
ASK THE MUTANTS
MUTATING FAULTY PROGRAMS FOR FAULT
LOCALISATION

Shin Yoo, University College London
Seokhyun Mun, KAIST

Yunho Kim, KAIST
Moonzoo Kim, KAIST

OUTLINE

• MUSE: Mutation-based Fault Localisation Engine

• Locality Information Loss: a new evaluation metric

• Ongoing work (post ICST 2014)

OUR CLAIM

Tarantula(
[ICSE(2002]

Ochiai(
[PRDC(06]((((Wong(

[JSS(10]

MUSE(
(MUtaAon(baSEd(FL)((

2014((((((Year

R
an

ki
ng
(o
f(f
au

lt
y(
st
m
t(
am

on
g(

al
l(e
xe
cu
te
d(
st
m
ts
((%

)

Op2(
[TOSEM(11]

25%

1%
2002(

9%

On#the#10KLOC#SIR#benchmark#programs

MOTIVATION

• We have hit the ceiling of Spectrum-based Fault
Localisation

• Not accurate enough, effectiveness varies
significantly depending on test suites, inherently
limited by block-level granularity

• Can we use mutation testing in a pre-emptive
manner?

WHAT HAPPENS WHEN YOU MUTATE
ALREADY FAULTY PROGRAMS?

P F

CASE 1: MUTATING CORRECT
STATEMENTS

P F
Equivalent P- F+

New Fault

P+F-
Mask

CASE 2: MUTATING FAULTY
STATEMENT

P+F-
(Partial) Fix

P?F?
(New) Fault

P+F-
Mask

P F
Equivalent

HYPOTHESES

• An arbitrary mutation operator applied to a correct
statement is likely to introduce a new fault

• An arbitrary mutation operator applied to a faulty
statement is either likely to keep the program still
faulty or, even better, (partially) fix the program

• The majority of statements in a faulty statement is
correct; we detect the faulty one by observing the
anomaly from our hypotheses

MUSE

µ(s) =
1

|mut(s)|
X

m2mut(s)

(
|fP (s) \ pm|

|fP |
� ↵ · |pP (s) \ fm|

|pP |
)

Proportion of test cases
that mutant m turns

from fail to pass

Proportion of test cases
that mutant m turns

from pass to fail
Average over all
mutation applied

to statement s

↵ =
f2p

|mut(P)| · |fP |
· |mut(P)| · |pP |

p2f

EMPIRICAL EVALUATION
Table IV: Precision of Jaccard, Ochiai, Op2, and MUtation-baSEd fault localization technique (MUSE)

Subject % of executed stmts examined Rank of a faulty stmt Locality Information Loss
Program Jaccard Ochiai Op2 MUSE Jaccard Ochiai Op2 MUSE Jaccard Ochiai Op2 MUSE

flex v1 49.48 45.04 32.01 0.04 1,371 1,248 887 1 8.33 7.89 7.68 1.28
flex v7 3.60 3.60 3.60 0.07 100 100 100 2 5.72 6.52 7.45 1.22
flex v11 19.76 19.54 13.51 0.04 547 541 374 1 7.39 7.49 7.40 1.59
grep v3 1.06 1.01 0.71 1.87 21 20 14 37 5.25 5.68 6.21 5.92
grep v11 3.44 3.44 3.44 1.60 58 58 58 27 5.43 6.20 5.46 7.19
gzip v2 2.14 2.14 2.14 0.07 31 31 31 1 5.18 4.62 6.24 1.66
gzip v5 1.83 1.83 1.83 0.07 26 26 26 1 4.45 4.73 5.27 1.88
gzip v13 1.03 1.03 1.03 0.07 15 15 15 1 3.12 3.65 5.71 0.70
sed v1 0.54 0.54 0.54 0.90 12 12 12 20 4.24 5.02 5.80 6.72
sed v3 2.56 2.56 2.56 0.13 57 57 57 3 6.14 5.92 6.40 2.66
sed v5 37.84 37.84 37.15 0.28 814 814 799 6 7.34 7.42 7.34 4.80
space v19 0.03 0.03 0.03 0.06 1 1 1 2 5.27 5.93 6.64 2.15
space v21 0.45 0.45 0.45 0.03 15 15 15 1 4.92 5.96 7.34 0.40
space v28 11.57 10.66 6.89 0.04 329 303 196 1 7.33 7.40 7.24 1.96

Average 9.67 9.27 7.56 0.38 242.64 231.50 184.64 7.43 5.72 6.03 6.58 2.87

Table III: The average numbers of the test cases whose results
change on the mutants

of Failing Tests that # of passing tests that
Subject Pass after Mutating: fail after mutating:
programs Correct Faulty (B)/(A) Correct Faulty (C)/(D) ↵

Stmts. Stmts. Stmts. Stmts.
(A) (B) (C) (D)

flex v1 0.0002 1.2727 6155.6 15.7270 8.8182 1.8 0.0009
flex v7 0.0002 0.6667 2721.1 16.3644 0.0000 N/A 0.0007
flex v11 0.0026 14.2857 5421.3 5.1064 3.5714 1.4 0.0013
grep v3 0.1299 0.4792 3.7 30.7825 8.0625 3.8 0.1490
grep v11 8.9740 85.8181 9.6 0.1942 0.0000 N/A 5.7939
gzip v2 0.0095 0.5625 59.1 113.3410 1.0000 113.3 0.0322
gzip v5 0.0611 15.1111 247.2 64.7306 0.1111 582.6 0.0227
gzip v13 0.0000 2.7000 N/A 109.2140 0.0000 N/A 0.0141
sed v1 0.0095 0.0000 0.0 189.3610 6.1111 31.0 0.0004
sed v3 0.0040 0.2500 63.0 238.7950 91.5000 2.6 0.0062
sed v5 0.3556 31.8333 89.5 12.6217 12.0690 1.0 0.0365
space v19 0.0105 4.6667 444.5 45.7808 13.1667 3.5 0.0057
space v21 0.0000 0.3333 N/A 65.6796 1.0000 65.7 0.0002
space v28 0.0114 23.0000 2016.5 31.2257 26.5000 1.2 0.0016

Average 0.6835 12.9271 1435.9 67.0660 12.2793 73.4 0.4332

0.0611 and 15.1111 failing test cases on gzip v5 pass on
mc and mf respectively.

Table III provides supporting evidence for the conjectures
of MUSE. The number of the failing test cases on P that
pass on mf is 1435.9 times greater than the number on mc

on average, which supports the first conjecture. Similarly,
the number of the passing test cases on P that fail on mc

is 73.4 times greater than the number on mf on average,
which supports the second conjecture. Based on the results,
we claim that both conjectures are true.

C. Regarding RQ2: Precision of MUSE in terms of the %
of executed statements examined to localize a fault

Table IV presents the precision evaluation of Jaccard,
Ochiai, Op2, and MUSE with the proportion of executed
statements required to be examined before localizing the
fault (i.e. the Expense metric). The most precise results
are marked in bold. Following the ranking produced by

MUSE, one can localize a fault after examining 0.38% of
the executed statements on average. The average precision
of MUSE is 25.68 (=9.67/0.38), 24.61 (=9.27/0.38), and
20.09 (=7.56/0.38) times higher than that of Jaccard, Ochiai,
and Op2, respectively. In addition, MUSE produces the
most precise results for 11 out of the 14 studied faulty
versions. This provides quantitative answer to RQ2: MUSE
can outperform the state-of-the-art SBFL techniques over the
Expense metric.

In response to Parnin and Orso [22], we also report
the absolute rankings produced by MUSE, i.e. the actual
number of statements that need to be inspected before
encountering the faulty statement. MUSE ranks the faulty
statements of the seven faulty versions (flex v1,v11,
gzip v2,v5,v13, and space v21,v28) at the top
and ranks the faulty statement of another three versions
(flex v7, sed v3, and space v19) among the top
three. On average, MUSE ranks the faulty statement among
the top 7.43 places, which is 24.86 (=184.64/7.43) times
more precise than the best performing SBFL technique, Op2.
We believe MUSE is precise enough that its results can be
used by a human developer in practice.

D. Regarding RQ3: Precision of MUSE in terms of the
Locality Information Loss

The Locality Information Loss column of Table IV shows
the precision of Jaccard, Ochiai, Op2, and MUSE in terms
of the LIL metric, calculated with ✏ = 10�17. The best
results (i.e. the lowest values) are marked in bold. The LIL
metric value of MUSE is 2.87 on average, which is 1.99
(=5.72/2.87), 2.10 (=6.03/2.87), and 2.29 (=6.58/2.87) times
more precise than those of Jaccard, Ochiai, and Op2. In
addition, the LIL metric values of MUSE are the smallest
ones on the eleven out of the 14 subject program versions.

MOTIVATION

• Traditional evaluation metric for fault localisation is
ranking based

• Measures something else than accuracy (and,
even then, humans do not operate in linear
ranking)

• Irrelevant for Automated Patching: Qi et al. show
that rank-wise suboptimal formula helps
GenProg better (ISSTA 2013)

LIL(LOCALITY INFORMATION
LOSS)

• Any suspiciousness score distribution can be
interpreted as a probability distribution

• Describe the actual location of the fault as THE
probability distribution

• Calculate Kullbeck-Leibler divergence (distance
between two probability distributions)

LIL

to the likelihood of the statement containing the fault, we
convert the suspiciousness score given by an FL technique,
⌧ : S ! [0, 1], into the probability of any member of S
containing the fault, P⌧ (s), as follows:

P⌧ (si) =
⌧(si)Pn
i=1 ⌧(si)

, (1 i n) (3)

This converts suspiciousness scores given by any ⌧ (includ-
ing L) into a probability distribution, P⌧ . The metric we
propose is the Kullback-Leibler divergence [16] of P⌧ from
PL, denoted as DKL(PL||P⌧): it measures the information
loss that happens when using P⌧ instead of PL and is
calculated as follows:

DKL(PL||P⌧) =
X

i

ln
PL(si)

P⌧ (si)
PL(si) (4)

We call this as Locality Information Loss (LIL). Kullback-
Leibler divergence between two given probability distribu-
tion P and Q requires the following: both P and Q should
sum to 1, and Q(si) = 0 implies P (si) = 0. We satisfy the
former by the normalization in Equation 3 and the latter by
always substituting 0 with ✏ after normalizing ⌧ 2 (because
we cannot guarantee the implication in our application).
When these properties are satisfied, DKL(PL||P⌧) becomes
0 when PL and P⌧ are identical. As with the Expense
metric, the lower the LIL value is the more accurate the
FL technique is. Based on Information Theory, LIL has the
following strengths compared to the Expense metric:

• Expressiveness: unlike the Expense metric that only
concerns the actual faulty statement, LIL also reflects
how well the suspiciousness of non-faulty statements
have been supressed by an FL technique. That is, LIL
can be used to explain the results of Qi et al. [23]
quantitatively.

• Flexibility: unlike the Expense metric that only con-
cerns a single faulty statement, LIL can handle multiple
locations of faults. For m faults (or for a fault that
consists of m different locations), the distribution PL
will simply show not one but m spikes, each with 1

m
as height.

• Applicability: Expense metric is tied to FL techniques
that produce rankings, whereas LIL can be applied to
any FL technique. If a technique assigns suspiciousness
scores to statements, it can be converted into P⌧ ; if a
technique simply presents one or more statements as
candidate fault location, P⌧ can be formulated to have
corresponding peaks.

IV. EXPERIMENTAL SETUP

We have designed the following three research questions
to evaluate the effectiveness of MUSE in terms of the

2
✏ should be smaller than the smallest normalized non-zero suspicious-

ness score by ⌧ .

Expense metric [18] and the LIL metric (Section III):

RQ1. Foundation: How many test results change from
failure to pass and vice versa between before and after on a
mutant generated by mutating a faulty statement, compared
with a mutant generated by mutating a correct one?

RQ1 is to validate the conjectures in Section II-A, on
which MUSE depends. If these conjectures are valid (i.e.,
more failing test cases become passing after mutating the
faulty statement than a correct one, and more passing test
cases become failing after mutating a correct statement than
the faulty one), we can expect that MUSE will localize a
fault precisely.

RQ2. Precision: How precise is MUSE, compared with
Jaccard, Ochiai, and Op2 in terms of the % of executed
statements examined to localize a first fault?

Precision in terms of the % of program statements to be
examined is the traditional evaluation criteria for fault local-
ization techniques. RQ2 evaluates MUSE with the Expense
metric against the three widely studied SBFL techniques –
Jaccard, Ochiai, and Op2. Op2 [19] is proven to perform
well in Expense metric; Ochiai [20] performs closely to Op2,
while Jaccard [10] shows good performance when used with
automated program repair [23].

RQ3. Information Loss: How precise is MUSE, compared
with Jaccard, Ochiai, and Op2 in terms of the Locality
Information Loss (LIL) metric?

RQ3 evaluates the precision of MUSE with the LIL metric
introduced in Section III against the three SBFL techniques
(Jaccard, Ochiai, and Op2). The smaller the LIL value is,
the more precise the FL technique is.

To answer the research questions, we performed a se-
ries of experiments by applying Jaccard, Ochiai, Op2, and
MUSE to the 14 faulty versions in five real world C
programs. The following subsections describe the details of
the experiments.

A. Subject Programs

For the experiments, we used five non-trivial real-world
programs including flex version 2.4.7, grep version 2.2,
gzip version 1.1.2, sed version 1.18, and space, all of
which are from the SIR benchmark suite [4].

Table I describes the target programs including their
sizes in Lines of Code, the faulty versions used, and the
numbers of failing and passing test cases for each program
version/fault pair. From the base versions listed above, we
randomly selected three faulty versions from each program
except grep where a failure is detected only in two faulty
versions by the used test suite. grep v3 and space
v19 have multiple faults and the other versions have one
fault per each version. The fault ID of each version is
presented in Table I (For the rest of the paper, we refer to

Program
P

Execution
Test

result
Coverage
analysis

Stmts.
covered by
failing tests

Mutation

m1

mn Exec.

Test
result1

Test
resultn

Calc.
Susp.

Susp.
& Rank

Exec.
Test

suite T

Step 1: selecting target statements to mutate Step 2: testing mutants
Step 3: calculating

suspiciousness

Figure 2: Framework of MUtation-baSEd fault localization technique (MUSE)
D. MUSE Framework

Figure 2 shows the framework of MUtation-baSEd fault
localization technique (MUSE). There are three major
stages: selection of statements to mutate, testing of the
mutants, and calculation of the suspiciousness scores.
Step 1: MUSE receives a target program P and a test
suite T . After executing T on P , MUSE selects the target
statements, i.e. the statements of P that are executed by at
least one failing test case in T . We focus on only these
statements as those not covered by any failing tests, can be
considered not faulty with respect to T .
Step 2: MUSE generates mutant versions of P by mutating
each of the statements selected at Step 1. MUSE may
generate multiple mutants from a single statement since one
statement may contain multiple mutation points [8]. MUSE
tests all generated mutants with T and records the results.
Step 3: MUSE compares the test results of T on P with the
test results of T on all mutants. This produces the weight
↵, based on which MUSE calculates the suspiciousness of
the target statements of P .

III. LIL: LOCALITY INFORMATION LOSS

The output of fault localization techniques can be con-
sumed by either human developers or automated program re-
pair techniques. Expense [18] metric measures the portion of
program statements that need to be inspected by developers
until the localization of the fault. It has been widely adopted
as an evaluation metric for FL techniques [13, 19, 31] as well
as a theoretical framework that showed hierarchies between
SBFL techniques [28, 29]. However, the Expense metric has
been criticised for being unrealistic to be used by a human
developer directly [22].

In an attempt to evaluate the precision of SBFL tech-
niques, Qi et al. [23] compared SBFL techniques by mea-
suring the Number of Candidate Patches (NCP) generated
by GenProg [25] automated program repair tool, with the
given localization information.1 Automated program repair
techniques tend to bypass the ranking and directly use the

1Essentially this measures the number of fitness evaluation for the
Genetic Programming part of GenProg; hence the lower the NCP score
is, the more efficient GenProg becomes, and in turn the more effective the
given localization technique is.

suspiciousness scores of each statement as the probability
of mutating the statement (expecting that mutating a highly
suspicious statement is more likely to result in a potential
fix) [6, 25]. An interesting empirical observation by Qi
et al. [23] is that Jaccard [10] produced lower NCP than
Op2 [19], despite having been proven to always produce
a lower ranking for the faulty statement than Op2 [28].
This is due to the actual distribution of the suspiciousness
score: while Op2 produced higher ranking for the faulty
statement than Jaccard, it assigned almost equally high sus-
piciousness scores to some correct statements. On the other
hand, Jaccard assigned much lower suspiciousness scores
to correct statements, despite ranking the faulty statement
slightly lower than Op2.

This illustrates that evaluation and theoretical analysis
based on the linear ranking model is not applicable to
automated program repair techniques. LIL metric can mea-
sure the aptitude of FL techniques for automated repair
techniques as it measures the effectiveness of localization
in terms of information loss rather than the behavioural cost
of inspecting a ranking of statements. LIL metric essentially
captures the essence of the entropy-based formulation of
fault localization [32] in the form of an evaluation metric.

We propose a new evaluation metric that does not suffer
from this discrepancy between two consumption models.
Let S be the set of n statements of the Program Under
Test, {s1, . . . , sn}, sf , (1 f n) being the single faulty
statement. Without losing generality, we assume that output
of any fault localization technique ⌧ can be normalized to [0,
1]. Now suppose that there exists an ideal fault localization
technique, L, that can always pinpoint sf as follows:

L(si) =
⇢

1 (si = sf)
✏ (0 < ✏ ⌧ 1, si 2 S, si 6= sf)

(2)

Note that we can convert outputs of FL techniques that do
not use suspiciousness scores in a similar way: if a technique
⌧ simply reports a set C of m statements as candidate faulty
statements, we can set ⌧(si) = 1

m when si 2 C and ⌧(si) =
✏ when si 2 S \ C.

We now cast the fault localization problem in a proba-
bilistic framework as in the previous work [32]. Since the
suspiciousness score of a statement is supposed to correlate

to the likelihood of the statement containing the fault, we
convert the suspiciousness score given by an FL technique,
⌧ : S ! [0, 1], into the probability of any member of S
containing the fault, P⌧ (s), as follows:

P⌧ (si) =
⌧(si)Pn
i=1 ⌧(si)

, (1 i n) (3)

This converts suspiciousness scores given by any ⌧ (includ-
ing L) into a probability distribution, P⌧ . The metric we
propose is the Kullback-Leibler divergence [16] of P⌧ from
PL, denoted as DKL(PL||P⌧): it measures the information
loss that happens when using P⌧ instead of PL and is
calculated as follows:

DKL(PL||P⌧) =
X

i

ln
PL(si)

P⌧ (si)
PL(si) (4)

We call this as Locality Information Loss (LIL). Kullback-
Leibler divergence between two given probability distribu-
tion P and Q requires the following: both P and Q should
sum to 1, and Q(si) = 0 implies P (si) = 0. We satisfy the
former by the normalization in Equation 3 and the latter by
always substituting 0 with ✏ after normalizing ⌧ 2 (because
we cannot guarantee the implication in our application).
When these properties are satisfied, DKL(PL||P⌧) becomes
0 when PL and P⌧ are identical. As with the Expense
metric, the lower the LIL value is the more accurate the
FL technique is. Based on Information Theory, LIL has the
following strengths compared to the Expense metric:

• Expressiveness: unlike the Expense metric that only
concerns the actual faulty statement, LIL also reflects
how well the suspiciousness of non-faulty statements
have been supressed by an FL technique. That is, LIL
can be used to explain the results of Qi et al. [23]
quantitatively.

• Flexibility: unlike the Expense metric that only con-
cerns a single faulty statement, LIL can handle multiple
locations of faults. For m faults (or for a fault that
consists of m different locations), the distribution PL
will simply show not one but m spikes, each with 1

m
as height.

• Applicability: Expense metric is tied to FL techniques
that produce rankings, whereas LIL can be applied to
any FL technique. If a technique assigns suspiciousness
scores to statements, it can be converted into P⌧ ; if a
technique simply presents one or more statements as
candidate fault location, P⌧ can be formulated to have
corresponding peaks.

IV. EXPERIMENTAL SETUP

We have designed the following three research questions
to evaluate the effectiveness of MUSE in terms of the

2
✏ should be smaller than the smallest normalized non-zero suspicious-

ness score by ⌧ .

Expense metric [18] and the LIL metric (Section III):

RQ1. Foundation: How many test results change from
failure to pass and vice versa between before and after on a
mutant generated by mutating a faulty statement, compared
with a mutant generated by mutating a correct one?

RQ1 is to validate the conjectures in Section II-A, on
which MUSE depends. If these conjectures are valid (i.e.,
more failing test cases become passing after mutating the
faulty statement than a correct one, and more passing test
cases become failing after mutating a correct statement than
the faulty one), we can expect that MUSE will localize a
fault precisely.

RQ2. Precision: How precise is MUSE, compared with
Jaccard, Ochiai, and Op2 in terms of the % of executed
statements examined to localize a first fault?

Precision in terms of the % of program statements to be
examined is the traditional evaluation criteria for fault local-
ization techniques. RQ2 evaluates MUSE with the Expense
metric against the three widely studied SBFL techniques –
Jaccard, Ochiai, and Op2. Op2 [19] is proven to perform
well in Expense metric; Ochiai [20] performs closely to Op2,
while Jaccard [10] shows good performance when used with
automated program repair [23].

RQ3. Information Loss: How precise is MUSE, compared
with Jaccard, Ochiai, and Op2 in terms of the Locality
Information Loss (LIL) metric?

RQ3 evaluates the precision of MUSE with the LIL metric
introduced in Section III against the three SBFL techniques
(Jaccard, Ochiai, and Op2). The smaller the LIL value is,
the more precise the FL technique is.

To answer the research questions, we performed a se-
ries of experiments by applying Jaccard, Ochiai, Op2, and
MUSE to the 14 faulty versions in five real world C
programs. The following subsections describe the details of
the experiments.

A. Subject Programs

For the experiments, we used five non-trivial real-world
programs including flex version 2.4.7, grep version 2.2,
gzip version 1.1.2, sed version 1.18, and space, all of
which are from the SIR benchmark suite [4].

Table I describes the target programs including their
sizes in Lines of Code, the faulty versions used, and the
numbers of failing and passing test cases for each program
version/fault pair. From the base versions listed above, we
randomly selected three faulty versions from each program
except grep where a failure is detected only in two faulty
versions by the used test suite. grep v3 and space
v19 have multiple faults and the other versions have one
fault per each version. The fault ID of each version is
presented in Table I (For the rest of the paper, we refer to

..WORTH A THOUSAND WORDS

Jaccard (LIL=4.92)

Executed Statements

0.
0

0.
4

0.
8

Faulty Statement

Su
sp

ic
io

us
ne

ss

MUSE (LIL=0.40)

Executed Statements
0.

0
0.

4
0.

8

Faulty Statement

Su
sp

ic
io

us
ne

ss

Ochiai (LIL=5.96)

Executed Statements

0.
0

0.
4

0.
8

Faulty Statement

Su
sp

ic
io

us
ne

ss

Op2 (LIL=7.34)

Executed Statements

0.
0

0.
4

0.
8

Faulty Statement

Su
sp

ic
io

us
ne

ss

ONGOING WORK

• With actual progress

• Mutant Sampling

• Hybridisation

• More adventurous

• Multiple Faults

• Pre-emptive localisation

• Learning mutation

• Genetic Programming for MUSE

ISN’T MUTATING EVERY
STATEMENT REALLY EXPENSIVE?

0%#

2%#

4%#

6%#

8%#

10%#

1%# 10%# 40%# 70%# 100%#

Av
er
ag
e'
%
'o
f'e

xe
cu
te
d'

st
at
em

en
ts
'e
xa
m
in
ed

Sampling'rate'(%)

BEST#SBFL#(Op2)#

MUSE#

After random sampling, still more accurate than Op2

MUSE + SBFL(JACCARD)

• Evaluated 10 randomly
chosen real PHP bugs
from ICSE 2012 GenProg
Paper

• In some cases, brings
MUSE closer to Op2

• In other cases, pure
version still wins

Faulty Stmt Rank

10

Faulty
version # MUSE

MUSE
+jacc

(Current
Hybrid
Muse)

MUSE
+Ochiai

MUSE_op2
+jacc

MUSE_ochi
+ochi

MUSE_taran
+ochi

MUSE_ampl
+ochiai

MUSE_jacc
+jacc Op2 Target

line # # failed # passed

1 4 1 1 1 1 1 1 1 160 1957 1 100

2 6 13 13 13 6 6 13 13 53 112 1 100

3 42 14 14 14 14 14 14 14 14 143 2 100

4 177 8 8 8 8 8 8 8 8 362 1 100

5 371 140 140 140 140 140 140 140 140 553 1 100

6 4 4 4 4 4 4 4 4 170 191 1 100

7 5 18 5 18 5 5 5 18 64 119 1 100

8 1 9 9 9 9 9 9 9 164 222 1 100

9 49 45 45 45 45 45 45 45 45 49 2 100

10 1 1 1 1 1 1 1 1 24 362 1 100

Average 66 25.3 24 25.3 23.3 23.3 24 25.3 84.2 407.00 1.20 100.00

Faulty Stmt Rank

10

Faulty
version # MUSE

MUSE
+jacc

(Current
Hybrid
Muse)

MUSE
+Ochiai

MUSE_op2
+jacc

MUSE_ochi
+ochi

MUSE_taran
+ochi

MUSE_ampl
+ochiai

MUSE_jacc
+jacc Op2 Target

line # # failed # passed

1 4 1 1 1 1 1 1 1 160 1957 1 100

2 6 13 13 13 6 6 13 13 53 112 1 100

3 42 14 14 14 14 14 14 14 14 143 2 100

4 177 8 8 8 8 8 8 8 8 362 1 100

5 371 140 140 140 140 140 140 140 140 553 1 100

6 4 4 4 4 4 4 4 4 170 191 1 100

7 5 18 5 18 5 5 5 18 64 119 1 100

8 1 9 9 9 9 9 9 9 164 222 1 100

9 49 45 45 45 45 45 45 45 45 49 2 100

10 1 1 1 1 1 1 1 1 24 362 1 100

Average 66 25.3 24 25.3 23.3 23.3 24 25.3 84.2 407.00 1.20 100.00

MULTIPLE FAULTS CONJECTURE

• For independent faults that results in disjoint
failures, MUSE is not affected at all

• For faults that interact with each other, test suite
design/composition will play a key role

PRE-EMPTIVE LOCALISATION

• Mutation analysis is still expensive, especially as a
step for debugging which is often urgent

• Can we do the mutation analysis in advance, even
with the previous version?

• For each mutant, record the failure pattern across
test cases

• When a real failure is observed, track back to the
point of mutation

GP FOR MUSE

• GP worked for SBFL; does it work for MUSE?

• More variables, which means a larger search space

WHAT HAPPENS WHEN YOU MUTATE
ALREADY FAULTY PROGRAMS?

P F

..WORTH A THOUSAND WORDS

Jaccard (LIL=4.92)

Executed Statements

0.
0

0.
4

0.
8

Faulty Statement

Su
sp

ic
io

us
ne

ss

MUSE (LIL=0.40)

Executed Statements

0.
0

0.
4

0.
8

Faulty Statement

Su
sp

ic
io

us
ne

ss

Ochiai (LIL=5.96)

Executed Statements

0.
0

0.
4

0.
8

Faulty Statement

Su
sp

ic
io

us
ne

ss

Op2 (LIL=7.34)

Executed Statements

0.
0

0.
4

0.
8

Faulty Statement

Su
sp

ic
io

us
ne

ss

OUR CLAIM

Tarantula(
[ICSE(2002]

Ochiai(
[PRDC(06]((((Wong(

[JSS(10]

MUSE(
(MUtaAon(baSEd(FL)((

2014((((((Year

R
an

ki
ng
(o
f(f
au

lt
y(
st
m
t(
am

on
g(

al
l(e
xe
cu
te
d(
st
m
ts
((%

)

Op2(
[TOSEM(11]

25%

1%
2002(

9%

On#the#10KLOC#SIR#benchmark#programs

ISN’T MUTATING EVERY
STATEMENT REALLY EXPENSIVE?

0%#

2%#

4%#

6%#

8%#

10%#

1%# 10%# 40%# 70%# 100%#

Av
er
ag
e'
%
'o
f'e

xe
cu
te
d'

st
at
em

en
ts
'e
xa
m
in
ed

Sampling'rate'(%)

BEST#SBFL#(Op2)#

MUSE#

After random sampling, still more accurate than Op2

