
 The Golden Trinity of Erlang	

How Something Simple Has Real Business Value

Torben Hoffmann	

CTO, Erlang Solutions	

torben.hoffmann@erlang-solutions.com	

@LeHoff

mailto:torben.hoffmann@erlang-solutions.com

Why this talk?

Why this talk?

 Introduce The Golden Trinity of Erlang

Why this talk?

 Introduce The Golden Trinity of Erlang

 Show the business value of the simple
concepts that makes Erlang great

Why this talk?

 Introduce The Golden Trinity of Erlang

 Show the business value of the simple
concepts that makes Erlang great

 Spread the Erlang love

CustomersSome

19,000,000,000 reasons to use Erlang

CustomersSome

19,000,000,000 reasons to use Erlang

University Relations

Erlang History

wanted

Bjarne Däcker’s licentate thesis: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.1957

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.1957

wanted

short time-to-market

Bjarne Däcker’s licentate thesis: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.1957

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.1957

wanted

short time-to-market

on-the-fly upgrades

Bjarne Däcker’s licentate thesis: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.1957

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.1957

wanted

short time-to-market

on-the-fly upgrades

quality and reliability
and some other stuff…

Bjarne Däcker’s licentate thesis: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.1957

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.1957

wanted

on-the-fly upgrades

quality and reliability
and some other stuff…

productivity

Bjarne Däcker’s licentate thesis: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.1957

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.1957

wanted

quality and reliability
and some other stuff…

productivity

no downtime

Bjarne Däcker’s licentate thesis: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.1957

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.1957

something that always work

wanted

productivity

no downtime

Bjarne Däcker’s licentate thesis: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.1957

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.1957

something that always work

wanted

no downtime

money

Bjarne Däcker’s licentate thesis: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.1957

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.1957

something that always work

wanted

money

money

Bjarne Däcker’s licentate thesis: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.1957

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.1957

wanted

money

money

money

Bjarne Däcker’s licentate thesis: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.1957

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.1957

wanted

money

money

money

it’s a rich mans world

If our basic tool, the language in which we
design and code our programs, is also
complicated, the language itself becomes part of
the problem rather than part of its solution.	

!

- C.A.R. Hoare

Good Erlang Domains

Good Erlang Domains

 Low latency over throughput

Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)

Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)

 Massively concurrent

Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)

 Massively concurrent

 Distributed

Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)

 Massively concurrent

 Distributed

 Fault tolerant

Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)

 Massively concurrent

 Distributed

 Fault tolerant

 Uses OTP

Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)

 Massively concurrent

 Distributed

 Fault tolerant

 Uses OTP

 Non-stop operation

Good Erlang Domains

 Low latency over throughput

 Stateful (in contrast to being stateless)

 Massively concurrent

 Distributed

 Fault tolerant

 Uses OTP

 Non-stop operation

Under load, Erlang programs
usually performs as well as
programs in other languages,
often way better.	

Jesper Louis Andersen

The Golden Trinity Of Erlang

To Share Or Not To Share

To Share Or Not To Share

Memory

To Share Or Not To Share

Memory

P1

To Share Or Not To Share

Memory

P1 P2

To Share Or Not To Share

Memory

P2

Corrupt

To Share Or Not To Share

MemoryCorrupt

To Share Or Not To Share

Memory MemoryCorrupt

To Share Or Not To Share

Memory Memory

P1

Corrupt

To Share Or Not To Share

Memory Memory Memory

P1

Corrupt

To Share Or Not To Share

Memory Memory Memory

P1 P2

Corrupt

To Share Or Not To Share

Memory Memory

P2

Corrupt Corrupt

To Share Or Not To Share

Memory Memory

P2

Corrupt

Failures
Anything that can go wrong, 	

will go wrong	

Murphy

Failures
Anything that can go wrong, 	

will go wrong	

MurphyProgramming errors

Failures
Anything that can go wrong, 	

will go wrong	

MurphyProgramming errors
Disk failures

Failures
Anything that can go wrong, 	

will go wrong	

MurphyProgramming errors
Disk failures
Network failures

Failures

Most programming paradigmes are fault in-tolerant

Anything that can go wrong, 	

will go wrong	

MurphyProgramming errors
Disk failures
Network failures

Failures

Most programming paradigmes are fault in-tolerant
 ⇒ must deal with all errors or die

Anything that can go wrong, 	

will go wrong	

MurphyProgramming errors
Disk failures
Network failures

Failures

Most programming paradigmes are fault in-tolerant
 ⇒ must deal with all errors or die

Anything that can go wrong, 	

will go wrong	

MurphyProgramming errors
Disk failures
Network failures

Erlang is fault tolerant by design

Failures

Most programming paradigmes are fault in-tolerant
 ⇒ must deal with all errors or die

Anything that can go wrong, 	

will go wrong	

MurphyProgramming errors
Disk failures
Network failures

Erlang is fault tolerant by design
 ⇒ failures are embraced and managed

Let It Fail
convert(monday) -> 1;!
convert(tuesday) -> 2;!
convert(wednesday) -> 3;!
convert(thursday) -> 4;!
convert(friday) -> 5; !
convert(saturday) -> 6;!
convert(sunday) -> 7! ;!
convert(_) ->!
 {error, unknown_day}.!

Let It Fail
convert(monday) -> 1;!
convert(tuesday) -> 2;!
convert(wednesday) -> 3;!
convert(thursday) -> 4;!
convert(friday) -> 5; !
convert(saturday) -> 6;!
convert(sunday) -> 7! .!
!

Let It Fail
convert(monday) -> 1;!
convert(tuesday) -> 2;!
convert(wednesday) -> 3;!
convert(thursday) -> 4;!
convert(friday) -> 5; !
convert(saturday) -> 6;!
convert(sunday) -> 7!

Erlang encourages agressive/offensive programming

 .!
!

Benefits of let-it-fail

Source:	 h*p://www.slideshare.net/
JanHenryNystrom/produc;vity-‐
gains-‐in-‐erlang

Data	 Mobility	 component	 breakdown

Benefits of let-it-fail

code	 that	 solves	 	
the	 problem

Source:	 h*p://www.slideshare.net/
JanHenryNystrom/produc;vity-‐
gains-‐in-‐erlang

Data	 Mobility	 component	 breakdown

Benefits of let-it-fail

code	 that	 solves	 	
the	 problem

Source:	 h*p://www.slideshare.net/
JanHenryNystrom/produc;vity-‐
gains-‐in-‐erlang

Data	 Mobility	 component	 breakdown

Benefits of let-it-fail

code	 that	 solves	 	
the	 problem

Source:	 h*p://www.slideshare.net/
JanHenryNystrom/produc;vity-‐
gains-‐in-‐erlang

Data	 Mobility	 component	 breakdown

Benefits of let-it-fail

code	 that	 solves	 	
the	 problem

Source:	 h*p://www.slideshare.net/
JanHenryNystrom/produc;vity-‐
gains-‐in-‐erlang

Data	 Mobility	 component	 breakdown

Benefits of let-it-fail

code	 that	 solves	 	
the	 problem

Source:	 h*p://www.slideshare.net/
JanHenryNystrom/produc;vity-‐
gains-‐in-‐erlang

Data	 Mobility	 component	 breakdown

Benefits of let-it-fail

code	 that	 solves	 	
the	 problem

Source:	 h*p://www.slideshare.net/
JanHenryNystrom/produc;vity-‐
gains-‐in-‐erlang

Data	 Mobility	 component	 breakdown

Benefits of let-it-fail

code	 that	 solves	 	
the	 problem

Erlang	 @	 3x
Source:	 h*p://www.slideshare.net/
JanHenryNystrom/produc;vity-‐
gains-‐in-‐erlang

Data	 Mobility	 component	 breakdown

Failure Handling with Supervisors

Supervisor

Worker

Business benefits of supervisors

Business benefits of supervisors

 Only one process dies

Business benefits of supervisors

 Only one process dies

 isolation gives continuous service

Business benefits of supervisors

 Only one process dies

 isolation gives continuous service

 Everything is logged

Business benefits of supervisors

 Only one process dies

 isolation gives continuous service

 Everything is logged

 you know what is wrong

Business benefits of supervisors

 Only one process dies

 isolation gives continuous service

 Everything is logged

 you know what is wrong

 Corner cases can be fixed at leisure

Business benefits of supervisors

 Only one process dies

 isolation gives continuous service

 Everything is logged

 you know what is wrong

 Corner cases can be fixed at leisure

 Product owner in charge!

Business benefits of supervisors

 Only one process dies

 isolation gives continuous service

 Everything is logged

 you know what is wrong

 Corner cases can be fixed at leisure

 Product owner in charge!

 Not the software!

Business benefits of supervisors

 Only one process dies

 isolation gives continuous service

 Everything is logged

 you know what is wrong

 Corner cases can be fixed at leisure

 Product owner in charge!

 Not the software!

Software architecture
that supports

iterative development

Cruising with Erlang

Cruising with Erlang

 Understand the failure model

Cruising with Erlang

 Understand the failure model

 Embrace failure!

Cruising with Erlang

 Understand the failure model

 Embrace failure!

 Use patterns to deliver business value

Cruising with Erlang

 Understand the failure model

 Embrace failure!

 Use patterns to deliver business value

 Stay in charge!

Cruising with Erlang

 Understand the failure model

 Embrace failure!

 Use patterns to deliver business value

 Stay in charge!

