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Correlation and Regression
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e The association between two variable

e Strength of association usually measured by
a correlation coefficient p in range [-1, 1]

e Most well known

— Pearson Product Moment Correlation coefficient
* Arises from bi-variate normal distribution

— If both variables are standardized then plotted
— Elipse shape indicates an association

» Narrower the elipse the closer p~1(+ve) or -1 (-ve)
— Circular shape indicates no associate with p~0
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Bivariate Normal Distribution

Bivariate Normal distribution

1 -1
d(x1x5) = exp{ 4 —[zZ — 2pz,2, + zz]}
bax2) 210,05, 1 — p? 2(1—p2) : ?
X1 — X2 — Hz
where z; = and z, =
0 )

Standard Bivariate Normal z¥N(0,1)
1 —1

G\z, 2, ) = exp{ '
(2.2, 2mf1—p?  2(1-p?)

Generalises to n dimensions

(22 - 20m2, + 73]}

Pearson’s p is a parameter of the distribution



Pearson’s p
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* From the bivariate normal distribution , = COZ(;’”

* Estimated from data S (i — D) — )
SN) TN T N CT O
e (Calculating r does require normality

— But statistical tests of significance do

— Test HO r=0 can be based on T having Student’s t
distribution n-2 df, where

T=r

log.(1+ 1)

_ . . . . - — 0-5 -
There is also a normalising transformation 2 log.(1—7)
* Which has standard error

P
/

/N — 3
— Used when correlations from different sources need to be
aggregated (such as during meta-analyses)
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* Using cor.testin R p=0.57, T=1.9448 n.s.

Small Data set

* Delete Aand p=0.57, T=5.887***
* Delete B and p=0.28, T=0.760 n.s.

LoC
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Data from ICL




+ &5 @

>

Keele
University

Factors Affecting Magnitude
Pearson’s p

The slope of the line about which points are
clustered

— If slope=0, p=0, the larger the slope the largeris p
The magnitude of the deviations from the line

— Closer points are to notional line the largeris p
Outliers

Restricting range of X values

— Can increase or decrease p

Curvature
— p assumes a linear relationship
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Robust correlation

e Spearman’s p
— Replace data values by ranks
— Uses same calculation as Pearson

* With previous data set
— All data, r=0.41 p=0.25
— With A removed, r=0.67, p=0.059
— With B removed, r=0.18, p=0.64



S Non-Parametric Correlation
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* Kendall’s tau (1)

e Based on calculating slopes between all
pairs of points
— Takes median slope

* With previous data set
— All data, r=0.33 p=0.22
— With A removed, r=0.56, p=0.045
— With B removed, r=0.17, p=0.61
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RelPlot

relplot function is a bivariate equivalent of box plot

Shows the central ellipsoid part of the bi-variate distribution plus outliers
Calculates a robust estimate of r=0.90

Does not generalise to more dimensions

Assuming bi-variate normal means negative values are expected
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MGV method for outliers

e Minimum Generalised Variance method
can be used with many variables

MGV method

10 20 30 40 5 60 70
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Robust Correlations
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* Winsorized correlation (wincor(x,y))

— Replace X and y values at extremes with 25 (low) 75 (high)
percentile values

— 0.407 sig.level=.276

* Percentage Bend Correlation
— Not estimate of Pearson’sr
— New correlation robust to changes in distribution
— Based on trimming univariate outliers
— corb(x,y,corfun=pbcor,nboot=599)
— r,,=-441 Boostrap CI=(-0.44, 0.97)

e Skipped correlations (i.e. remove outliers)
— Removed based on MGV then use Pearson (r=0.91)
— Need to adjust Test value & critical value

n-—2 6.947
T, =1, | > =6.29,cv =

1 —17; n

+ 2.3197 = 3.0144



Comparison on full data set
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Linear Regression

Finding the parameters of a model of the form
Y = Bo+ B1Xy + B2 Xo + 0+ BpXp
— Y is the response/outcome/dependent variable

— X. is the ith of p stimulus/input/independent
variables

— B, is the ith parameter of the model

* Alinear modelis linear w.r.t the parameters

— Polynomial models are linear models of the nth order
where n is highest power

— |.e. a second-order regression model has form
Y = Bo+ B X + BoX7?

— A non-linear model might have form Y = Bx%:
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* Basic model for one input variable is

Y; = Bo + 1 X; + €

* Sum of squares of deviations from true line is
S :ZEE = Z(Yz — o + B1X;)?
* To estimate by least squares

— Differentiate w.r.t each parameter in turn

— To find the turning point (i.e. minimum) set each
differential to O

» Solve for each parameter in turn



< Parameter Estimation

Keele
University

e Differentials are

5S 5S
5/3,0__22(Y Bo + B1X;) 5/3,1—_22X(Y Bo + B1X;)

e Solutions after setting each to O are

bl:Z(Yi_y)(xi_X)ZSXY:Tﬁ boz?_bl)—(

Y (X; — )_()2 S% Sx

e For standardized normal variables by =71

— Slope must less than 1, even if Y=X

— The larger the error term, the larger r and the
lower the value of b,
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Bivariate Normal Distributions

b,=0.57441
b, =-0.07613

QO g,
o2 o7 0
L
o o %9 O
] (]
o B
om o]
]
. ST
B0 Lo o
o Oog g&% o
o8 §
99
[a]
(e}
T T T T T T
1 0 1 2 3
X
rho=0.9
b,=0.9018
b,=-0.0097

17



+ &5 @

>

Keele
University

* Formulate in matrix algebra terms, assuming
X and Y have means removed i.e. Y=y-|,

Y =XP + €
 Yisan (nx1) vector
e Xis an (nxp) matrix of known form
* Bisa(px1) vector of parameters
* €isa(nx1) vector of error terms
 Where E(€)=0, V(€) =lo?
e Solutionis p= (x'x:)-'lx'y

Multivariate Regression
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Least Squares Properties

Fitted values are obtamed from
Y=Xb= X(X X) Ix'y

Vector of residuals e=Y -¥ -
Variance of parameters V(b) = (X'X)™

L% - 7)

Multiple Correlation Coefﬁcufnt R? =
Adjusted RZ=1-(1-R )( p)
Both R2 Vulnerable to outliers

Many diagnostic tools available based on
residuals and Hat Matrix

Z?zl(yi. - Y)Z



The Hat Matrix
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* Hat Matrix is definedas H=X(X'X)"'X'

* Called the Hat matrix because ¥ = Hy

* Its important because if h; is i-the diagonal
element of of H

— Difference between

e Parameter with and without observation X; is
p—LG)= (X'X) 1x]

(1 hu
e Fitted value with and without observation X; is

Ei}l‘ii
yl _yl(l) - (1 . h“)
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Three Types of Residual

o~

Residuals T
Standardized Residuals
_Ji — Vi 2 — Xel

o=
n—p

Studentized Residuals (based on omitting each
data point in turn from variance)

-5, (Ze?) - i
" (Z)_ s(z.) s(i)? = (1~ )

n—p-—1

Sadly doesn’t automatically provide fitted values
based on i-1 points
— However, Im provides access to the hat matrix values

* Via the fitted model i.e. hatvalues(fit)
* So can be calculated by writing your own R program
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* The Rcommand is
— Im(y~x1+x2+..+Xn,data=mydata)

* You should save the output of the linear
model e.g.
— fit<-Im(effort~loc,data=iclbt)
— Effort=17.22+.00253322xloc
* From the object “fit” you can access
— Residuals
— Hat values
— Fitted values

Fitting Regression Models in R
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Plotting Effort and Loc showing
Regression Line

effort
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Effort

Theil-Sen Regression
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Log(Effort)

7.5 8.0 8.5 9.0 9.5 10.0 10.5

Log(Loc)



Diagnhostics

Keele
University

 Many diagnostic facilities assume fitting
via the linear model function

* To evaluate diagnostics can use
— Log(effort)=Log(loc)+log(dur)+co

e “co” is a factor that defines the source of
the data

e Needs to be defined as a factor to
— iclbtSco<-factor(c("1","2","3"))
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e Q-Q Plots

— Plots Studentized residuals against a t
distribution with n-p-1 degrees of freedom

Diagnostic Aids - 1

* Histogram of residuals (all types)
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Studentized Residuals(fit)

QQPIlot for ICLBT data

t Quantiles

28



Residual Plot
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Distribution of Errors
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Diagnostic Aids - 2

e Component + Residual plots
— Partial residual plots
— For each j-variable plots & + (8;X;;) against Xi;
* where €, are based on full model
— The straight line on graph is the least squares
fit
— The other line is the “lowess” line

* A nonparametric weighted fit line based on locally
weighted polynomial regression
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Diagnostic aids - 3

Test for non-constant error variance

— ncvTest() function
* For ICLBT data, ChiSquare = 1 4.055072 p=0.044*

Plot of absolute standardized residuals versus fitted values with
best fitting line (Spread-Level Plot)

— Canindicate possible non-linearity in Y variable
* Suggests power transform
* 0O suggestion identifies log transform
* Suggests —0.33

Multcollinearity vif() function
— Only when multiple X variables

— Measure extent to which parameter standard deviation for a
parameter is expanded
* Relative to model with independent variables

— If square root of vif >2 there may be a problem
* No problem for this model
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Absolute Studentized Residuals

Spread Level Plot
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Major Diagnostic Concepts
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e Qutliers

— Observations that are not predicted well by model
— Have large residuals
* High leverage points
— Are outliers with respect to other predictors
— Found using the Hat Matrix

* |nfluential points

— Observations that have an major impact on
parameter values
— High leverage points that are also outliers

* Added Value plots
* Cook’s Distance



Cook’s Distance
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e Aim to summarize the information in

— Leverage
— Residual-squared plot

* |Into single number index

* Unusually large Cook’s D greater than 2y k/n
— k is number of parameters including constant
— N is number of observations



Aids for Outlier Detection -1
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e Qutlier detection based on Studentized residuals using
outlierTest() function

— Reports Bonferoni adjusted p-value for the largest
absolute residuals

— ldentifies points 61 & 21 as significant outliers

e Added Value Plots

— For each X

* Show impact of regressing Y on other variables against X;
regressed on other variables

— Can be used to assess impact of specific data points

* |Influence plot

— Studentized Residals against Hat-values with circles
indicating Cook’s distance
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Influence plot for ICLBT Dataset

Compare main outliers (i.e. 1, and 7) with outlier detection
results Slide (12)

Effect of removing points easy use:
— update(fit,subset=-c(7,16))

Studentized Residuals

0.10 0.15 0.20 0.25

Hat-VValues
Circle size proportional to Cook's distance
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Impact of Removing Outliers

Coefficients |Original New
Intercept -3.1804* -4,1907**
Log(loc) 0.4895* 0.7089**
Log(dur) 07534 0.390
Co2 -0.1049 -0.1976
Co3 0.631 0.4219
Adj R? 0.481 0.5876

38
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Influence Plot of reduced model

Studentized Residuals




Models with Dummy Variables
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e Exactly equivalent to Analysis of Covariance (ANCOVA)

e Uses variables that partition the dataset
— E.g. Co (which stands for company) in the ICLBT database

 Cois coded as an integer and need to be specified to R
as a factor

R maps k different levels per factor into k-1 dummy
variables
— The effect of the “missing” dummy variable is included in the
intercept
— If only one dummy variable
* The Intercept corresponds to the effect of the missing variable
* The parameter values given to other dummy variables are
— Effect of missing dummy variable — Effect of dummy variable
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Dummy Variables - 2

A dummy variable shifts the intercept of
the regression line
— To give a separate regression line for each data

partition

* If we want to change the slope as well as
the intercept we need to change the model
to a model with interactions
— Im(log(effort)~co*(log(dur)+log(loc)),data=iclbt)

* Multiple factors in a model with no
variables produces a multi-way ANOVA
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Interactions with Company

Coefficients |Estimate |Std.Error |tvalue |[Pr(>]|t])
(Intercept) |[-3.646 2.8032 |-1.301 |0.2057
co2 -2.722 3.7120 |-0.733 | 0.4705
co3 0.7553 [3.7311 |0.202 0.8413
log(dur) 1.3364 |0.6680 |(2.000 |0.0569 (.)
log(loc) 0.3217 |0.2839 |1.133 |0.2683
co2:log(dur) |-0.7094 [0.8775 |-0.808 |0.4268
co3:log(dur) [-1.1025 |0.8165 |-1.350 |0.1895
co2:log(loc) [0.6292 |0.4405 |1.428 |0.1660
co3:log(loc) |0.2763 |0.4095 |0.675 |0.5063

42
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Removing X-variables

* May need to select most plausible model with least
number of X-variables

e Stepwise regression available in R

Forwards stepwise starts with no variables and adds one at a
time

Backwards starts with all variables and removes them one at a
time

Stepwise goes forward but re-assesses all variables as each new
one is added

Based on Akaike Information Criteria (AIC)

e (Can also inspect all possible regressions

With limited number of variables



JJ  Akaike Information Criterion (AIC)

Keele
University

* Used to judge competing models
— Function of the Log Likelihood function
AIC = 2k — 2In (L)
— k = number of parameters in model
— Smaller values are preferable

* Version adjusted for sample size n is

2k(k+1
preferable AIC, = AIC + (k 1)
N

* Assesses impact of changing number of
parameters (not functional form of model)



Other capabilities
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* Kabacoff published R functions

— For Cross-validation

* Checking a model by splitting the data into validation
and training data sets

* Predicting the outcome value for the validation data

e Perform k-fold cross validation
— l.e. creates k different training & validation sets at random
— Based on changes to the R-square statistic

— To assess the relative importance of different
variables
 Model must not have categorical variables



Robust Regression
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* Lowess Local Polynomial Regression V= 'm(x) +E
y = byt by(x —xg) + by(x —x0) %+ + by (x — x)?

, (1—1z3])3if |z] <1 o e e N1
W(z) = { J WIS z=(x—x9)h
0 if |zl =1 0.

— his half-width of a window enclosing observations for
local regression

— At x, estimate height of regression curve is Jo =

— Typical to adjust h so each local regression mcludes a fixed
s proportion of data

— sis span of local-regression smoother

— Large span smoother fit but larger order of local
regression

* Require a trade-off

46



Fitted line for ICLBT data
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Multiple lowess Regression
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Multiple regression using Lowess Values on log scale
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* Kernel estimators estimate some measure
of location for y given x

* w, is a measure of how close x; is to x
m(x) = szﬁ)’i

e K(u) is a contours, bounded and
symmetric function ] K(wWdu = 1



+ & #

S

Keele
University

* m(x) estimated from

1 X — X; .
Wi = K(x h XI.) WSZZK(X h xz‘)

W

Kernel Regression - Continued

* hisspan h = min(s,1SQ/1.34)
— ISQ is interquartile range

* Given x,

— byand b, estimated using weighted regression

fﬁ(X) — bO —-|- b1X w; ZK(Xil:X)

 Smooth is created by taking x to be a grid of
points and plotting results
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Kernel Regression
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S Non-Parametric Regression
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* Theil-Sen can handle multiple regression
— Not with dummy variables

— Fitted line fitted mass of data points
5 fitted values were negative

tsfitted
100 200 300 400 500

0

(0] 50 100 150 200 250 300

effort
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 Combination of transforming variables and
extensive diagnostic facilities

— Seem to reduce the need for robust regression
* At least in the case of linear models

* Non-parametric approaches don’t always
work well

— Don’t permit group variables
— Are not integrated with diagnostics library(car)

* Lowess is promising
— Not yet well integrated with diagnostics



