
Unicorns and
Mobile Software
Design Analytics

Michele Lanza

REVEAL | Faculty of Informatics
University of Lugano, Switzerland

Absurdistan

Bankistan

R AE E LV

(Mobile) Software Analytics enables
software practitioners to explore and analyze

data to obtain insightful and actionable
information for data-driven tasks around

(mobile) software applications.

Mobile
Software Analytics

Huge Marketplace

Huge Marketplace

Technologically Interesting

Huge Marketplace

Technologically Interesting

Novel

Goal

Study Mobile
Applications
from a Software
Design Point of
View

References
‣ Roberto Minelli; Software Analytics for Mobile

Applications, MSc Thesis, University of Lugano
2012

‣ Roberto Minelli, Michele Lanza; Software
Analytics for Mobile Applications - Insights &
Lessons Learned. In Proceedings of CSMR 2013
(17th IEEE European Conference on Software
Maintenance and Reengineering), pp. 144-153,
IEEE CS Press, 2013

‣ Roberto Minelli, Michele Lanza; SAMOA - A
Visual Software Analytics Platform for Mobile
Applications. In Proceedings of ICSM 2013 (29th
IEEE International Conference on Software
Maintenance), pp. 476-479, IEEE CS Press, 2013

Software Analytics for Mobile Applications

Master’s Thesis submitted to the

Faculty of Informatics of the Università
della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Master of Science in Informatics

Software Design

presented by

Roberto Minelli

under the supervision of

Prof. Dr. Michele Lanza

co-supervised by

Dr. Marco D’Ambros

June 2012

Software Analytics for Mobile Applications – Insights & Lessons Learned

Roberto Minelli and Michele Lanza

REVEAL @ Faculty of Informatics — University of Lugano, Switzerland

A

b

s

t

r

a

c

t—Mobile applications, known as
a

p

p

s, are software

systems running on handheld devices, such as smartphones and

tablet PCs. The market of apps has rapidly expanded in the

past few years into a multi-billion dollar business. Being a new

phenomenon, it is unclear whether approaches to maintain and

comprehend traditional software systems can be ported to the

context of apps.We present a novel approach to comprehend apps from a

structural and historical perspective, leveraging three factors

for the analysis: source code, usage of third-party APIs, and

historical data. We implemented our approach in a web-based

software analytics platform named SAMOA.

We detail our approach and the supporting tool, and present

a number of findings obtained while investigating a corpus

of mobile applications. Our findings reveal that apps di↵er

significantly from traditional software systems in a number of

ways, which calls for the development of novel approaches to

maintain and comprehend them.

K

e

y

w

o

r

d

s-mobile applications; software evolution, mainte-

nance, analytics; mining software repositories;I. I
n

t

r

o

d

u

c

t

i

o

n

Mobile applications, also known as apps, are software

systems aimed at smartphones, tablet PCs, and other handheld

devices. Apps are implemented in programming languages

usually dictated by the platform: Java for Android, Objective-

C for iOS, C# for Windows phone, etc. Each vendor provides

its own distribution channel (e.g., Google Play for Android

apps, App Store for iOS apps). The apps marketplace is vast:

The Apple and Android stores, for example, o↵er around one

million apps for download. Islam et al. [1] a�rm that the

development of apps is having significant impact both from

an economical and from a social perspective. They reported

that the apps business generated a revenue of ca. $4.5 billion

USD in 2009. Markets & Markets predict that the global

apps business will be worth $25 billion USD in 2015 [2].

As the popularity of apps increases, maintaining them will

become critical.Like traditional software systems, apps evolve over time

and require maintenance activities. Classical approaches to

software maintenance and program comprehension [3], [4],

[5], [6], [7], [8] were developed when apps did not exist, and

it is unclear if those approaches can be ported to apps. Apps

are distributed through app stores that do not provide source

code, as mentioned by Harman et al. [9]. To overcome this

problem, we settled on a public catalogue of FOSS (free and

open source) apps for the Android platform, named F-Droid1.

1See http://f-droid.org/

We present an in-depth investigation of a large corpus of

apps from a structural and historical perspective. Our analysis

focuses on three factors: (1) source code, (2) usage of third-

party Application Programming Interfaces (APIs), and (3)

historical data. We want to answer questions such as: How

does an app di↵er from a traditional system in terms of size

and complexity? Do apps make intensive use of third-party

APIs? Does the source code of apps contain the usual code

smells [10] or are there smells specific to apps? To support

our analysis, we developed a software analytics platform for

apps: S
a

m

o

a [11]. S
a

m

o

a mines software repositories of apps

and uses visualizations to present the data. We present a

number of findings obtained while investigating the F-Droid

corpus. For example, we noticed that the use of inheritance is

essentially absent in apps, that apps heavily rely on external

APIs, and that most apps are short-lived single developer

projects. In this article2 we make the following contributions:

• An in-depth analysis of apps from a structural and

historical perspective.
• A presentation of S

a

m

o

a, a web-based software analytics

tool for apps.• A collection of insights pertaining to the maintenance

and comprehension of apps.

Structure of the Paper: In Section II we review related

work. In Section III we detail our approach and S
a

m

o

a, our

supporting tool. In Section IV we present our findings. In

Section V we summarize our work and outline future work.

II. R
e

l

a

t

e

dW
o

r

k

Due to the recency of apps, there is little directly related

work, and its nature is quite heterogeneous.

Ruiz et al. explored software design aspects of apps,

focusing on reuse by inheritance and class reuse [12].

They divided apps in categories (i.e., Cards & Casino,

Personalization, Photography, Social and Weather), and found

that 61% of all classes in each category appear in two or

more apps. Hundreds of apps were completely reused by

another app in the same category. Harman et al. introduced

App Store Mining [9], and focused on aspects pertaining to

factors of success of apps with respect to their distribution

channels. We want to study the source code of apps, rather

than their channels of distributions, to understand if and how

they di↵er from traditional software systems, and which are

the possible implications for the maintenance of apps.

2For understandability we advise reading a color version of this paper.

Sam
o

a

—
A Visual Softw

are Analytics Platform

for Mobile
Applications

Roberto
Minelli and Michele Lanza

REVEAL @
Faculty

of Informatics —
Universit

y of Lugano, Switze
rla

nd

Abstra
ct—

M

o

b

i

l

e

a

p

p

l

i

c

a

t

i

o

n

s

,

a

l

s

o

k

n

o

w

n

a

s

apps, a

r

e

d

e

d

-

i

c

a

t

e

d

s

o

f

t

w

a

r

e

s

y

s

t

e

m

s

t

h

a

t

r

u

n

o

n

h

a

n

d

h

e

l

d

d

e

v

i

c

e

s

,

s

u

c

h

a

s

s

m

a

r

t

p

h

o

n

e

s

a

n

d

t

a

b

l

e

t

c

o

m

p

u

t

e

r

s

.

T

h

e

a

p

p

s

b

u

s

i

n

e

s

s

h

a

s

i

n

a

f

e

w

y

e

a

r

s

t

u

r

n

e

d

i

n

t

o

a

m

u

l

t

i

-

b

i

l

l

i

o

n

d

o

l

l

a

r

m

a

r

k

e

t

.

F

r

o

m

a

s

o

f

t

-

w

a

r

e

e

n

g

i

n

e

e

r

i

n

g

p

e

r

s

p

e

c

t

i

v

e

a

p

p

s

r

e

p

r

e

s

e

n

t

a

n

e

w

p

h

e

n

o

m

e

n

o

n

,

a

n

d

t

h

e

r

e

i

s

a

n

e

e

d

f

o

r

t

o

o

l

s

a

n

d

t

e

c

h

n

i

q

u

e

s

t

o

a

n

a

l

y

z

e

a

p

p

s

.

W

e

p

r

e

s

e

n

t

S

a

m

o

a

,

a

v

i

s

u

a

l

w

e

b

-

b

a

s

e

d

s

o

f

t

w

a

r

e

a

n

a

l

y

t

i

c

s

p

l

a

t

f

o

r

m

f

o

r

m

o

b

i

l

e

a

p

p

l

i

c

a

t

i

o

n

s

.

I

t

m

i

n

e

s

s

o

f

t

w

a

r

e

r

e

p

o

s

i

t

o

r

i

e

s

o

f

a

p

p

s

a

n

d

u

s

e

s

a

s

e

t

o

f

v

i

s

u

a

l

i

z

a

t

i

o

n

t

e

c

h

n

i

q

u

e

s

t

o

p

r

e

s

e

n

t

t

h

e

m

i

n

e

d

d

a

t

a

.

W

e

d

e

s

c

r

i

b

e

S

a

m

o

a

,

d

e

t

a

i

l

t

h

e

a

n

a

l

y

s

e

s

i

t

s

u

p

p

o

r

t

s

,

a

n

d

d

e

s

c

r

i

b

e

a

m

e

t

h

o

d

o

l

o

g

y

t

o

u

n

d

e

r

s

t

a

n

d

a

p

p

s

f

r

o

m

a

s

t

r

u

c

t

u

r

a

l

a

n

d

h

i

s

t

o

r

i

c

a

l

p

e

r

s

p

e

c

t

i

v

e

.

T

h

e

w

e

b

s

i

t

e

o

f

S

a

m

o

a

,

c

o

n

t

a

i

n

i

n

g

t

h

e

s

c

r

e

e

n

c

a

s

t

o

f

t

h

e

t

o

o

l

d

e

m

o

,

i

s

l

o

c

a

t

e

d

a

t

h

t

t

p

:

/

/

s

a

m

o

a

.

i

n

f

.

u

s

i

.

c

h

/

a

b

o

u

t

I. Int
r

o

d

u

c

t

i

o

n

Mobile
applications, or apps, are custom softw

are systems

running on handheld devices, i.e.
, smartphones and tablet PCs.

The world
of apps is varieg

ated: Each vendor imposes a number

of constra
ints (e.g

., the programming language and development

environment to be used), provides specific design guidelines,

and o↵e
rs its

own distr
ibution channel (e.g

., Android’s Google

Play, Apple’s App Store). The market of apps is remarkable:

Apps generated a rev
enue of $4.5 billio

n USD in 2009 [1],

and the business is expected to be worth
$25 billio

n USD [2]

a few
years from now.

The Apple and Google stores provide ca. one millio
n apps for

download. With
their increasing popularity

, apps are becoming

an important softw
are

engineering domain. Apps represent

a new
phenomenon but, as any softw

are
system, they

will

inevitably
face evolution, maintenance, and comprehension

problems. It is unclear whether existi
ng approaches for program

comprehension and maintenance [3], [4], [5] can be ported to

apps, since they
were devised before apps existe

d.

We devised a novel approach to
analyze apps [6] and

implemented Sam
o

a

, a web-based softw
are analytics platform

for apps1 . Sam
o

a

mines softw
are reposito

ries of apps and uses a

set of visualization techniques to present the mined data. Sam
o

a

o↵e
rs a catalogue of custom view

s to understa
nd the stru

cture

and evolution of apps. Both analysts
and developers interested

in comprehending apps can benefit from these visualizations.

We used Sam
o

a

to investig
ate part of the F-Droid reposito

ry
2 .

We discovered, for example, that inherita
nce is esse

ntially

unused in apps, that apps heavily
rely on 3r

d -party
APIs,

and

that most apps are short-l
ived single developer projects.

1 See h
t

t

p

:

/

/

s

a

m

o

a

.

i

n

f

.

u

s

i

.

c

h

2 See h
t

t

p

:

/

/

f

-

d

r

o

i

d

.

o

r

g

R

e

l

a

t

e

d

w

o

r

k

.

Since the first
apps were

developed only
a

few
years ago, there is littl

e directly
related work. Ruiz et al.

focused on softw
are design aspects of apps, namely on reuse by

inherita
nce and class reuse [7]. They

divided apps in categories

(e.g
., casino, perso

nalization, photography), and found that

more than 60% of all classe
s in each category appear in more

than two other apps. Hundreds of apps were entire
ly reused

by other apps in the same categ
ory.

Harman et al. introduced

“App Store Mining” [8], a novel form
of softw

are reposito
ry

mining. They
mined the Blackberry

app store and studied a

number of correlations between di↵e
rent features of apps.

Di↵e
rently

from
Harman et al. we want to

focus on the

source code of apps, rather than on app stores. Our goal is

to
understa

nd the di↵e
rences between apps and traditio

nal

softw
are

systems, and the implications for the maintenance

and comprehension of apps. The novelty
of apps explains the

small amount of related work, but also
calls

for novel tools

and techniques to analyze apps.

We present Sam
o

a

, our visual web-based softw
are analytics

platform
for mobile

applications. Sam
o

a

leverages three factors

for the analysis:
source code, usage of 3r

d -party
libraries, and

histo
rical data. Sam

o

a

presents the data to the user by means

of a catalogue of interactive visualizations. The view
s are

enriched with
traditio

nal softw
are metric

s complemented by

domain-sp
ecific ones. Sam

o

a

provides a custom snapshot view

to depict a specific rev
isio

n of one app, a evolution view
to

present histo
rical aspects of one app, and ecosystem view

s to

depict sev
eral apps at once.

II.
Sam
o

a

: A Vis
u

a

l

Sof
t

w

a

r

e

Ana
l

y

t

i

c

s

Pla
t

f

o

r

m

f

o

r

App
s

Figure 1 depicts the main user interface of Sam
o

a

presenting

a snapshot view
of the Alo

g

c

a

t

application. The UI is composed

of five parts:
a (1) Selection panel that allows the user to pick

the app to be analyzed, and to switch between the di↵e
rent

visualizations Sam
o

a

provides;
a (2) Metric

s panel which

summarizes a set of metric
s in

sync with
the visualization,

being a specific rev
isio

n of an app (i.e
., snapshot) or global

measurements about the apps ecosystem; a (3) Revisio
n info

panel that displays information about a specific rev
isio

n of an

app; an (4) Entity
panel displaying additio

nal details
about the

entity
in focus; and the (5) Main

view
, the remaining surface

dedicated to the interactive view
s.

Figure
1 illu

stra
tes also

how we enhance the view
using

colors and metric
s.

I
Source Code Design &
Implementation

II
Evolution

III
Use of 3rd Party Libraries

SAMOA

Software Analytics for MObile Applications

FRONT-ENDBACK-END

SVNSVNSVNSVN

Data acquisition

Java SVN
crawler

Source code model extraction

MSE generatorAST generator

MSE parserAST parser

Metrics extraction

AST-based
metrics

MSE-based
metrics

JSON
Files

SAMOA

d3.jsJSON retrieval

HTML/CSSJavaScript/
jQuery/PHP

Internet

Name Rating Installs Start rev. End rev. LOC
Alogcat 4.6 >100k 2 48 876
Andless 4.2 >100k 2 93 2372

Android VNC 4.3 >1m 2 203 4949
Anstop N/A N/A 2 61 1142

AppSoundmanager 4.5 >50k 1 157 1605
AppsOrganizer 4.6 >1m 3 191 8321

CSIPSimple 4.4 >100k 2 1'415 20777
Diskusage 4.7 >50k 2 69 4749
Mythdroid N/A N/A 76 640 6114
Mythmote 4.6 >10k 2 281 1593

Open GPS Tracker 4.2 >100k 2 1'255 9754
Opensudoku 4.6 >1m 15 415 3813
Replicaisland 4.2 >1m 2 7 14192

Ringdroid 4.6 >10m 2 66 3516
Search Light 4.7 >100k 2 4 272

Share My Position 4.6 >10k 2 76 468
SIPDroid 4 >500k 50 620 14019

Solitaire for Android 4.3 >10m 2 30 3343
Zirco Browser 3.8 >10k 65 457 6429

Zxing 4.3 >50m 569 2'257 3407

Number of Internal Calls

Number of External Calls

Slices represent invocations to

third-party APIs

b

a
Call ring colors

Android calls
Java calls
Javax calls
Apache calls
Not classified calls
All other calls

Core colors
Activity
Main Activity

Service
Phantom element

Default Main Activity

Delta with largest
snapshot in history

b

a
Call ring colors

Android calls
Java calls
Javax calls
Apache calls
Not classified calls
All other calls

Core colors
Activity
Main Activity

Service
Phantom element

Default Main Activity

Part I
Snapshot based

Part II
History based

‣ Snap increase of core elements
‣ Snap decrease of core elements

‣ Stepwise increase of core elements
‣ Stepwise growth in history

‣ Out-of-sync manifest file

‣ High correlation between LOC
and third-party calls

‣ Gradual increase of core elements
‣ Flat intervals in history
‣ Delayed use of versioning systems
‣ Core drop

‣ Multiple main activities
‣ Low core ratio
‣ High core ratio
‣ God-core classes
‣ Dominance of internal calls
‣ Dominance of external calls

“Findings”
‣ There were no substantial findings

‣ Design principles are essentially absent: Everything is hacked
together

‣ Even basic guidelines are being ignored

‣ Code Quality is not a concern

‣ Warning: Our dataset was not small, but by no means large
(enough)

Conclusions?

Conclusions

M I S S I O N

A B O R T E D

Reflections
‣ Time-to-market is paramount for apps, who cares about the code,

as long as it does what it’s supposed to do

‣ Most apps have such a small core domain model that there’s not
really much to “design”

‣ The extensive usage of APIs creates some interesting problems,
also regarding intellectual property

‣ In a way the dream of component-based software engineering is
being realized here, but it’s not a dream, it’s a nightmare

Reflections Too
‣ As long as “apps” run on mobile phones I doubt they will become

much more complex: Too many UX concerns

‣ Things might change radically when tablets start departing from
phones in terms of apps

‣ Our work is 3 years old

‣ Maybe things changed, but I am not interested

‣ Maybe we looked in the wrong place, at the wrong things

Fin

