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If our basic tool, the language in which we 
design and code our programs, is also 
complicated, the language itself becomes part of 
the problem rather than part of its solution.	

!

- C.A.R. Hoare
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 Low latency over throughput

 Stateful (in contrast to being stateless)

 Massively concurrent

 Distributed

 Fault tolerant

 Uses OTP

 Non-stop operation

Under load, Erlang programs 
usually performs as well as 
programs in other languages, 
often way better.	


Jesper Louis Andersen
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Failures

Most programming paradigmes are fault in-tolerant
 ⇒ must deal with all errors or die

Anything that can go wrong, 	

will go wrong	


MurphyProgramming errors
Disk failures
Network failures

Erlang is fault tolerant by design
 ⇒ failures are embraced and managed
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convert(wednesday) -> 3;!
convert(thursday)  -> 4;!
convert(friday)    -> 5; !
convert(saturday)  -> 6;!
convert(sunday)    -> 7!

Erlang encourages agressive/offensive programming

                       .!
!
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Benefits of let-it-fail

code	  that	  solves	  	  
the	  problem

Erlang	  @	  3x
Source:	  h*p://www.slideshare.net/
JanHenryNystrom/produc;vity-‐
gains-‐in-‐erlang

Data	  Mobility	  component	  breakdown
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Business benefits of supervisors

 Only one process dies

 isolation gives continuous service

 Everything is logged

 you know what is wrong

 Corner cases can be fixed at leisure

 Product owner in charge!

 Not the software!

Software architecture 
that supports 

iterative development
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