ASK THE MUTANTS

MUTATING FAULTY PROGRAMS FOR FAULT
LOCALISATION

Shin Yoo, University College London
Seokhyun Mun, KAIST

Yunho Kim, KAIST

Moonzoo Kim, KAIST

OUTLINE

« MUSE: Mutation-based Fault Localisation Engine

e Locality Information Loss: a new evaluation metric

e Ongoing work (post ICST 2014)

O Tarantula
[ICSE 2002]

N
S
o~

p—
X
~—
(7))
o
S
fd
(75}
©
Q
=
=
(@)
Q
X
Q
©

 MUSE
@ (MUtation baSEd FL)

2014 Year
On the 10KLOC SIR benchmark programs

oT0]
c
(@)
£
©
.
&
frar)
(7))
>
-
=
©
(Tt
(TI
o
o0
§=
=
c
©
(a'd

MOTIVATION

e We have hit the ceiling of Spectrum-based Fault
Localisation

» Not accurate enough, effectiveness varies
significantly depending on test suites, inherently
limited by block-level granularity

¢ Can we use mutation testing in a pre-emptive
manner?

WHAT HAPPENS WHEN YOU MUTATE
ALREADY FAULTY PROGRAMS?

P F

CASE 1: MUTATING CORRECT
STATEMENTS

New Fault
Equivalent P F +
Mask

P+ F-

CASE 2: MUTATING FAULTY
STATEMENT

(Partial) Fix (New) Fault
P+F- P?F?
Equivalent Mask

PiE Bl

HYPOTHESES

« An arbitrary mutation operator applied to a correct
statement is likely to introduce a new fault

« An arbitrary mutation operator applied to a faulty
statement is either likely to keep the program still
faulty or, even better, (partially) fix the program

« The majority of statements in a faulty statement is
correct; we detect the faulty one by observing the
anomaly from our hypotheses

MUSE

Proportion of test cases

Average over all

that mutant m turns
from fail to pass

Proportion of test cases
that mutant m turns

mutation applied from pass to fail

to statement s

20 |mut(P)||pp

84

~ [mut(P)|-|fp p2f

EMPIRICAL EVALUATION

Subject % of executed stmts examined Rank of a faulty stmt

Program Jaccard Ochiai Op2 | MUSE ||Jaccard Ochiai Op2 |MUSE
£ e iyl 49.48 45.04 32.01 0.04 1,371 1,248 887 1
tlex il 3.60 3.60 3.60 0.07 100 100 100 2
Etexivld 19.76 19.54 13.51 0.04 547 541 374 1
grep v3 1.06 1.01 0.71 1.87 21 20 14 31
grep vl 3.44 344 3.44 1.60 58 58 58 27
R R 2.14 2l g 0.07 31 31 31 1
G710 5 1.83 1.83 1.83 0.07 26 26 26 1
SRR e ROV 1.03 1.03 1.03 0.07 15 15 15 1
sed vl 0.54 0.54 0.54 0.90 12 12 12 20
sed v3 2.56 256 2.56 0.13 57 Sk 37 3
sed v5 37.84 37.84 37.15 0.28 814 814 799 6
space v19 0.03 0.03 0.03 0.06 1 1 1 2
space v21 0.45 0.45 0.45 0.03 15 15 15 1
space v28 11.57 10.66 6.89 0.04 329 303 196 1
Average 9.67 9270706 0.38 || 242.64 231.50 184.64 7.43

MOTIVATION

e Traditional evaluation metric for fault localisation is
ranking based

« Measures something else than accuracy (and,
even then, humans do not operate in linear
ranking)

e Irrelevant for Automated Patching: Qi et al. show

that rank-wise suboptimal formula helps
GenProg better (ISSTA 2013)

LIL(LOCALITY INFORMATION
LOSS)

e Any suspiciousness score distribution can be
interpreted as a probability distribution

e Describe the actual location of the fault as THE
probability distribution

» Calculate Kullbeck-Leibler divergence (distance
between two probability distributions)

Dgr(Pe||Pr)

Zln P[’

.. WORTH A THOUSAND WORDS

0.8

Suspiciousness
0.4

0.0

0.8

Suspiciousness
0.4

0.0

Op2 (LIL=7.34)

at=10111Y Sfatement

Executed Statements

Jaccard (LIL=4.92)

Faulty Stdteinent

Executed Statements -

0.8

Suspiciousness
0.4

0.0

0.8

Suspiciousness
0.4

0.0

Ochiai (LIL=5.96)

Faulty St4tement

Executed Statements

MUSE (LIL=0.40)

Faulty Si

atement

Executed Statements

ONGOING WORK

e With actual progress
e Mutant Sampling
« Hybridisation

e More adventurous

Multiple Faults

Pre-emptive localisation

Learning mutation

Genetic Programming for MUSE

ISN'T MUTATING EVERY
STATEMENT REALLY EXPENSIVE?

10%

O
2 2 gy
3 = —BEST SBFL (Op2)
g<) (g0] e
9 X 6% -8~ MUSE
@] ﬂ o
=8 4% \
¥ 5 .
Eg 5 \.J‘.
0%
1% 10% 40% 70% 100%

Sampling rate (%)

After random sampling, still more accurate than Op2

) - -

— | A —
- N ~ \ O N
S| O | un| o N O
| on|wn| A ~ o

~ DO L) N N
- —

ol AR =
+—
STg =

¢ ¥

5>
O =2

/\- N—

[]

~N <1 = | | —
< |~~~ <
— o
~N < (O OO @ -

version #

> |
D)
i O N
>3 \/ — 0) A\l
— Lo N N# y y AC
C O) ¢ = 00 —
s DS) 5 Q) s
ot MV Mv ﬁ@ e : . <
= N + N S
s q 0 - N D - A@ >
y . ; / BT N Q@O N
O b O)]
i —
" : SERAANTD 5 i) LD
O MC L AC. 0) MC =
I e C LU e O
N 85 = O R
\v T . QO :. v . Mc
‘ v v O = O - = TS
> T mv ("] \
N _ J . u al).).

Y

MULTIPLE FAULTS CONJECTURE

e For independent faults that results in disjoint
failures, MUSE is not affected at all

e For faults that interact with each other, test suite
design/composition will play a key role

PRE-EMPTIVE LOCALISATION

« Mutation analysis is still expensive, especially as a
step for debugging which is often urgent

e Can we do the mutation analysis in advance, even
with the previous version?

e For each mutant, record the failure pattern across

test cases

e When a real failure is observed, track back to the
point of mutation

GP FOR MUSE

e GP worked for SBFL; does it work for MUSE?

« More variables, which means a larger search space

[-]]
c
o
£
(4]
+—
£
=
w
>
=
3
qf!
Y
o
oo
£
=
f=
©
o

all executed stmts (%)

N
2
=

]
X

O Tarantula
[ICSE 2002]

MUSE
@ (MUtatjon baSEd FL)

2014 Year
On the 10KLOC SIR benchmark programs

oo wv w

| e e B e

“ IN 0 RB

Faulty Statement

(}3

——BEST SBFL (Op2)

=&~ MUSE

