●●
●
●●●●●●

●

●
●●●●●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●●●

●●●●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●●

●
●

●●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●●●●●

●●

●

●

●●●

●

●

●

●●●●

●●

●●

●

●

●

●

●●

●

●
●

●

●●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●●●●●
●
●

●●

High Medium Low

0
2

4
6

8
10

App rating

C
ha

ng
es

 in
 e

xc
ep

tio
ns

 th
ro

w
n

by
 m

et
ho

ds

●

● ●

(a)

●●●

●

●

●

●

●●

●●●

●

●

●

●●
●
●●
●
●●●●●●
●
●●●●●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●●●

●●●●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●●●●

●●

●●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●

●●

●

●

●●●

●

●

●

●●●●

●●

●●

●

●

●

●

●●

●

●
●

●

●●

●

●

●●

●

●

●
●●

●

●

●

●

●●

●

●

●

●●

●●●●●
●
●

●
●

High Medium Low

0
2

4
6

8
10

App rating

C
ha

ng
es

 in
 e

xc
ep

tio
ns

 th
ro

w
n

by
 p

ub
lic

 m
et

ho
ds

●

● ●

(b)

Fig. 5: Boxplots of changes related to method thrown
exceptions in API classes used by apps having differ-
ent levels of rating. The red dot indicates the mean.

apps having a medium rating and the 48 (+92%) of
apps having a low rating. This trend is also con-
firmed when just considering changes to public
methods, with apps having low rating using APIs
subject to 27 changes, on average, 80% more than
the apps having high rating.

• When focusing on changes performed on method
signatures, apps having a high rating use APIs
object, on average, of 5 changes, 40% less than
APIs used by apps having a medium rating and

High Medium Low

APIs used by successful apps are
less prone to changes than APIs
used by unsuccessful apps.

No difference when the changes
are on the exceptions thrown by
API methods.

Qualitative
analysis

12

doesnotwork
crashes

update

useless

crap forceclose

uninstall

boring
horrible

blackscreen

freezes

pay

uninstalled

pleasefixit

worth

money
wasteoftime

lacks
wouldbegreatif

needsupdate

notcompatiblewith

terrible

buy

annoying

version

sucks
thisistheworst

cantevenopenit

notworkonmy

malfunction

Fig. 6: Word cloud of the 30 most common n-grams
in low rated apps user comments.

one of the main reasons behind users dissatisfaction
with downloaded apps.

The next step to find insights about the relation
between the use of fault- and change-prone APIs and
the apps user ratings is to manually analyze some
of the unsuccessful apps on Google Play trying to
understand if APIs’ bugs/frequent changes directly
impacted the apps’ user experience.

Firstly, we must point out that most of the negative
reviews we looked at were simply non-informative,
i.e., did not provide any clue for the reasons behind
the user dissatisfaction. Examples of such reviews
are “this app is terrible”, “crap”, “do not download”,
“improvements needed”, and “needs a lot of work”. This
outcome was quite expected, since a recent study by
Chen et al. [17] showed that just 35% of reviews avail-
able on the mobile app marketplace were informative.
Also, we found negative reviews due to the poor
features provided by the apps (e.g., “boring”, “this is
not an app is just a link to the website”), or to the “spam
nature” of the app (e.g., “a lot of spam on screen and
notifications”, “I never even got to the point where I could
open the app itself I was constantly closing pop-up windows
and removing added icons to my home screen”). These
negative reviews are clearly not linkable to any API
issues, but simply due to specific apps’ characteristics.

Nevertheless, several negative reviews were related
to bugs/crashes experienced by users while using the
apps (as also highlighted by the n-grams analysis). To
provide some numbers, among the 151,564 negative
reviews (i.e., those having a score lower than three
stars) present in our dataset, 27,162 contained the
word “bug” or the tri-gram “does not work”, and
14,228 contained the word “crash”, “freezes” or the
bi-gram “force close”. Most of these reviews did not
describe the experienced issues enough in details to
allow us to check if the APIs’ bugs/frequent changes

were the cause of the problem. Still, we found several
user reviews directly related to problems present in
the APIs used by the apps they downloaded and tried.

An interesting case is the official CNN app for
Android tablets. In our study, we analyzed the release
1.3.3 of the CNN app. That version received several
low ratings from users (482 out of 812 votes rated
the app with one star), mostly because the presence
of bugs. However, we found that some of those bugs
were related to the Android APIs. For example, these
are two reviews in Google Play for the CNN app
version 1.3.3:

Rating: ?
A Google User - July 3, 2012 - Version 1.3.3
Widget?
The widget looks awesome when it doesn’t foul
up. I just don’t understand the invisible widget
thing. please fix.

Rating: ? ?
A Google User - July 6, 2012 - Version 1.3.3
Needs some MAJOR bug fixes
I was excited to see that the app has finally been
updated, and for a few hours it worked great.
But then some of its widgets became invisible,
and it froze my desktop several times. Galaxy
Tab 7.7 with ICS.

By analyzing the change log of the APIs used by
the CNN app, we identified a possible cause for the
problem described in the reviews. In particular, with
a commit performed on 07/03/2012, the developer
Chet H. implemented a bug fix solving the issue
#6773607 in the Android API: Layered views animating
from offscreen sometimes remain invisible. The layered
views are the mechanism used by the CNN app to
implement its widgets.

We also found several user reviews reporting
problems related to functionalities in apps
that are provided by problematic APIs.
An interesting example is the subsystem
android.speech.tts, providing developers with
the possibility of integrating the Text To Speech (TTS)
technology in their apps. More than 200 users of the
apps using TTS complained about problems related
to this feature. Examples of reviews are “Useless. TTS
doesn’t work.”, and “Every time I restart my phone I
have to reinstall it as app related to TTS.”. By analyzing
the change-history of the android.speech.tts
subsystem, we found that the 15 classes contained
in it underwent, in total, 93 commits (69 of which
fixed a bug), distanced on average 13 days from each
other. In these commits, a total of 460 methods have
been changed, of which 289 are public methods, and
among these public methods 80 underwent changes
to their signatures. This can suggest that, very likely,
it has been difficult, for app developers, to stay
tuned with changes performed in such unstable and

Most common n-grams in low rated
 apps user comments

Rating:  
A Google User - July 3, 2012 
Widget?  
The widget looks awesome when it
doesn’t foul up. I just don’t understand
the invisible widget thing. please fix

482 out of 812 votes were 1 star, mostly due to presence of a bug

Rating:  
A Google User - July 6, 2012 
Needs some MAJOR bug fixes 
I was excited to see that the app has
finally been updated. But some of its
widgets became invisible.

FIX BUG #6773607: Layered views animating from offscreen
sometimes remain invisible

android.speech.tts

More than 200 users
complained about

problems related to
this feature

15 Classes
460 Method changes

289 to public methods
69 bug fixes

A change each 13 days 

Facebook
Android SDK (3.5)

“Every time I login to
Facebook the app is
forced to close”

“Started once, seemed
to login with Facebook,
but after that, it went
back to the main screen
and nothing happened”

Bug solved in version 3.5.1

Survey with
Android
Developers

- Purpose: understanding to what extent
they experience problems when using APIs and
how much they consider these problems to be
related to negative user ratings/comments
 	

!

 - Focus: the developers’ perception of the
impact change- and fault-prone APIs can have on
the apps’ user ratings

- Developers’ emails
mined from Google Play

!

 - 1,221 developers
contacted via email
!

- Online survey (qualtrics)

professional
Android

developers

45
21 Questions
!

- Background
- Problems
when using APIs
- Impact of API
on user ratings

Select, among the following, the most frequent
perceived causes of app bugs/crashes

11. Java programming errors in the app

12. Use of third party libraries affected by bugs (e.g., a
bug in a library used by the app causes crashes)

13. Changes in new releases of third party libraries
used by the app cause crashes

14. Bugs present in the official Android APIs (e.g., a bug
in the Android APIs causes the app to crash)

15. Changes in new releases of the official Android APIs
cause the app to crash with used APIs.

Experiences with used APIs

16. Did you ever experience problems with mobile
development APIs?

17. If YES to 16, were they official Android APIs or third
party APIs? Indicate release version and describe the
problem if possible

8. Did you ever have new bugs in your app due to the
new releases of the Android platform?used APIs.

Factors affecting negatively apps’ rating

Ne
ga

tiv
e

im
pa

ct
 on

 ra
tin

gs

16

●1
2

3
4

5

D
ev

el
op

er
s'

An
dr

oi
d

ex
pe

rie
nc

e
(Y

ea
rs

)

●

(a)

●

●

●

●

●

0
50

10
0

15
0

20
0

N
um

be
r o

f a
pp

s
de

ve
lo

pe
d

●

(b)

●

●

●

●

●

●

●

●

0.
0e

+0
0

1.
0e

+0
7

2.
0e

+0
7

3.
0e

+0
7

N
um

be
r o

f d
ow

nl
oa

ds

●

(c)

●●●●

●

●●

●

●●●

1
2

3
4

5

Av
er

ag
e

R
at

in
g

as
si

gn
ed

 to
 th

ei
r a

pp
s

●

(d)

Fig. 7: Boxplots of answers provided by developers to questions related to their experience. The red dots
indicate the mean.

●●

●●

Features not
useful

App difficult
to use

Better apps
available

App contains
bugs and crashes

1
2

3
4

5

Evaluated Factors

N
eg

at
ive

 Im
pa

ct
 o

n
Ap

ps
' u

se
r r

at
in

gs ●

●

●

●

Fig. 8: Boxplots of answers provided by developers to
questions 7-10 (see Table 9), assessing the factors neg-
atively impacting the apps’ rating (1=very low impact,
. . . , 5=very strong impact). The red dots indicate the
mean.

apps can be affected by programming errors made
by developers. 71% of developers (i.e., 32 out of 45)
indicated the use of third-party libraries affected by bugs
as one of the reasons frequently causing bugs/crashes
in their apps, while 44% (20 out of 45) pointed out the
changes in new releases of third-party libraries as one of
the bugs/crashes root causes. If restricting our atten-
tion to the Android official APIs only, 25 developers

(56%) indicate the bugs present in the official Android
APIs and 22 (49%) the changes in new releases of the
official Android APIs as frequent cause of bugs/crashes
in their apps.

Summarizing, the study results indicate that:
1) a large percentage of the developers (between

44% and 71%) consider change- and fault-
proneness of APIs as threats to the proper work-
ing of their apps. When focusing on problems
related to the APIs (i.e., considering all the an-
swers but the “Java programming errors in the
app” one), developers perceive that bugs present
in third-party APIs represent the most frequent
cause of bug introduction in their apps.

2) developers are generally more concerned about
the effect of bugs present in the used APIs than
about changes performed in new releases of the
used APIs; this is true for both third-party as
well as official Android APIs.

3) developers believe that more bugs are present
in third-party APIs than in the official Android
APIs. However, they are more concerned about
the change-proneness of the Android platform
than to the change-proneness of third-party
APIs. This result likely has a two-fold explana-
tion. First, the Android APIs have been object
of a very fast evolution13 leading to 18 major
releases over just four years. It is very unlikely
that also third-party APIs have evolved so fast.
This is also confirmed by the average frequency
of commits per month observed in Study I for
the Android APIs (164 commits per month) as
compared to the third-party APIs (14 commits
per month). Thus, developers have more likely

13. https://developer.android.com/reference/android/os/
Build.VERSION CODES.html verified on January 2014.

17

100

0

10

20

30

40

50

60

70

80

90

Reasons Causing Bugs

Pe
rc

en
ta

ge
 o

f
D

ev
el

op
er

s
se

le
ct

in
g

th
e

R
ea

so
n

Java Programming

Fault-proneness of

Errors

third-party APIs

Change-proneness of
third-party APIs

Fault-proneness of
Android APIs

Android APIs
Change-proneness of

84

71

44

56

49

Fig. 9: Percentage of developers indicating each of
the considered “perceived causes” among those most
frequently causing bugs/crashes in the apps.

experienced bugs introduced by major changes
in the Android APIs than by changes in the used
third-party libraries. Second, Android API reuse
by inheritance is widely implemented by devel-
opers [22], [23], and Android apps are highly
dependent on the official Android APIs [24].
Almost 50% of classes in Android apps inherit
from a base class as shown in a recent study by
Mojica Ruiz et al. [22]. This, again, makes more
likely for developers to experience bugs due to
changes in the official APIs than in third-party
APIs.

Among the 45 developers answering our question-
naire, 33 (73%) said they have experienced problems
with the used APIs (question 16 in Table 9). Of these
33, 21 indicated Android APIs as the cause of the
problems, and 12 indicated third-party APIs. Again,
this is likely because most of the APIs used in the
apps belong to the Android SDK, and only few of
them are third-party ones14. Also, 64% of developers
(29) declared to have observed new bugs in their apps
introduced as a consequence of new releases of the
Android platform (question 18 in Table 9).

Three developers indicated the third-party library
moPub15 as the one they experienced problems with,
and one of them also explained the problem. moPub is
an open-source advertisements (ads) serving platform
designed to help developers to monetize the success
of their apps by effectively placing advertisements.
Note that moPub does not broker advertisers for an

14. Note that in our first study, we found just 21% of the
considered apps to use at least one open source third-party API.

15. http://www.mopub.com/ verified on January 2014.

app; rather, for this task, it relies on an ads network.
Hence, moPub can be integrated with any available
advertisement network, like the one used by the
developer, i.e., MillennialMedia16. The integration be-
tween moPub and MillennialMedia created issues to
one of the developers involved in our survey:

moPub APIs in some versions caused crashes
when integrating MillennialMedia as ad network

One developer indicated the google-api-translate-java
APIs17 as cause of problems in her apps. In particular,
while this problem is somewhat related to a third-
party API (google-api-translate-java is not part of the
Android platform), it is manifested just with the
release of the Android platform 4.0. The developer
pointed us to the google-api-translate-java issue tracker
describing the problem18 and wrote:

my app makes a massive use of the google-api-
translate-java APIs and everything worked just
fine until the release of Android Ice Cream Sand-
wich (i.e., the release 4.0 of Android). Then, my
app started crashing when invoking the google-
api-translate-java APIs. The problem was solved
by modifying the request to the APIs from a GET
to a POST request.

Other developers indicated some other APIs as the
source of their problems (e.g., RoboGuice, Wa, etc.)
without, however, providing a description of the ex-
perienced issues.

Summarizing, the quantitative and qualitative re-
sults of our RQ3 highlight that:

1) Developers felt the presence of
bugs/unexpected behavior as the main cause
of users’ bad ratings/comments. Among the
factors we investigate, this is the one that has the
most direct and straight-forward relationship
with the use of problematic APIs.

2) A high percentage of developers (up to 71%)
consider the change- and fault- proneness of
APIs as threats to the proper working of their
apps.

3) 73% of developers experienced problems with
the APIs used in their apps. Also, 64% declared
to have observed new bugs in their apps in-
troduced as a consequence of new releases of
the Android platform. These findings have been
partially confirmed by the examples described
by the developers answering our survey.

3.2.2 To what extent Android developers consider
problematic APIs to be the cause of negative user
rating/comments?
Of the 45 surveyed developers, 28 (62%) declared
to have observed a relationship between problems

16. http://mmedia.com/ verified on January 2014.
17. https://code.google.com/p/google-api-translate-java/ veri-

fied on January 2014.
18. https://code.google.com/p/google-api-translate-java/

issues/detail?id=165 verified on January 2014.

Reasons causing bugs

%
De

ve
lo

pe
rs

 se
le

ct
in

g t
he

 re
as

on

44% and 71% consider change-
and fault- proneness of APIs as
threats to the proper working of

their apps

“the removal of the menu button resulted in bad user
experiences with my apps and, consequently, in bad
user ratings/comments”

“for few days I received bad user comments due to
crashes in my app. However, the moPub team
rapidly fixed the problem”

Android Honeycomb (3.0)

MoPub library

“my app worked fine until Android 3.2 (API level 13).
Then, the app started to crash on screen rotation. This was
due to a change in the Android APIs requiring, besides the
management of the orientation value (as needed until API
level 12), also the management of the screenSize value
when a screen rotation event arises. Unfortunately, given to
commitments on other projects it took some days to fix the
problem and this resulted in several low ratings for my
apps”

Android Honeycomb (3.2)

Conclusion

API change and fault proneness represent a
threat to the success of Android AppsNot all APIs are the same...

Long-term Goals

Create recommendation systems aimed at
suggesting the developers which APIs to use

given specific needs

Create recommendation systems aimed at
warning developers about breaking/buggy

changes in the APIs

Thanks
Denys Poshyvanyk
denys@cs.wm.edu
!

http://www.cs.wm.edu/~denys/

mailto:denys@cs.wm.edu
http://www.cs.wm.edu/~denys/

