The design of an expressive and scalable build system

Jane
@ Street

Build rules provided by user

targets; actions; dependencies
Build tool (jenga)

run actions necessary to bring targets up-to-date
Shared framework (e.g. for a whole company)

per-project config

Build process is demand driven

Jane
© Street

Already so many to choose from:

make, omake, ocamlbuild, ninja, tup, redo, shake...
Jane Street environment

4k dirs; 34k files; 2.4m lines OCaml

Two workflows

Focus: Correctness and Scalability

Jane
© Street

Design

Programmable

rule generation in a real programming language

jengaroot.ml dynamically compiled and loaded
Incremental

the point of a build system
Polling (inotify)

for individual development
Parallel

run compilation actions in parallel

@

Jane
Street

To build a target, locate its rule:
Discover dependencies; bring them up to date
Run the rule’s action iff:
no record of running action before
dependencies have changed

action has changed
targets missing or different from expected

Record successful run in persistent DB
(O) Jane
Street

Dependencies are tricky!

Accurate dependencies are required for consistent builds
Requires detailed knowledge of toolchain

Dependencies can be dynamic
“scanner dependencies”
glob dependencies (1s *.ml)
Rule generation

not a distinct phase

may also have dependencies © é:‘t:lpeee ¢

Triple of targets, dependencies and action

val rule : path list -> dep list -> action -> rule

Not expressive enough!

Can't represent dynamic dependencies
Action is fixed

Jane
© Street

Introduce a notion of a value and its dependencies.

« dep
Constant value:
val need : path -> unit dep
Varying value:
val glob : dir:path -> string -> path list dep

val contents : path -> string dep

Jane
© Street

Dynamic dependencies expressed with bind (*>>=)

val return : ’a -> ’a dep
val (#>>=) : ’a dep -> (a -> ’b dep) -> ’b dep
val (*>>|) : ’a dep -> (a -> ’b) => ’b dep

Concurrency expressed using all

val all : ’a dep list -> ’a list dep

val all_unit : unit dep list -> unit dep

Jane
© Street

Action carried by the dependency

val rule : path list -> action dep -> rule

Rule generation

val generate : (dir:path -> rule list dep) -> scheme

Recover simple rules

let simple_rule targets deps action =

rule targets (

all_unit deps *>>= fun () -> (O) Jane
Street

return act)

Example 1: OCaml compilation

val compile_ml: dir:path -> name:string -> rule

let compile_ml “dir “name =

let p x = relative “dir (name ~ x) in

rule [p".cmi"; p".cmx"; p".o"] (

) Jane
@ Street

val generate : (dir:path -> rule list dep) -> scheme

Rules for a directory of ocaml

generate (fun ~dir ->
glob “dir "*x.ml" *>>= fun mls ->
glob “dir "*.mli" *>>| fun mlis ->
let exists_mli x = List.mem mlis (relative ~dir (x ~ ".mli")) in
List.map mls “f:(fun ml ->
let name = chop_suffix (basename ml) ".ml" in
if (exists_mli name)

then compile_ml_mli “dir “name

else compile_ml “dir “name) © éipeeet

Summary of Jenga

o Key features

¢ Rule development in OCaml
» Expressive API for dynamic dependencies
o Incremental, polling, parallel builds

» Developed and used at Jane Street

« Open source

Jane
© Street

