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OUTLINE

« MUSE: Mutation-based Fault Localisation Engine

e Locality Information Loss: a new evaluation metric

e Ongoing work (post ICST 2014)
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MOTIVATION

e We have hit the ceiling of Spectrum-based Fault
Localisation

» Not accurate enough, effectiveness varies
significantly depending on test suites, inherently
limited by block-level granularity

¢ Can we use mutation testing in a pre-emptive
manner?



WHAT HAPPENS WHEN YOU MUTATE
ALREADY FAULTY PROGRAMS?

P F



CASE 1: MUTATING CORRECT
STATEMENTS

New Fault
Equivalent P F +
Mask

P+ F-



CASE 2: MUTATING FAULTY
STATEMENT

(Partial) Fix (New) Fault
P+F- P?F?
Equivalent Mask

PiE Bl



HYPOTHESES

« An arbitrary mutation operator applied to a correct
statement is likely to introduce a new fault

« An arbitrary mutation operator applied to a faulty
statement is either likely to keep the program still
faulty or, even better, (partially) fix the program

« The majority of statements in a faulty statement is
correct; we detect the faulty one by observing the
anomaly from our hypotheses



MUSE

Proportion of test cases

Average over all

that mutant m turns
from fail to pass

Proportion of test cases
that mutant m turns

mutation applied from pass to fail

to statement s

20 |mut(P)||pp

84

~ [mut(P)|-|fp p2f



EMPIRICAL EVALUATION

Subject % of executed stmts examined Rank of a faulty stmt

Program Jaccard Ochiai  Op2 | MUSE ||Jaccard Ochiai Op2 |MUSE
£ e iyl 49.48 45.04 32.01 0.04 1,371 1,248 887 1
tlex il 3.60 3.60 3.60 0.07 100 100 100 2
Etexivld 19.76  19.54 13.51 0.04 547 541 374 1
grep v3 1.06 1.01  0.71 1.87 21 20 14 31
grep vl 3.44 344  3.44 1.60 58 58 58 27
R R 2.14 2l g 0.07 31 31 31 1
G710 5 1.83 1.83 1.83 0.07 26 26 26 1
SRR e ROV 1.03 1.03 1.03 0.07 15 15 15 1
sed vl 0.54 0.54 0.54 0.90 12 12 12 20
sed v3 2.56 256  2.56 0.13 57 Sk 37 3
sed v5 37.84  37.84 37.15 0.28 814 814 799 6
space v19 0.03 0.03 0.03 0.06 1 1 1 2
space v21 0.45 0.45 0.45 0.03 15 15 15 1
space v28 11.57 10.66 6.89 0.04 329 303 196 1
Average 9.67 9270706 0.38 || 242.64 231.50 184.64 7.43




MOTIVATION

e Traditional evaluation metric for fault localisation is
ranking based

« Measures something else than accuracy (and,
even then, humans do not operate in linear
ranking)

e Irrelevant for Automated Patching: Qi et al. show

that rank-wise suboptimal formula helps
GenProg better (ISSTA 2013)



LIL(LOCALITY INFORMATION
LOSS)

e Any suspiciousness score distribution can be
interpreted as a probability distribution

e Describe the actual location of the fault as THE
probability distribution

» Calculate Kullbeck-Leibler divergence (distance
between two probability distributions)



Dgr(Pe||Pr)

Zln P[’



.. WORTH A THOUSAND WORDS
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ONGOING WORK

e With actual progress
e Mutant Sampling
« Hybridisation

e More adventurous

Multiple Faults

Pre-emptive localisation

Learning mutation

Genetic Programming for MUSE



ISN'T MUTATING EVERY
STATEMENT REALLY EXPENSIVE?
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After random sampling, still more accurate than Op2
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MULTIPLE FAULTS CONJECTURE

e For independent faults that results in disjoint
failures, MUSE is not affected at all

e For faults that interact with each other, test suite
design/composition will play a key role



PRE-EMPTIVE LOCALISATION

« Mutation analysis is still expensive, especially as a
step for debugging which is often urgent

e Can we do the mutation analysis in advance, even
with the previous version?

e For each mutant, record the failure pattern across

test cases

e When a real failure is observed, track back to the
point of mutation



GP FOR MUSE

e GP worked for SBFL; does it work for MUSE?

« More variables, which means a larger search space
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