
Refactoring functional programs:	

past and future
!
!
Simon Thompson and Huiqing Li 	

University of Kent	

!
COW 32

Outline

Refactoring and functional programming.	

Some tools that we have built.	

Examples, examples, examples.	

Some ideas for an agenda for the future.

Refactoring

Change how a program works … 	

	

 … without changing what it does.

Extension and reuse

	 io:format("ping!~n"), 	
	 timer:sleep(500),	
	 b ! {msg, Msg, N - 1},

loop_a() ->	
 receive	
 stop -> ok;	
 {msg, _Msg, 0} -> loop_a();	
 {msg, Msg, N} ->	

	 loop_a()	
 end.

Let’s turn this into a function

Why refactor?

loop_a() ->	
 receive	
 stop -> ok;	
 {msg, _Msg, 0} -> loop_a();	
 {msg, Msg, N} ->	
	 io:format("ping!~n"), 	
	 timer:sleep(500),	
	 b ! {msg, Msg, N - 1},	
	 loop_a()	
 end.	

	 io:format("ping!~n"), 	
	 timer:sleep(500),	
	 b ! {msg, Msg, N - 1},

Why refactor?

loop_a() ->	
 receive	
 stop -> ok;	
 {msg, _Msg, 0} -> loop_a();	
 {msg, Msg, N} ->	

	 loop_a()	
 end.

	 body(Msg,N),

body(Msg,N) ->

.

Extension and reuse

Why refactor?

“Clones considered harmful”: detect
and eliminate duplicate code.	

Improve the module structure:
remove loops, for example.

Counteract decay ... comprehension

Highly expressive expression language … Tidier, HLint, … .	

More abstractions available:	

	

 can wrap side-effecting code in a closure;	

	

 can abstract over functionality, and not just data.	

Semantics “cleaner” even if not fully formal.	

Potentially more trustworthy:	

	

	

 semantics and implementation language.

Refactoring functional programs

How to refactor?

By hand … using an editor.	

	

 Flexible … but error-prone.	

	

 Infeasible in the large. 	

Tool-supported.	

	

 Handle atoms, types, names, side-effects, …	

	

 Scalable to large-code bases: module-aware.	

 	

	

 Integrated with tests, macros, ...	

HaRe

HaRe and Wrangler in a nutshell

Automate the simple things, and … 	

	

 … provide decision support tools otherwise.	

Embed in common IDEs: emacs, eclipse, …	

Handle full language, multiple modules, tests, ...	

Faithful to layout and comments.	

Build in the language and apply the tool to itself.

Wrangler

Basic refactorings: structural, macro, 	

process and test-framework related

C
lo

ne
 d

et
ec

tio
n 

an
d

re
m

ov
al

M
od

ul
e

st
ru

ct
ur

e
im

pr
ov

em
en

t
API: define new

refactorings

DSL for composite
refactorings

Examples

Examples

Basic refactorings …	

	

 … and some of their complexity.	

Helping the user …	

	

 … clone detection, module structure.	

Working in specialised domains …	

	

 … web services, testing frameworks.	

Extensibility …	

	

 … an API and a DSL.

Getting started … what did we mean?

Generalisation … in Haskell

f x y z = length ((2:x) ++ []) + 	 	 	
	 length ((True:y) ++ []) + 	 	 	
	 length ((3:z) ++ [])	

Generalise over the [].	

 	

 	 	 	  
 	
	 	

Generalisation … in Haskell

f x y z = length ((2:x) ++ []) + 	 	 	
	 length ((True:y) ++ []) + 	 	 	
	 length ((3:z) ++ [])	

Generalise over the [].	

What do you mean: one, all, some?	

f x y z w = length ((2:x) ++ w) + 		 	
	 length ((True:y) ++ w) + 	 	 	
	 length ((3:z) ++ [])	

What is the type of w?

Generalisation … in Erlang

f([]) -> ok; Call f([2,2,3])	

f([X|Xs]) -> 	 	
		 io:format(“~p~t”,[X]),
		 f(Xs).	

Generalise over io:format(“~p~t”,[X]).	

  
  
 
 
 
 

Generalisation … in Erlang

f([]) -> ok; Call f([2,2,3])	

f([X|Xs]) -> 	 	
		 io:format(“~p~t”,[X]),
		 f(Xs).	

Generalise over io:format(“~p~t”,[X]).	

What about the side-effect and the free variable?	

f([],h) -> ok; Call f([2,2,3], 	 	 	 	 	
		 fun(X) -> io:format(“~p~t”,[X]) end)	

f([X|Xs],h) -> 	 	
		 h(X), 	 	 	
		 f(Xs).

Lifting definitions … in Haskell

h x = x + g x 	 	 	 	
	 where	 	 	
		 g x = x + con 	 	 	 	
		 con = 37	

Lift g to be a top-level definition. What about con?	

 	

 		 	 	 	  
	 	 	 	 	  

 	

Lifting definitions … in Haskell

h x = x + g x 	 	 	 	
	 where	 	 	
		 g x = x + con 	 	 	 	
		 con = 37	

Lift g to be a top-level definition. What about con?	

Lambda lift?	

h x = x + g con x 		 	 	
	 where	 	 	
		 con = 37	

g con x = x + con	

Lifting definitions … in Haskell

h x = x + g x 	 	 	 	
	 where	 	 	
		 g x = x + con 	 	 	 	
		 con = 37	

Lift g to be a top-level definition. What about con?	

Localise before lifting?	

h x = x + g x 	 	 	 	

g x = x + con 		 	 	 	 	 	 	 	 	 	 	 	 	 	
		 where 		 	 	 	 	 	 	 	 	 	 	 	 	 	 	
		 con = 37	

Lifting definitions … in Haskell

h x = x + g x 	 	 	 	
	 where	 	 	
		 g x = x + con 	 	 	 	
		 con = 37	

Lift g to be a top-level definition. What about con?	

Lift all dependents?	

h x = x + g x 	 	 	 	

g x = x + con	

con = 37	

Being informed … in particular domains

Rename function	

Rename variables	

Reorder variables	

Add to export list	

Fold* against the def.

Clone removal

Extending it yourself

Extensibility: API + DSL

API	

Describe entirely new ‘atomic’ refactorings from scratch.	

	

 e.g. swap args, delete argument.	

We assume you know Erlang, but not internals of the syntax.	

!

DSL	

A language to script composite refactorings on top of simpler ones.	

	

 e.g. remove clone, migrate from old to new API.	

We embed in Erlang, to use the language in the “scripts”.

API: templates and rules … in Erlang

rule({M,F,A}, N) -> 	
 ?RULE(?T("F@(Args@@)"),	
 begin 	
 NewArgs@@=delete(N, Args@@), 	
 ?TO_AST("F@(NewArgs@@)")	
 end, 	
 refac_api:fun_define_info(F@) == {M,F,A}).	
!
delete(N, List) -> … delete Nth elem of List …

?RULE(Template, NewCode, Cond)	

The old code, the new code and the pre-condition.

Templates describe expressions

Context
available for

pre-conditions

Traversals
describe how

rules are applied

Rules describe transformations

Wrangler API

DSL … not just a script

Tracking changing names and positions.	

Generating refactoring commands.	

Dealing with failure.	

User control of execution. 	

Deals with the pragmatics of composition, rather than the theory.

?refac_(rename_fun, 	
 [{file, fun(_File)-> true end},	
 fun({F, _A}) ->	
 camelCase_to_camel_case(F) /= F	
 end,	
 {generator, fun({_File, F,_A}) ->	
 camelCase_to_camel_case(F)	
 end}], 	
 SearchPaths).	

?refac_(CmdName, Args, Scope)	
!

Args: modules, camelCase functions, new names.

Generation: camel case

Clone removal in the DSL

Transaction as a whole … non-transactional components OK. 	

Not just an API: ?transaction etc. modify interpretation of what
they enclose …

?transaction(
 [?interactive(RENAME FUNCTION)	
 ?refac_(RENAME ALL VARIABLES OF THE FORM NewVar*)	
 ?repeat_interactive(SWAP ARGUMENTS)	
 ?if_then(EXPORT IF NOT ALREADY) 	
 ?non_transaction(FOLD INSTANCES OF THE CLONE)	
]).

API migration

Scenario: system upgrade accompanied with a change in API.	

Example from Erlang standard distribution: the regular
expression library from regexp to re.	

How to refactor client code to accommodate this?	

Case study in the use of the API + DSL.

Looking forward

“Why should I trust my code to your tool?”

Benefit ≫ risk: removing bug preconditions

Scenario: building Erlang models for C code at Quviq AB.	

For buggy code, want
to avoid hitting the
same bugs all the time.	

Add bug precondition
macros … 	

… but want to remove
in delivered code.	

DSL + API.	

And you can see the
changes …	

The appearance has changed!

my_list() ->	
 [foo,	
 bar,	
 baz,	
 wombat	
]	
!
my_funny_list() ->	
 [foo	
 ,bar	
 ,baz	
 ,wombat	
]

data MyType = Foo |	
 Bar |	
 Baz	

!
data HerType = Foo	
 | Bar	
 | Baz	

{v1, v2, v3}	
!
{v1,v2,v3} 	
!
!
f (g x y)	
!
f $ g x y

Preserving meaning

What are we preserving?	

Where are we preserving it?	

Individual results or the refactoring tool itself?

Equivalences

Testing equivalence: ∀ test data [finite]	

PBT equivalence: ∀ random test data [finite, but unbounded]	

Extensional equivalence: ∀ input data [infinite]	

(Annotated) abstract syntax tree (with some quotient?)	

Textual	

!

Question: varieties of ↓: may be happy to converge on more inputs?	

test or verify

to
ol

 o
r

re
su

lts

×

test or verify

to
ol

 o
r

re
su

lts

×
test or verify

to
ol

 o
r

re
su

lts

Testing two refactoring tools

module2

function1

function2

module2

function1

function2

Compare the results of tool1 and tool2 …	

	

 … either by testing both, or directly comparing the code / ASTs.	

Similar to compiler comparisons and Eclipse vs NetBeans (Dig et al).

Testing one tool

module2

function1

function2

module2

function1

function2

Compare the results of function1 and function1 (unmodified) …	

	

 … using existing unit tests, or randomly-generated inputs 	

	

 … could compare ASTs as well as behaviour (in former case).

Fully random

moduleR

function1

function2

moduleR

function1

function2

Generate random modules,	

	

 … generate random refactoring commands, 	

	

 … and check ≣ with random inputs. (w/ Drienyovszky, Horpácsi).

moduleR

×
test or verify

to
ol

 o
r

re
su

lts

Tool verification (with Nik Sultana)

Deep embeddings of small languages:	

	

 … potentially name-capturing λ-calculus	

	

 … PCF with unit and sum types.	

Isabelle/HOL: LCF-style secure proof checking.	

Formalisation of meta-theory: variable binding, free / bound
variables, capture, fresh variables, typing rules, etc …	

	

 … principally to support pre-conditions.

Figure 1. Automated refactoring process

2.1 Stages in refactoring
Li (2006, see Chapter 4) describes refactoring as being made up
of three stages. This is illustrated in Figure 1. The preprocessing
stage involves producing representations of the program that are
suitable for transformation – this stage involves lexing, parsing,
and possibly further processing to generate a representation of
programs that is more rich than their Abstract Syntax Tree (AST),
if required.
The second stage involves the actual refactoring. Applying a

refactoring involves two steps: checking the refactoring’s precon-
ditions and transforming the program if the preconditions are satis-
fied by the program.
The last stage involves printing the program representation into

the representation we usually manipulate – a list of characters. For
some programming languages, such as Erlang, it suffices to pretty-
print the program since there is a widely-accepted and adhered-to
layout for programs (Li et al. 2006, §3.1). For other languages, such
as Haskell, further processing is required to ensure that the printed
refactored program mimics the layout of the original program since
the language does not enforce a particular layout.

2.2 Preserving program appearance
Since the layout of Haskell programs can be idiosyncratic, transfor-
mation tools need to take this into account by restoring the original
program’s appearance in the transformed program. For Haskell pro-
grams one could choose between explicit delimitation using braces
and using a so-called offside structure: the delimitation of code
is inferred from the code’s indentation. This is described in the
Haskell Report (Jones et al. 2003, §9.3).
During manual refactoring the preservation of layout and com-

ments is straightforward, but automating this preservation can be
challenging. Li (2006, §2.4) describes the automatic preservation
of program appearance for refactored Haskell programs. Her ap-
proach uses two basic program representations: the token stream
and an AST annotated with type and scope information. These two
representations are kept consistent (Li 2006, §4.2.3) since trans-
formations are effected on both: the AST is transformed to effect
changes to the program, and the token stream is also modified to en-
sure that program layout rules are adhered to following the AST’s
transformation. Comments are also preserved – and moved together
with code deemed related – using information in the token stream
and heuristics used to associate comments to code.
Besides program layout and comments, names (of variables,

definitions, etc) are features that should be preserved too. Names
are typically chosen with care in order to improve the program’s
readability. Name information can be obtained from the AST. In the
work described in this paper we focus solely on the main (second)
stage in the refactoring process. Within this stage we concentrate
on the preservation of name information together with program
behaviour. From this point onwards whenever a reference is made
to refactoring we intend this second stage.

2.3 Correctness property

A refactoring is composed of a collection of preconditions and a
program transformation. When a refactoring is applied to a pro-
gram, the transformation is effected only if all the preconditions
are satisfied by the program. Otherwise the program is returned un-
changed. A refactoring with conjoined preconditions represented
by the effective predicate Q, and effecting program transformation
T , behaves thus:

λp. if (Qp) then (T p) else p

Let ≃ denote a behavioural equivalence over programs. Then in
order to verify the refactoring (establishing that it is behaviour-
preserving for arbitrary programs) one must prove that:

∀p. (Qp) −→ (T p) ≃ p

Apart from p, refactorings are usually parametrised by other
values required by transformation T and which might also be con-
sumed by Q. Let us assume that the parameters have already been
provided and that the refactoring is a curried function – so at this
stage we only see the last formal parameter: the program itself.
Together with the program, the parameter values are inputs to the
refactoring and the values themselves might influence whether the
preconditions are satisfied. For example, the rename a variable
refactoring is additionally parametrised by two variable names: the
name to change and the name to change it to. These parameters are
also provided to the refactoring’s preconditions since they include
provisions to ensure that name-clash does not occur as a result of
transformation.

2.4 Models of refactoring

As previously explained, if the preconditions of a refactoring are
not satisfied then the program is not transformed. In implementa-
tions of refactorings, if the preconditions are not satisfied then the
user may be prompted to provide different parameters to the refac-
toring and offered the choice to abandon the refactoring. Let us call
this the interactive model.
A different approach would involve endowing the refactorings

with more automation such that they can autonomously change
parts of the program in order to satisfy the preconditions. The user
is later informed of these changes and might need to effect further
corrective changes. For example, in the event of a name-clash the
refactoring might perform renamings such that the transformation
would still preserve program behaviour. By contrast, this model
involves compensating for preconditions that are not satisfied.
These two models have analogues in the λ-calculus; for exam-

ple, with regards to names a transformation can be defined in a
non-renaming or in a renaming manner. These lead to interactive
and compensating refactoring definitions respectively. We opt for
the interactive approach in the research described in this paper. The
two transformation definitions will be described further in the next
section and the effect each has on the complexity of proofs will be
discussed.
The interactive approach is illustrated by means of a transition

diagram in Figure 2.

2.5 Transformation operations
Transformations might simply replace an (sub)expression with an-
other, or else propagate changes in expressions by using substitu-
tion. Substitution is the canonical transformation operation for clas-
sical λ-calculi – other expositions of λ-calculi may use different
canonical operations. For example when using nominal techniques
(Urban and Tasson 2005) swapping is the canonical operation.
In order to facilitate reasoning about programs, programs are

usually identified ‘up to renaming of bound variables’. Moreover,

52

Variable capturing substitution
Substitution

ε[M/x]
def
= ε

(y := N)[M/x]
def
= if x = y then y := N

else y := (N[M/x])

(D1 ∥ D2)[M/x]
def
= if x ∈ DVTopd (D1 ∥ D2)

then (D1 ∥ D2)
else (D1[M/x] ∥ D2[M/x])

i[M/x]
def
= if x = i then M else i

(λi.N)[M/x]
def
= if x = i then λi.N

else λi.(N[M/x])

(N ·N′)[M/x]
def
= (N[M/x]) · (N′[M/x])

(letrec D in N)[M/x]
def
= if x ∈ DVTopd (letrec D in N)

then (letrec D in N)
else letrec (D[M/x]) in (N[M/x])

Mechanical Verification of Refactorings – p.21/38

×

test or verify

to
ol

 o
r

re
su

lts

Automatically verify instances of refactorings

Prove the equivalence of the particular pair of functions /
systems using an SMT solver …	

… SMT solvers linked to Haskell by Data.SBV (Levent Erkok).	

!

Manifestly clear what is being checked. 	

!

The approach delegates trust to the SMT solver …	

… can choose other solvers, and examine counter-examples.	

!

Also possible for Erlang using e.g. McErlang model checker.

module Before where	
!
h :: Integer->Integer->Integer	
!
h x y = g y + f (g y)	
!
g :: Integer->Integer	
!
g x = 3*x + f x	
!
f :: Integer->Integer	
!
f x = x + 1

Example: renaming

module Before where	
!
h :: Integer->Integer->Integer	
!
h x y = g y + f (g y)	
!
g :: Integer->Integer	
!
g x = 3*x + f x	
!
f :: Integer->Integer	
!
f x = x + 1

Example: renaming

module After where	
!
h :: Integer->Integer->Integer	
!
h x y = k y + f (k y)	
!
k :: Integer->Integer	
!
k x = 3*x + f x	
!
f :: Integer->Integer	
!
f x = x + 1

{-# LANGUAGE ScopedTypeVariables #-}	
!
module RefacProof where	
!
import Data.SBV

h :: Integer->Integer->Integer	
!
h x y = g y + f (g y)	
!
g :: Integer->Integer	
!
g x = 3*x + f x

{-# LANGUAGE ScopedTypeVariables #-}	
!
module RefacProof where	
!
import Data.SBV

h :: Integer->Integer->Integer	
!
h x y = g y + f (g y)	
!
g :: Integer->Integer	
!
g x = 3*x + f x

h' :: Integer->Integer->Integer	
!
h' x y = k y + f (k y)	
!
k :: Integer->Integer	
!
k x = 3*x + f x

{-# LANGUAGE ScopedTypeVariables #-}	
!
module RefacProof where	
!
import Data.SBV

h :: Integer->Integer->Integer	
!
h x y = g y + f (g y)	
!
g :: Integer->Integer	
!
g x = 3*x + f x

h' :: Integer->Integer->Integer	
!
h' x y = k y + f (k y)	
!
k :: Integer->Integer	
!
k x = 3*x + f x

{-# LANGUAGE ScopedTypeVariables #-}	
!
module RefacProof where	
!
import Data.SBV

-- f can be treated as an uninterpreted symbol	
!
f = uninterpret "f"	
!
-- Properties	
!
propertyk = prove $ \(x::SInteger) -> g x .== k x	
propertyh = prove $ \(x::SInteger) (y::SInteger) -> h x y .== h' x y

h :: Integer->Integer->Integer	
!
h x y = g y + f (g y)	
!
g :: Integer->Integer	
!
g x = 3*x + f x

h' :: Integer->Integer->Integer	
!
h' x y = k y + f (k y)	
!
k :: Integer->Integer	
!
k x = 3*x + f x

-- f can be treated as an uninterpreted symbol	
!
f = uninterpret "f"	
!
-- Properties	
!
propertyk = prove $ \(x::SInteger) -> g x .== k x	
propertyh = prove $ \(x::SInteger) (y::SInteger) -> h x y .== h' x y

*Refac2> propertyk	
Q.E.D.	
*Refac2> propertyh	
Q.E.D.

h :: Integer->Integer->Integer	
!
h x y = g y + f (g y)	
 where	
 g z = z*z	
!
g :: Integer->Integer	
!
g x = 3*x + f x

h :: Integer->Integer->Integer	
!
h x y = g y + f (g y)	
 where	
 g z = z*z	
!
g :: Integer->Integer	
!
g x = 3*x + f x

h' :: Integer->Integer->Integer	
!
h' x y = k y + f (k y)	
 where	
 g z = z*z	
!
k :: Integer->Integer	
!
k x = 3*x + f x

h :: Integer->Integer->Integer	
!
h x y = g y + f (g y)	
 where	
 g z = z*z	
!
g :: Integer->Integer	
!
g x = 3*x + f x

h' :: Integer->Integer->Integer	
!
h' x y = k y + f (k y)	
 where	
 g z = z*z	
!
k :: Integer->Integer	
!
k x = 3*x + f x

f = uninterpret "f"	
!
propertyk = prove $ \(x::SInteger) -> g x .== k x	
propertyh = prove $ \(x::SInteger) (y::SInteger) -> h x y .== h' x y

h :: Integer->Integer->Integer	
!
h x y = g y + f (g y)	
 where	
 g z = z*z	
!
g :: Integer->Integer	
!
g x = 3*x + f x

h' :: Integer->Integer->Integer	
!
h' x y = k y + f (k y)	
 where	
 g z = z*z	
!
k :: Integer->Integer	
!
k x = 3*x + f x

f = uninterpret "f"	
!
propertyk = prove $ \(x::SInteger) -> g x .== k x	
propertyh = prove $ \(x::SInteger) (y::SInteger) -> h x y .== h' x y

*Refac2> propertyk	
Q.E.D.	
*Refac2> propertyh	
Falsifiable. Counter-example:	
 s0 = 0 :: SInteger	
 s1 = -1 :: SInteger

“How do I refactor my data representation?”

Changing data representations

Modify the implementation of a particular type (synonym).	

But don’t modify all occurrences of (Int,Bool), … scope issue.

type Rep = (Int,Bool) type Rep = (Bool,Int)	
!
f :: Rep -> Int f :: Rep -> Int	
f (n,_) = n + 42 f (_,n) = n + 42	
!
g :: (Int,Bool) -> Rep g :: (Int,Bool) -> Rep	
g (n,b) = g (n,b) =	
 if b then (n,b) else (-n,b) if b then (b,n) else (b,-n)	
!
h :: Rep -> Bool h :: Rep -> Bool	
h = snd h = snd . flip	

Changing data representations

Where does it get interesting?	

Introducing monad or applicative, e.g. 	

	 Int -> (x,Int)	 State Int x	

Introducing monad transformers.	

Non-isomorphic representations.	

Reactive extensions.	

Going to OTP, distributed, replicated, supervised …

to

“Can I apply this to GHC Haskell?”

“How do I refactor my Erlang + JavaScript?”

“Who cares about text files these days?”

“How do I parallelise this code?”

www.cs.kent.ac.uk/projects/wrangler

