
Jenga

The design of an expressive and scalable build system

What is a build system?

• Build rules provided by user

• targets; actions; dependencies

• Build tool (jenga)

• run actions necessary to bring targets up-to-date

• Shared framework (e.g. for a whole company)

• per-project config

• Build process is demand driven

Why a new build system?

• Already so many to choose from:

• make, omake, ocamlbuild, ninja, tup, redo, shake...

• Jane Street environment

• 4k dirs; 34k files; 2.4m lines OCaml

• Two workflows

• Focus: Correctness and Scalability

Design

Necessities

• Programmable

• rule generation in a real programming language

• jengaroot.ml dynamically compiled and loaded

• Incremental

• the point of a build system

• Polling (inotify)

• for individual development

• Parallel

• run compilation actions in parallel

Incremental build

To build a target, locate its rule:

• Discover dependencies; bring them up to date

• Run the rule’s action iff:

• no record of running action before

• dependencies have changed

• action has changed

• targets missing or different from expected

• Record successful run in persistent DB

Correctness

• Dependencies are tricky!

• Accurate dependencies are required for consistent builds

• Requires detailed knowledge of toolchain

• Dependencies can be dynamic

• “scanner dependencies”

• glob dependencies (ls *.ml)

• Rule generation

• not a distinct phase

• may also have dependencies

Rules make style

• Triple of targets, dependencies and action

val rule : path list -> dep list -> action -> rule

• Not expressive enough!

• Can’t represent dynamic dependencies

• Action is fixed

Encoding dependencies

Introduce a notion of a value and its dependencies.

α dep

Constant value:

val need : path -> unit dep

Varying value:

val glob : dir:path -> string -> path list dep

val contents : path -> string dep

Composing dependencies

Dynamic dependencies expressed with bind (*>>=)

val return : ’a -> ’a dep

val (*>>=) : ’a dep -> (’a -> ’b dep) -> ’b dep

val (*>>|) : ’a dep -> (’a -> ’b) -> ’b dep

Concurrency expressed using all

val all : ’a dep list -> ’a list dep

val all_unit : unit dep list -> unit dep

Rules jenga style

• Action carried by the dependency

val rule : path list -> action dep -> rule

• Rule generation

val generate : (dir:path -> rule list dep) -> scheme

• Recover simple rules

let simple_rule targets deps action =

rule targets (

all_unit deps *>>= fun () ->

return act)

Example 1: OCaml compilation

val compile_ml: dir:path -> name:string -> rule

let compile_ml ~dir ~name =

let p x = relative ~dir (name ^ x) in

rule [p".cmi"; p".cmx"; p".o"] (

let static = [p".ml"] in

deps_from_file ~dir (p".ml.d") *>>= fun dynamic ->

needs (static @ dynamic) >>| fun () ->

bash ~dir (sprintf "ocamlopt -c %s.ml" name)

)

Example 2: OCaml rule generation

val generate : (dir:path -> rule list dep) -> scheme

Rules for a directory of ocaml

generate (fun ~dir ->

glob ~dir "*.ml" *>>= fun mls ->

glob ~dir "*.mli" *>>| fun mlis ->

let exists_mli x = List.mem mlis (relative ~dir (x ^ ".mli")) in

List.map mls ~f:(fun ml ->

let name = chop_suffix (basename ml) ".ml" in

if (exists_mli name)

then compile_ml_mli ~dir ~name

else compile_ml ~dir ~name)

)

Summary of Jenga

• Key features

• Rule development in OCaml

• Expressive API for dynamic dependencies

• Incremental, polling, parallel builds

• Developed and used at Jane Street

• Open source

opam install jenga

