Circularities and Modularity in the Wild

Some F# Perspectives on Software Engineering

Don Syme (Microsoft Research)
Scott Wlaschin (fobridge.co.uk, fsharpforfunandprofit.com)

Agenda

A bit about F#
Circularity and Modularity In The Wild

Tooling, Data and Type Providers

F# IS open source, cross-plattorm,
community-oriented

fsharp.org

#tsharp on Twitter

meetup.com/FSharpl.ondon
(on tonight!)

http://fsharp.org/
http://meetup.com/FSharpLondon

For this audience, F# is....

Type Providers
for Data
Integration

Computations

Core FP Objects
(async, ...)

Meta-
programming

Cross-platform

Compiler as
Service

EIEE Distribution

github.com/fsharp/fsharp github.com/fsharp/FSharp.Compiler.Service
github.com/fsprojects/VisualFSharpPowerTools — github.com/fsharp/FSharp.Data

F# helps address real business
problems for real businesses

Time to Market, Efficiency, Correctness and Complexity

See: “Succeeding with Functional-first Programming in Industry”
See fsharp.org/testimonials

http://fsharp.org/testimonials

F# has changed...

F# runs on
many
platforms)

"F# is for Windows” »

F# has changed...

"Microsoft
makes F#”

F# has many
contributors \

»

F# has changed...

Many

~ perspectives
http://fsharp.org

N /

One perspective
(Microsoft’s)

http://msdn.microsoft.com

»

/

http://fsharp.org/

fsharp.org

GEES (103] | w Tweet | 693
About

About F#

Learning F#
Development guide
Documentation
Language spec
Testimonials

Getting F#

F# on Mac

F# on Linux

F# on Windows
F# on Android

E# rn WS (iDheno DoAY

The F# Software Foundation

F# is a mature, open source, cross-platform, functional-first programming
language which empowers users and organizations to tackle complex
computing problems with simple, maintainable and robust code.

F# runs on Linux, Mac OS X, Android, i0S, Windows as well as HTMLS
and GPUs. F# is free to use and has an OSl-approved open source
license.

F# is used in a wide range of application areas and is supported by both
industry-leading companies providing professional tools, and by an active
open community’.

The F# Software Foundation exists to promote, protect, and advance F#,
and to support and foster the growth of a diverse international community
of F# users.

First Steps with F#

= View F# testimonials

Going Further with F#

+ Ask F# guestions on
StackOverflow

- Find F# meetups

- Leamn on Try F#

» Fxnlore F# books and

% Follow @fsharporg

Application Areas

Data Science

Web Programming
Apps and Games
IMachine Leaming
Cloud Programming
Financial Computing
IMath and Statistics
Data Access

Contributors to F#

The F# Software Foundation

Xamarin
Microsoft
Training Companies

maire

Circularities and Modularity in the Wild

Analysis by Scott Wlaschin and F# Community

Mixed OO/Functional Programming Has Won

Lambdas in C#, Java, C++, ...
Async monadic modality in C#, Javascript, PHP (Hack), ...
Function types in C#, TypeScript, ...
Generics in C#, Java, Visual Basi, ...

. except where it hasn't

Inheritance everywhere!!!

Nulls everywherell!

Side ef

ects everywherell!!

Circularities everywhere!!l!

F# and Software Engineering

By accident, F# makes for an interesting, large-scale
experiment in SE

Same runtime, JIT, GC, standard libraries, IDE, machines
as C#

"FP v, OO Cage MatCh O]c Death” (though not really....)

Q: Does the structure of F# code differ from C# in
practice?

Q: Does the language you use make a difference?

Unnecessary Circularities are Evil

Middle layer i
l —» Low Level layer
- Low Level layer :
l - High level Layer
e High level Layer Middle layer

To the functional programmer, it is “obvious” that our software
methodology should help minimize and reduce cyclic
dependencies in program structure.

The C# approach to circularity

All files in an "assembly” are mutually referential

Arbitrary circularity and dependency between “internal” items
in an assembly

[InternalsVisibleTo] can reveal internals of one assembly to
another

Mutually recursive “assemblies” are possible if you try hard

The F# approach to circularity

Like Haskell and all Hindley-Milner languages, F# has a file
ordering

F# prohibits direct circularities across files
F# encourages minimizing dependencies within a file
Parameterization the preferred technigue

F# objects support recursion and limited forms of circularity
when needed

Let’s analyse some C# and F# projects

C# projects

« Mono.Cecil, which inspects programs and libraries in the ECMA CIL format.
« NUmit

- SignalR for real-time web functionality.

« NancyFx, a web framework

« YamlDotNet, for parsing and emitting YAML.
- SpecFlow, a BDD tool.

* Json.INET.

- Entity Framework.

- ELMAH, a logging framework for ASP.NET.

« NuGet itself.

» Mog, a mocking framework.

« NDepend, a code analysis tool.
 And, to show I'm being fair, a business application that [wrote in C#.

Let’s analyse some C# and F# projects

F# projects

« FSharp.Core, the core F# library.

- FSPowerPack.

» Fslnit, extensions for NUnit.

- Canopy, a wrapper around the Selenium test automation tool.
- Fs5ql, a nice little ADO.NET wrapper.

- WebSharper, the web framework.

- TickSpec, a BDD tool.

 FSharpx, an F# library.

 FParsec, a parser library.

« FsYaml, a YAML library built on FParsec.

« Storm, a tool for testing web services.

« Foq, a mocking framework.

 Another business application that I wrote, this time in F#.

Sizes of projects

Project

ef
jsonDotNet
nancy

cecil

nuget
signalR
nunit
specFlow
elmah
yamlDotNet
fparsecCS
mogq
ndepend
ndependPlat
personalCS
TOTAL

Code

size
260521
1488249
143445
101121
114856
65513
45023
46065
43855
23499
57474
133180
478508
151625
422147

Top-
level

types
514
215
339
240
216
192
73
242
1ubH
70
41
397
734
185

195

2244670 3869

Authored All
types types
565 876
232 283
366 560
245 247
237 381
229 311
195 197
287 331
140 141
73 73
92 93
420 533
828 843
205 205
278 346
4392 5420

Project

fsxCore

fsCore
fsPowerPack
storm

fParsec
websharper
tickSpec
websharperHtml

Canopy

fsYaml
fsSql
fsUnit

foq
personalFS
TOTAL

Code

size
339596
226830
17581
73595
67252
47391
30797
14787
15105
151G1
15434
1848

26957
188093

TS

level Authored All

Top-
types types
173 328
1534 313
93 150
67 70
3 24
52 128
34 49
18 28
6 16
7 11
13 18
2 3
35 48
30 146
6gz 1332

types
2024

186

410
403
245
285

Metrics Used

A top-level type is. a type that is not nested anc
which is not compiler generated.

Roughly speaking, a count of user-defined types
and modules

Code size is measured by IL instructions (not LOC)

How many top-level type definitions or
modules?

Top level types

Codesize vs. # of top level types

800

C# projects @ F# projects

J00
600
500 *
400 *
.
300
L &»
& »
200 -
¢ °
®
100 .
*
o % ®
oo o

200 300
Code size (K)

500

F# tends to have fewer type definitions or
modules.

C# projects have ~1-2 TTT/1K instructions.
F# projects have ~0.6 TTT/1K instructions.
Reasons:

(a) functional abstraction is used more often

(b) functions, discriminated unions etc. mean
fewer type definitions and modules

What about dependencies?

Definition of dependency

Let's say we have a top-level type & and another top-level type 8 . Then I say that a dependency exists from &

to B if:

- Type a or any of its nested types inherits from (or implements) type 8 or any of its nested types.
- Type & or any of its nested types has a field, property or method that references type 8 or any of its

nested types as a parameter or return value. This includes private members as well -- after all, it is still a
dependency.

« Type a or any of its nested types has a method implementation that references type & or any of its nested

types.

This might not be a perfect definition. But it is good enough for my purposes.

Codesize vs. # of dependencies F# code has fewer top-level-
type/module dependencies

C# projects @ F# projects

3000

For C#, the number of total
dependencies increases with project size.
2500 - | | | | Fach top-level type depends on 3-4

¢ others, on average

:

For F# each F# type/module depends
on Nno more than 1-2 others, on average

Let’s take a look at the distribution of
IS dependencies...

of dependenciess
H
n
=2
S

1000 -

500 : &

0 100 200 300 400 500
Code size (K)

C# projects
Top level types grouped
by number of dependencies

B 0 dependencies

m]lor?2
dependencies

m3ord
dependencies

w59
dependencies

10 or more
dependencies

F# projects:
Top level types grouped
by number of dependencies

B 0 dependencies

m1or2
dependencies

m3ord
dependencies

m 5-9
dependencies

10 or more
dependencies

Here are the results for the C# projects:

Project

ef
jsonDotNet
LELIEY

cecil

nuget
signalR
numnit

specFlow

elmah
yamlDotNet
fparsecCS
moq
ndepend
ndependPlat

personalC5
TOTAL

Top
Level
Types

514
2‘.15
339
240
216
192
173
242
16
70
ES |
397
734
185
195
3869

Total
Dep.
Count

2354
913

1132

300
228
64
1100
2426
404
232
13149

Dep/Top
4.6
4.2
33
4.8
39
33
2.9
2.4
2.6
33
1.6
2.8
33
2.2
2.7
34

One or
more

dep.
76%
6g%
78%

0

71%
66%
75%
64%
72%
83%
59%
63%
67%
67%
69%
70%

Three or

more dep.
51%
42%
41%
43%
43%
34%
39%
25%
28%
30%
29%
29%
37%
24%
29%
37%

Five or
more

dep.
32%
30%
22%
23%
26%
19%
13%
17%
22%
1%
5%
17%
25%
1%
19%

22%

0%

10%
4%
7%
9%

Top Total One or Threeor Fiveor Tenor

Level Dep. more more more more
Project Types Count Dep/Top dep. dep. dep. dep.
fsxCore 173 76 0.4 30% 4% 1% 0%
fsCore 154 287 1.9 55% 26% 14% 3%
fsPowerPack o3 68 0.7 38% 13% 2% 0%
storm 67 105 2.9 72% 40% 18% 4%
fParsec 8 g 1.1 63% 25% 0% 0%
websharper 52 18 0.3 31% o% 0% 0%
tickSpec 34 48 1.4 50% 15% g% 3%
websharperHtm] 18 37 2.1 78% 29% 6% 0%
canopy 6 8 1.3 50% 23% 0% 0%
fs¥aml 7 10 1.4 71% 14% 0% 0%
fsSql 13 14 1.1 54% 8% 8% 0%
fsUnit 2 o 0.0 0% 0% 0% 0%
foq 35 66 1.9 66% 29% 1% 0%
personalF5 30 111 3.7 g3% Bo% 27% 7%

TOTAL 6gz 047 1.4 49% 19% 8% 1%

Let's compare two similar projects...

SpecFlow (F

TickFlow (F#

Tickpoc 3oy Type

Similar feature set —the code is organized differently. It highlights some of the
differences between OO design and functional design.

SpecFIovv s well designed, and a usetul library. It uses good OOD and TDD practices:
TestRunnerl\/lanager [TestRunnerManager

« listener" classes and interfaces

» "provider" classes and interfaces

« "comparer" classes and interfaces....

TickSpec uses no interfaces at all:
* no "listeners”, "providers" or "comparers”
. vvhere needed the role they play is Tulfilled by functions

What about circularity?

Methodology

Doing the experiment

First, | downloaded each of the project binaries using NuGet. Then [wrote a little F# script that did the
following steps for each assembly:

1. Analyzed the assembly using Mono.Cecil and extracted all the types, including the nested types

2. For each type, extracted the public and implementation references to other types, divided into internal
(same assembly) and external (different assembly).

3. Created a list of the "top level” types.

4. Created a dependency list from each top level type to other top level types, based on the lower level
dependencies.

This dependency list was then used to extract various statistics, shown below. I also rendered the dependency
graphs to SVG format (using graphViz).

For cycle detection, I used the QuickGraph library to extract the strongly connected components, and then did
some more processing and rendering.

If you want the gory details, here is a link to the script that I used, and here is the raw data.

Top- Max Cycle comp.

level Cycle comp. count Partic. Partic% size
Project types count Partic. Partic.% size (public) (public) (public) (public)
ef 514 14 123 24% 79 1 7 1% 7
jsonDotNet 215 3 88 41% 83 1 11 5% 1
nancy 339 6 35 10% 21 2 4 1% 2
cecil 240 2 125 52% 123 1 50 21% 50
nuget 216 4 24 1% 10 o a o% 1
signalR 192 3 14 7% 7 1 5 3% 5
nunit 173 2 8o 46% 78 1 48 28% 48
specFlow 242 5 1 5% 3 1 2 1% 2
elmah 16 2 8% 5 1 2 2% 2
yamlDotNet 7o o 0% 1 o o 0% 1
fparsecCS q 3 15% 2 1 2 5% 2
moq 397 © 50 13% 15 o o 0% 1
ndepend 734 12 79 11% 22 8 36 5% 7
ndependPlat 185 2 5 3% 3 o o 0% 1
personalCS 195 n 34 17% 8 5 19 10% 7

TOTAL 3869 683 18% 186 5%

Top- Max Cycle comp.

level Cycle comp. count Partic. Partic.% size
Project types count Partic. Partic.% size (public) (public) (public) (public)
fsxCore 173 O o 0% 1 o 0 0% 1
fsCore 154 2 5 1% 3 0 0 0% 1
fsPowerPack 93 1 2 2% 2 o o 0% 1
storm 67 o o 0% 1 0 o 0% 1
fParsec 8 o o 0% 1 o o 0% 1
websharper 52 0 o 0% 1 0 0 0% 0
tickSpec 34 o o 0% 1 0 0 0% 1
websharperHtml 18 o o 0% 1 0 o 0% 1
canopy 6 o o 0% 1 o o 0% 1
fsYaml 7 o o 0% 1 0 0 0% 1
fsSql 13 o o 0% 1 o o 0% 1
fsUnit 2 o o 0% o 0 o 0% o
foq 15 o o 0% 1 o o 0% 1
personalF5 30 o o 0% 1 0 o 0% 1

TOTAL 69z i 1% o 0%

of types participating in cydes

Top level types vs. participation in cycles Why the difference between C# and F#?

& C# projects @ FH projects)))
In C#, there is nothing stopping you from
creating cycles. In fact, you have to make a
K o | special effort to avoid them.

140

120

In F#, you can't easily create cycles at all.

3

8
.
B

60
E]
40 r
* L]
*
20 + :
PY M
* ®é
0 onee® o

Circularity as it really is...

Microsoft Entity Framewc

e e e e

(and that's just 1/4 of the graph...)

Conclusion....

In theory and in practice, unmoderated intra-
assembly cycles are a disaster

Language mechanisms that enforce layering
are necessary and good

The really hard question:
Unmoderated cycles are like crack

How do we help an utterly addicted industry?

(Whether via OO, FP or other languages?)

A related ana\ysis (Simon Cousins, Energy Sector)

350,000

ines of C# OO
by offshore team

The C# project took five years and peaked at ~8 devs. It never fully
implemented all of the contracts.

The F# project took less than a year and peaked at three devs (only one
had prior experience with F#). All of the contracts were fully

30,000

ines of robust F#, with
parallel +more features

implemented.

An application to evaluate the revenue due from Balancing Services contracts in

the UK energy industry

http://simontcousins.azurewebsites.net/does-the-language-you-use-make-a-

difference-revisited/

http://www2.nationalgrid.com/uk/services/balancing-services/
http://simontcousins.azurewebsites.net/does-the-language-you-use-make-a-difference-revisited/

2000

B F#

C#

Implementation
Braces

Blanks

Null Checks
Comments
Useful Code
App Code

Test Code

Total Code

C#

56,929
29,080
3,011
23,270
163,276
305,566
42,864

348,430

F#
643
3,630
15
487
16,667
21,442
9,359
30,801

try

Other F# Topics

F# Basics K er Data F# for GPUs H# tor Cloud
Science Data
F# for Testing F# for DSLs

F# Data Integration through Type

providers

Questions?

F# IS open source, cross-platform,
community-oriented

fsharp.org

meetup.com/FSharpl.ondon

#tsharp on Twitter

http://fsharp.org/
http://meetup.com/FSharpLondon

In Summary

Open, cross-platform,
strongly typed, efficient,
rock-solid stable

Unbeatable data integration

Visual F# - tooling you can
trust from Microsoft

The safe choice for
functional-first

