ASK THE MUTANTS

MUTATING FAULTY PROGRAMS FOR FAULT LOCALISATION

Shin Yoo, University College London
Seokhyun Mun, KAIST
Yunho Kim, KAIST
Moonzoo Kim, KAIST
• MUSE: Mutation-based Fault Localisation Engine
• Locality Information Loss: a new evaluation metric
• Ongoing work (post ICST 2014)
OUR CLAIM

On the 10KLOC SIR benchmark programs

Ranking of faulty stmt among all executed stmts (%)

- **Tarantula** [ICSE 2002]: 25%
- **Ochiai** [PRDC 06]: 9%
- **Wong** [JSS 10]: 1%
- **Op2** [TOSEM 11]: 1%

MUSE (MUtation baSEd FL): 2002 - 2014
MOTIVATION

- We have hit the ceiling of Spectrum-based Fault Localisation
- Not accurate enough, effectiveness varies significantly depending on test suites, inherently limited by block-level granularity
- Can we use mutation testing in a pre-emptive manner?
WHAT HAPPENS WHEN YOU MUTATE ALREADY FAULTY PROGRAMS?
CASE 1: MUTATING CORRECT STATEMENTS

Equivalent

P F

New Fault

P- F+

Mask

P+ F-
CASE 2: MUTATING FAULTY STATEMENT

(Partial) Fix

P+ F-

(New) Fault

P? F?

Equivalent

P F

Mask

P+ F-
HYPOTHESES

• An arbitrary mutation operator applied to a correct statement is likely to introduce a new fault

• An arbitrary mutation operator applied to a faulty statement is either likely to keep the program still faulty or, even better, (partially) fix the program

• The majority of statements in a faulty statement is correct; we detect the faulty one by observing the anomaly from our hypotheses
MUSE

\[\mu(s) = \frac{1}{|\text{mut}(s)|} \sum_{m \in \text{mut}(s)} \left(\frac{|f_P(s) \cap p_m|}{|f_P|} \right) \left(\frac{|p_P(s) \cap f_m|}{|p_P|} \right) - \alpha \cdot \frac{|p_P(s) \cap f_m|}{|p_P|} \]

Proportion of test cases
that mutant \(m \) turns
from fail to pass

Proportion of test cases
that mutant \(m \) turns
from pass to fail

Average over all
mutation applied
to statement \(s \)

\[\alpha = \frac{f2p}{|\text{mut}(P)| \cdot |f_P|} \cdot \frac{|\text{mut}(P)| \cdot |p_P|}{p2f} \]
EMPIRICAL EVALUATION

<table>
<thead>
<tr>
<th>Subject Program</th>
<th>% of executed stmts examined</th>
<th>Rank of a faulty stmt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jaccard</td>
<td>Ochiai</td>
</tr>
<tr>
<td>flex v1</td>
<td>49.48</td>
<td>45.04</td>
</tr>
<tr>
<td>flex v7</td>
<td>3.60</td>
<td>3.60</td>
</tr>
<tr>
<td>flex v11</td>
<td>19.76</td>
<td>19.54</td>
</tr>
<tr>
<td>grep v3</td>
<td>1.06</td>
<td>1.01</td>
</tr>
<tr>
<td>grep v11</td>
<td>3.44</td>
<td>3.44</td>
</tr>
<tr>
<td>gzip v2</td>
<td>2.14</td>
<td>2.14</td>
</tr>
<tr>
<td>gzip v5</td>
<td>1.83</td>
<td>1.83</td>
</tr>
<tr>
<td>gzip v13</td>
<td>1.03</td>
<td>1.03</td>
</tr>
<tr>
<td>sed v1</td>
<td>0.54</td>
<td>0.54</td>
</tr>
<tr>
<td>sed v3</td>
<td>2.56</td>
<td>2.56</td>
</tr>
<tr>
<td>sed v5</td>
<td>37.84</td>
<td>37.84</td>
</tr>
<tr>
<td>space v19</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>space v21</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>space v28</td>
<td>11.57</td>
<td>10.66</td>
</tr>
<tr>
<td>Average</td>
<td>9.67</td>
<td>9.27</td>
</tr>
</tbody>
</table>

Notes:
- The values in the table represent the performance metrics of the four methods: Jaccard, Ochiai, Op2, and MUSE.
- **% of executed stmts examined** indicates the proportion of executed statements required to be examined before localizing the fault.
- **Rank of a faulty stmt** indicates the rank of the faulty statement among the total number of statements.
- **Correct Faulty (B)/(A)**: Precision.
- **Correct Faulty (C)/(D)**: Recall.

We believe MUSE is precise enough that its results can be interpreted as a good candidate for a new SBFL technique. The LIL metric values of MUSE are the smallest among the four methods, indicating that MUSE can localize a fault with more precision than the other methods. In addition, MUSE produces the most precise results for 11 out of the 14 studied faulty programs, which is a significant improvement over the state-of-the-art SBFL techniques. This provides quantitative evidence that MUSE is a promising technique for fault localization.
MOTIVATION

- Traditional evaluation metric for fault localisation is ranking based

- Measures something else than accuracy (and, even then, humans do not operate in linear ranking)

- Irrelevant for Automated Patching: Qi et al. show that rank-wise suboptimal formula helps GenProg better (ISSTA 2013)
LIL (LOCALITY INFORMATION LOSS)

- Any suspiciousness score distribution can be interpreted as a probability distribution.
- Describe the actual location of the fault as THE probability distribution.
- Calculate Kullbeck-Leibler divergence (distance between two probability distributions).
LIL

\[\mathcal{L}(s_i) = \begin{cases}
1 & (s_i = s_f) \\
\epsilon & (0 < \epsilon \ll 1, s_i \in S, s_i \neq s_f)
\end{cases} \]

\[P_\tau(s_i) = \frac{\tau(s_i)}{\sum_{i=1}^{n} \tau(s_i)}, \ (1 \leq i \leq n) \]

\[D_{KL}(P_\mathcal{L} \parallel P_\tau) = \sum_i \ln \left(\frac{P_\mathcal{L}(s_i)}{P_\tau(s_i)} \right) P_\mathcal{L}(s_i) \]
..WORTH A THOUSAND WORDS

Op2 (LIL=7.34)

Jaccard (LIL=4.92)

Ochiai (LIL=5.96)

MUSE (LIL=0.40)
ONGOING WORK

• With actual progress
 • Mutant Sampling
 • Hybridisation
• More adventurous
 • Multiple Faults
 • Pre-emptive localisation
• Learning mutation
• Genetic Programming for MUSE
Isn’t mutating every statement really expensive?

After random sampling, still more accurate than Op2
MUSE + SBFL(JACCARD)

- Evaluated 10 randomly chosen real PHP bugs from ICSE 2012 GenProg Paper
- In some cases, brings MUSE closer to Op2
- In other cases, pure version still wins

<table>
<thead>
<tr>
<th>Faulty version #</th>
<th>MUSE</th>
<th>MUSE + jacc (Current Hybrid Muse)</th>
<th>Op2</th>
<th>Target line #</th>
<th># failed</th>
<th># passed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>160</td>
<td>1957</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>13</td>
<td>53</td>
<td>112</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>42</td>
<td>14</td>
<td>14</td>
<td>143</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>177</td>
<td>8</td>
<td>8</td>
<td>362</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>371</td>
<td>140</td>
<td>140</td>
<td>553</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>4</td>
<td>170</td>
<td>191</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>18</td>
<td>64</td>
<td>119</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>9</td>
<td>164</td>
<td>222</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>49</td>
<td>45</td>
<td>45</td>
<td>49</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>24</td>
<td>362</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Average</td>
<td>66</td>
<td>25.3</td>
<td>84.2</td>
<td>407.00</td>
<td>1.20</td>
<td>100.00</td>
</tr>
</tbody>
</table>
MULTIPLE FAULTS CONJECTURE

- For independent faults that result in disjoint failures, MUSE is not affected at all.
- For faults that interact with each other, test suite design/composition will play a key role.
PRE-EMPTIVE LOCALISATION

• Mutation analysis is still expensive, especially as a step for debugging which is often urgent

• Can we do the mutation analysis in advance, even with the previous version?
 • For each mutant, record the failure pattern across test cases
 • When a real failure is observed, track back to the point of mutation
GP FOR MUSE

• GP worked for SBFL; does it work for MUSE?
• More variables, which means a larger search space
What happens when you mutate already faulty programs?

Our claim:
- **Tarantula** ([ICSE 2002]
- **Ochiai** ([PRDC 06]
- **Wong** ([IS 10]
- **Op2** ([TOSEM 11]
- **MUSE** (MUtation baSED FL)

On the 10KLOC SIR benchmark programs

Isn’t mutating every statement really expensive?

Jaccard (LIL=4.92)

Executed Statements

Faulty Statement

Suspiciousness

After random sampling, still more accurate than Op2