Mining Release Cycles in the Android App Store

Maleknaz Nayebi & Guenther Ruhe

All rights reserve for SEDS lab ©

Table of Content

- The Process
- Methodology
- Dataset
- Confirmative analysis
- Pattern recognition
- Rough set analysis
- Rule extraction
- Summary
- Future Work

Topics Studied in This Area

releasDate

What We Are Looking Into?

What We Are Looking Into?

nggen Nariano Nariano

eleaseDate

Sequence

Attractiveness NumofReviews NumeofInstalls

The Process

- Crawling data from Android app store and third party websites
- Data pre-processing
- Scoping (what to analyze?)
- Modeling (Dependent/Independent variables and intervals)
- Analysis
- Interpretation

Methodology

- Descriptive statistics > Understanding
- Inference statistics >> Validating hypotheses
- Pattern recognition \longrightarrow Detecting patterns on sequences of release cycles
- Rough Set Analysis (RSA)
 Synthesis &
 explanation of results

Total number of apps' gathered data: 9703

No pattern could be detected as the sequence is unavailable

This portion of data is not usable in variance analysis

■ Incomplete Data One release only Two releases

🖬 The rest

The app is in the market but the release dates are unavailable

We analyzed 6013 apps in total!

Confirmative Analysis

Number of Releases & Rate

H_o: There is no relation between number of releases and rate

✓ Using ANOVA test

Number of Releases & Rate

Number of Releases & Rate

	Sum of Squares	df	Mean Square	F F	Sig.	
Between Groups	25878.372	3	8626.124	65.474	.000	
Within Groups	790224.923	5998	131.748	Null Hunothosis is rejects		
Total	816103.295	6001	,	Null Hypothesis is rejected:		

Number of Releases & Installs

H_o: There is no relation between number of releases and number of installs

✓ Using ANOVA test

Number of Releases & Installs

Number of Releases & Installs

Release Pattern Extraction

- Using K-means algorithm where *k= 3*
- Classification of release cycle time:
 - **X:** [1 82]
 - **Y:** [83 311]
 - **Z:** [312 1365]

"X", "Y" and "Z" Grammar

The language of the grammar is then the infinite set:

$\{(X^{n}Y^{m}Z^{l})^{P} | n,m,l,p \ge 0\}$

Where Xⁿ is cycle type X repeated n times.

"X" OR "Y" OR "Z" Patterns

"Z" and "X" Patterns Hierarchy

"Y" and "Z" Patterns Hierarchy

"Y" and "X" Patterns Hierarchy

"Y", "X" and "Z" Patterns Hierarchy

X*, Z* and Rate

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	2.988	1	2.988	8.618	.003
Within Groups	229.904	663	.347		
Total	232.893	664			

X*, Z* and Rate

X*, Z* and Number of Installs

	Sum of Squares	df	Mean Square	F	Sig.	
Between Groups	81.014	1	81.014	12.019	.001	_
Within Groups	4468.980	663	6.741			
Total	4549.994	664				

"Y" and "Z" Patterns Hierarchy

"Y" and "X" Patterns Hierarchy

Integrated and Merged Trees

Integrated and Merged Trees

Independent

Cumulative (

Mean of Rate between Patterns

Synthesis & Explanation of Results Rough set analysis

Rough Set Analysis (RSA)

- Rough set theory created by Pawlak (1991)
- Intended to approach inherent uncertainty
- Creates non-deterministic explanation rules
- RSA is applicable also for nominal or ordinal data

It is the mark of an educated man to look for precision in each class of things just so far as the nature of the subject admits.

Aristotle. 325 BC

Rough Set Analysis (RSA)

A rough set is a set of objects which, in general, cannot be precisely characterized in terms of the values of the set of attributes while a pair of a lower and an upper approximation of the collection can do.

The rough set methodology is based on the premise that **lowering the degree of precision in the data** makes the data pattern more visible.

Objects in Condition Attribute Space

Indiscernible Sets

Attributes in RSA

• Core

Cannot be removed from consideration without deteriorating the quality of approximation

Core Attributes in RSA

- Pattern
- Frequency of short, medium and long releases
- Cost
- Number of installs
- Number of reviewers
- Release cycle mean
- Release cycle variance

Release Date Sample Rules by RSA

Release Date Sample Rules by RSA

Release Date Sample Rules by RSA

Release cycle 1 Rate Download Pattern Release

Summary

All rights reserve for SEDS lab ©

Future Work

- Cross-validation of classification rules
- Study of release cycle time patterns PLUS release type patterns
- Varying classification parameters (interval length for "Small" releases)
- Extend analysis to further attributes
- RSA \rightarrow Dominance-based RSA

