

Pidgin Crasher
Searching for Minimised Crashing GUI

Event Sequences

Haitao Dan, Mark Harman, Jens Krinke, Lingbo Li,
Alexandru Marginean and Fan Wu

In total, More than 350KLoC C code

Among them, 76KLoC of GUI program (under pidgin directory)

Overview

● An answer to SSBSE 2014 challenge track
– Around 2000 lines of code
– A GUI testing framework with playback and reduction
– Four algorithms: two for the crashing sequence generation, two

for the crashing sequence reduction
– In the experiments with Pidgin, more than 3000 crashing

sequences generated, 600 reduced
● Results

– The search-based test generation achieved better crashing
sequences in terms of effectiveness and efficiency

– Three different types of 20 different crashing points identified
– Crashing sequences were reduced with an average reduction

factor of 4.88-7.50

Agenda

● Motivations
● The testing framework
● Test generation: blocked-random and greedy
● Test reduction
● Research questions and experiments
● Conclusions and future work

Motivations

● A spin-off project trying to drive tests for Pidgin with
a simple test framework

● GUI testing techniques is lag behind [1]
– GUI bugs account for most bugs in the GUI program

(52.7%) and around a third of crashes

– Few studies on applying SBSE on GUI testing

● A big portion of bugs that end up with crashes
(18.4–22.0%)

● Focus on identify crashing bugs with complex
interleavings of the events away from main scenarios

A Special GUI Testing Framework

● Instead of events, we send signals
– Using API function: g_signal_emit_by_name

● Target only crashing behaviour, so it does not
require a test oracle [2]

● On-the-fly GUI testing which does not need a
behaviour model

Test Gen. – Random Blocked

Test Gen. – Greedy Search

● Use the previous crashing sequences to guide
the selection of new signals to avoid previously
discovered crashing points:
– We select the next signal by computing the furthest
Levenshtein distance between the current
sequence and all previous sequences

● Levenshtein distance:
– A string metric measuring the difference between

two sequences.

● A simple approach applied:
– Given a crashing sequence S, the neighbourhood

of it is defined as all the sequences generated by
removing one signal from S.

– A sequence S1 is evaluated as better than another
sequence S2 if and only if S2 crashes the subject
program and is shorter than S1.

– Keep exploring the neighbourhood, until we reach
an optimal.

Crashing Sequence Reduction

Experiment Settings

● Run Pidgin crasher in its three different modes:
Random, Blocked, Greedy search

● Generate 201 crashing sequences in each mode and
repeat our experiments 5 times

● The sequences are then minimised by the reduction
process

● We repetitively send signals to trigger different
functionalities via the same GTK signal emission API to
which we pass NULL for all arguments in the variable
argument list

Research Questions

● RQ1 How effectively can Pidgin crasher find
potential bugs?

● RQ2 What are the coverage of crashing points,
convergence and redundancy of the sequences
generated by each of the three modes of
Pidgin crasher?

● RQ3 What are the kinds of faults found by
Pidgin crasher ?

Experiment Results

11 13 19The coverage of crashing points:

Experiment Results

11 13 19The coverage of crashing points:

Different Crashes

● Type I: happening in the call-back function
directly uses a NULL-pointer from the passed
arguments to access memory without checking
to ensure it is non-NULL.

● Type II: happening in call-back functions that
makes an invalid assumption about the
resources available in the current state.

Conclusions

● Using Pidgin crasher, we identified three
types of 20 different crashing points.

● Suggestions:
– Check all Pidgin return values from any

function that may return NULL-pointers;
– GTK+ signal-emitting APIs that take

variable argument lists such as
g_signal_emit_by_name should be
deprecated.

Future Work

● Further analysis to the crashing points
● Use realistic input and generate more

interesting crashing sequences
● Characterise the crashing sequences
● Classify GUI bugs

References

● [1] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. Have things
changed now?: an empirical study of bug characteristics in modern
open source software. In Proceedings of the 1st workshop on
Architectural and system support for improving software
dependability (ASID’06), 2006.

● [2] Mark Harman, Phil McMinn, Muzammil shahbaz, and Shin Yoo. A
comprehensive survey of trends in oracles for software testing.
Technical Report Research Memoranda CS-13-01, Department of
Computer Science, University of Sheffield, 2013.

The Test Framework

Test Generation

Targeting complex signal interleavings
that are unlikely to be experienced in

general use to discover crashing
sequences

Test Gen. – Greedy

● The algorithm: formally,

Where

is the Levenshtein distance between x and y

is the set of previous crashing sequences,

GTK and XWindows

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

