ASK THE MUTANTS MUTATING FAULTY PROGRAMS FOR FAULT LOCALISATION

Shin Yoo, University College London Seokhyun Mun, KAIST Yunho Kim, KAIST Moonzoo Kim, KAIST

OUTLINE

- MUSE: Mutation-based Fault Localisation Engine
- Locality Information Loss: a new evaluation metric
- Ongoing work (post ICST 2014)

OUR CLAIM

MOTIVATION

- We have hit the ceiling of Spectrum-based Fault Localisation
 - Not accurate enough, effectiveness varies significantly depending on test suites, inherently limited by block-level granularity
- Can we use mutation testing in a pre-emptive manner?

WHAT HAPPENS WHEN YOU MUTATE ALREADY FAULTY PROGRAMS?

CASE 1: MUTATING CORRECT STATEMENTS

Equivalent

PF

CASE 2: MUTATING FAULTY STATEMENT

(Partial) Fix P? E?

(New) Fault

Equivalent

HYPOTHESES

- An arbitrary mutation operator applied to a correct statement is likely to introduce a new fault
- An arbitrary mutation operator applied to a faulty statement is either likely to keep the program still faulty or, even better, (partially) fix the program
- The majority of statements in a faulty statement is correct; we detect the faulty one by observing the anomaly from our hypotheses

MUSE

Proportion of test cases that mutant m turns from fail to pass

 $f_P(s) \cap p_m$

 $|f_P|$

 $\mu(s)$ mut(s) $m \in mut$

Average over all

mutation applied

Proportion of test cases that mutant m turns from pass to fail

 α

 $p_P(s) \cap f_m$

to statement s $\alpha = \frac{f2p}{|mut(P)| \cdot |f_P|} \cdot \frac{|mut(P)| \cdot |p_P|}{p2f}$

EMPIRICAL EVALUATION

Subject	% of e	xecuted s	tmts exa	mined	Rank of a faulty stmt			
Program	Jaccard	Ochiai	Op2	MUSE	Jaccard	Ochiai	Op2	MUSE
flex v1	49.48	45.04	32.01	0.04	1,371	1,248	887	1
flex v7	3.60	3.60	3.60	0.07	100	100	100	2
flex v11	19.76	19.54	13.51	0.04	547	541	374	1
grep v3	1.06	1.01	0.71	1.87	21	20	14	37
grep v11	3.44	3.44	3.44	1.60	58	58	58	27
gzip v2	2.14	2.14	2.14	0.07	31	31	31	1
gzip v5	1.83	1.83	1.83	0.07	26	26	26	1
gzip v13	1.03	1.03	1.03	0.07	15	15	15	1
sed vl	0.54	0.54	0.54	0.90	12	12	12	20
sed v3	2.56	2.56	2.56	0.13	57	57	57	3
sed v5	37.84	37.84	37.15	0.28	814	814	799	6
space v19	0.03	0.03	0.03	0.06	1	1	1	2
space v21	0.45	0.45	0.45	0.03	15	15	15	1
space v28	11.57	10.66	6.89	0.04	329	303	196	1
Average	9.67	9.27	7.56	0.38	242.64	231.50	184.64	7.43

MOTIVATION

- Traditional evaluation metric for fault localisation is ranking based
 - Measures something else than accuracy (and, even then, humans do not operate in linear ranking)
 - Irrelevant for Automated Patching: Qi et al. show that rank-wise suboptimal formula helps GenProg better (ISSTA 2013)

LIL(LOCALITY INFORMATION LOSS)

- Any suspiciousness score distribution can be interpreted as a probability distribution
- Describe the actual location of the fault as THE probability distribution
- Calculate Kullbeck-Leibler divergence (distance between two probability distributions)

LIL

$$\mathcal{L}(s_i) = \begin{cases} 1 & (s_i = s_f) \\ \epsilon & (0 < \epsilon \ll 1, s_i \in S, s_i \neq s_f) \end{cases}$$

$$P_{\tau}(s_i) = \frac{\tau(s_i)}{\sum_{i=1}^{n} \tau(s_i)}, (1 \le i \le n)$$

$$D_{KL}(P_{\mathcal{L}}||P_{\tau}) = \sum_{i} \ln \frac{P_{\mathcal{L}}(s_i)}{P_{\tau}(s_i)} P_{\mathcal{L}}(s_i)$$

...WORTH A THOUSAND WORDS

Op2 (LIL=7.34)

Ochiai (LIL=5.96)

ONGOING WORK

- With actual progress
 - Mutant Sampling
 - Hybridisation
- More adventurous
 - Multiple Faults
 - Pre-emptive localisation
 - Learning mutation
 - Genetic Programming for MUSE

ISN'T MUTATING EVERY STATEMENT REALLY EXPENSIVE?

After random sampling, still more accurate than Op2

MUSE + SBFL(JACCARD)

- Evaluated 10 randomly chosen real PHP bugs from ICSE 2012 GenProg Paper
 - In some cases, brings MUSE closer to Op2
 - In other cases, pure version still wins

Faulty version #	MUSE	MUSE +jacc (Current Hybrid Muse)	Op2	Target line #	# failed	# passed
	1 4	1	160	1957	1	100
	2 6	13	53	112	1	100
	3 42	14	14	143	2	100
4	177	8	8	362	1	100
Į,	5 371	140	140	553	1	100
(6 4	4	170	191	1	100
	7 5	18	64	119	1	100
8	3 1	9	164	222	1	100
	9 49	45	45	49	2	100
10	1	1	24	362	1	100
Average	66	25.3	84.2	407.00	1.20	100.00

MULTIPLE FAULTS CONJECTURE

- For independent faults that results in disjoint failures, MUSE is not affected at all
- For faults that interact with each other, test suite design/composition will play a key role

PRE-EMPTIVE LOCALISATION

- Mutation analysis is still expensive, especially as a step for debugging which is often urgent
- Can we do the mutation analysis in advance, even with the previous version?
 - For each mutant, record the failure pattern across test cases
 - When a real failure is observed, track back to the point of mutation

GP FOR MUSE

- GP worked for SBFL; does it work for MUSE?
- More variables, which means a larger search space

WHAT HAPPENS WHEN YOU MUTATE ALREADY FAULTY PROGRAMS?

PF

OUR CLAIM

...WORTH A THOUSAND WORDS

Op2 (LIL=7.34)

Ochiai (LIL=5.96)

Faulty Statement

ISN'T MUTATING EVERY STATEMENT REALLY EXPENSIVE?

After random sampling, still more accurate than Op2