

Statistics & Experimental Design with R

Barbara Kitchenham Keele University

Correlation and Regression

Correlation

- The association between two variable
- Strength of association usually measured by a correlation coefficient ρ in range [-1, 1]
- Most well known
 - Pearson Product Moment Correlation coefficient
 - Arises from bi-variate normal distribution
 - If both variables are standardized then plotted
 - Elipse shape indicates an association
 - » Narrower the elipse the closer $\rho^{\sim}1(+ve)$ or -1 (-ve)
 - Circular shape indicates no associate with ρ~0

Bivariate Normal Distribution

Bivariate Normal distribution

$$\phi(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} exp\left\{\frac{-1}{2(1-\rho^2)} \left[z_1^2 - 2\rho z_1 z_2 + z_2^2\right]\right\}$$

$$where \ z_1 = \frac{x_1 - \mu_1}{\sigma_1} \ and \ z_1 = \frac{x_2 - \mu_2}{\sigma_2}$$

Standard Bivariate Normal z~N(0,1)

$$\phi(z_1, z_2) = \frac{1}{2\pi\sqrt{1-\rho^2}} exp\left\{ \frac{-1}{2(1-\rho^2)} \left[z_1^2 - 2\rho z_1 z_2 + z_2^2 \right] \right\}$$

- Generalises to n dimensions
- Pearson's ρ is a parameter of the distribution

Pearson's p

- From the bivariate normal distribution $\rho = \frac{cov(x,y)}{\sigma}$
- Estimated from data $\widehat{\rho} = r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$
- Calculating r does require normality
 - But statistical tests of significance do
 - Test H0 r=0 can be based on T having Student's t distribution n-2 df, where $T = r \sqrt{\frac{n-2}{1-r^2}}$
 - There is also a normalising transformation $z_r = 0.5 \frac{log_e(1+r)}{log_e(1-r)}$
 - Which has standard error $\frac{1}{\sqrt{N-3}}$
 - Used when correlations from different sources need to be aggregated (such as during meta-analyses)

Small Data set

- Using cor.test in R ρ =0.57, T=1.9448 n.s.
- Delete A and ρ =0.57, T=5.887***
- Delete B and ρ=0.28, T=0.760 n.s.

Factors Affecting Magnitude Pearson's ρ

- The slope of the line about which points are clustered
 - If slope=0, ρ =0, the larger the slope the larger is ρ
- The magnitude of the deviations from the line
 - Closer points are to notional line the larger is ρ
- Outliers
- Restricting range of X values
 - Can increase or decrease ρ
- Curvature
 - $-\rho$ assumes a linear relationship

Robust correlation

- Spearman's ρ
 - Replace data values by ranks
 - Uses same calculation as Pearson
- With previous data set
 - All data, r=0.41 p=0.25
 - With A removed, r=0.67, p=0.059
 - With B removed, r=0.18, p=0.64

Non-Parametric Correlation

- Kendall's tau (τ)
- Based on calculating slopes between all pairs of points
 - Takes median slope
- With previous data set
 - All data, r=0.33 p=0.22
 - With A removed, r=0.56, p=0.045
 - With B removed, r=0.17, p=0.61

RelPlot

- relplot function is a bivariate equivalent of box plot
- Shows the central ellipsoid part of the bi-variate distribution plus outliers
- Calculates a robust estimate of r=0.90
- Does not generalise to more dimensions
- Assuming bi-variate normal means negative values are expected

MGV method for outliers

 Minimum Generalised Variance method can be used with many variables

Robust Correlations

- Winsorized correlation (wincor(x,y))
 - Replace X and y values at extremes with 25 (low) 75 (high) percentile values
 - 0.407 sig.level=.276
- Percentage Bend Correlation
 - Not estimate of Pearson's r
 - New correlation robust to changes in distribution
 - Based on trimming univariate outliers
 - corb(x,y,corfun=pbcor,nboot=599)
 - $r_{pb} = .441$ Boostrap CI=(-0.44, 0.97)
- Skipped correlations (i.e. remove outliers)
 - Removed based on MGV then use Pearson (r=0.91)
 - Need to adjust Test value & critical value

$$T_o = r_o \sqrt{\frac{n-2}{1-r_o^2}} = 6.29, cv = \frac{6.947}{n} + 2.3197 = 3.0144$$

Comparison on full data set

Linear Regression

Finding the parameters of a model of the form

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

- Y is the response/outcome/dependent variable
- X_i is the *i*th of *p* stimulus/input/independent variables
- $-\beta_i$ is the ith parameter of the model
- A linear model is linear w.r.t the parameters
 - Polynomial models are linear models of the nth order where n is highest power
 - I.e. a second-order regression model has form $Y = \beta_0 + \beta_1 X + \beta_2 X^2$
 - A non-linear model might have form $Y = \beta_0 X^{\beta_1}$

Least Squares Principles

Basic model for one input variable is

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

Sum of squares of deviations from true line is

$$S = \sum_{i=1}^{\infty} \epsilon_1^2 = \sum_{i=1}^{\infty} (Y_i - \beta_0 + \beta_1 X_i)^2$$

- To estimate by least squares
 - Differentiate w.r.t each parameter in turn
 - To find the turning point (i.e. minimum) set each differential to 0
 - Solve for each parameter in turn

Parameter Estimation

Differentials are

$$\frac{\delta S}{\delta \beta_0} = -2 \sum_i (Y_i - \beta_0 + \beta_1 X_i) \qquad \frac{\delta S}{\delta \beta_1} = -2 \sum_i X_i (Y_i - \beta_0 + \beta_1 X_i)$$

Solutions after setting each to 0 are

$$b_{1} = \frac{\sum (Y_{i} - \overline{Y})(X_{i} - \overline{X})}{\sum (X_{i} - \overline{X})^{2}} = \frac{s_{XY}}{s_{X}^{2}} = r \frac{s_{Y}}{s_{X}}$$

$$b_{0} = \overline{Y} - b_{1}\overline{X}$$

- For standardized normal variables $b_1 = r$
 - Slope must less than 1, even if Y=X
 - The larger the error term, the larger r and the lower the value of b₁

Bivariate Normal Distributions

 $b_1 = 0.9018$ $b_0 = -0.0097$

Multivariate Regression

• Formulate in matrix algebra terms, assuming X and Y have means removed i.e. $Y=y-\mu_v$

$$Y = X\beta + \epsilon$$

- Y is an (n×1) vector
- X is an (n×p) matrix of known form
- 6 is a (p×1) vector of parameters
- ϵ is a (n×1) vector of error terms
- Where $E(\epsilon)=0$, $V(\epsilon)=I\sigma^2$
- Solution is $b = (X'X)^{-1}X'Y$

Least Squares Properties

- Fitted values are obtained from $\widehat{Y} = Xb = X(X'X)^{-1}X'Y$
- Vector of residuals $\epsilon = Y \hat{Y}$
- Variance of parameters $V(b) = (X'X)^{-1}$
- Multiple Correlation Coefficient $R^2 = \frac{\sum_{i=1}^n (\hat{Y}_i \bar{Y})^2}{\sum_{i=1}^n (Y_i \bar{Y})^2}$ Adjusted $R_a^2 = 1 (1 R^2) \left(\frac{n-1}{n-n}\right)$
- Both R² Vulnerable to outliers
- Many diagnostic tools available based on residuals and Hat Matrix

The Hat Matrix

- Hat Matrix is defined as $H = X(X'X)^{-1}X'$
- Called the Hat matrix because $\hat{y} = Hy$
- Its important because if h_{ii} is *i*-the diagonal element of of *H*
 - Difference between
 - Parameter with and without observation x_j is $\hat{\beta} \hat{\beta}(i) = (X'X)^{-1}x_i'\frac{\epsilon_i}{(1-h_{ii})}$
 - Fitted value with and without observation x_i is

$$\hat{y}_i - \hat{y}_i(i) = \frac{\epsilon_i h_{ii}}{(1 - h_{ii})}$$

Three Types of Residual

• Residuals
$$\epsilon_i = r_i = y_i - \hat{y}_i$$

$$\epsilon_i = r_i = y_i - \hat{y}_i$$

Standardized Residuals

$$r_i = rac{{{y_i} - {\widehat y_i}}}{s}$$
 $s^2 = rac{{\sum {\epsilon _i^2}}}{{n - p}}$

 $r_i = \frac{y_i - \hat{y}_i}{s} \qquad \qquad s^2 = \frac{\sum \epsilon_i^2}{n-p}$ • Studentized Residuals (based on omitting each data point in turn from variance)

$$r_s(i) = \frac{y_i - \hat{y}_i}{s(i)} \qquad s(i)^2 = \frac{\left(\sum \epsilon_i^2\right) - \frac{\epsilon_i^2}{(1 - h_{ii})}}{n - p - 1}$$

- Sadly doesn't automatically provide fitted values based on i-1 points
 - However, Im provides access to the hat matrix values
 - Via the fitted model i.e. hatvalues(fit)
 - So can be calculated by writing your own R program

Fitting Regression Models in R

- The R command is
 - lm(y~x1+x2+..+Xn,data=mydata)
- You should save the output of the linear model e.g.
 - fit<-lm(effort~loc,data=iclbt)</p>
 - Effort=17.22+.00253322×loc
- From the object "fit" you can access
 - Residuals
 - Hat values
 - Fitted values

Plotting Effort and Loc showing Regression Line

Theil-Sen Regression

Using Log Transformation

Diagnostics

- Many diagnostic facilities assume fitting via the linear model function
- To evaluate diagnostics can use
 - Log(effort)=Log(loc)+log(dur)+co
- "co" is a factor that defines the source of the data
- Needs to be defined as a factor to
 - iclbt\$co<-factor(c("1","2","3"))</pre>

Diagnostic Aids - 1

- Q-Q Plots
 - Plots Studentized residuals against a t distribution with n-p-1 degrees of freedom
- Histogram of residuals (all types)

QQPlot for ICLBT data

Residual Plot

Distribution of Errors

Diagnostic Aids - 2

- Component + Residual plots
 - Partial residual plots
 - For each j-variable plots $\epsilon_i + (\beta_j X_{ij})$ against X_{ij}
 - where ϵ_i are based on full model
 - The straight line on graph is the least squares fit
 - The other line is the "lowess" line
 - A nonparametric weighted fit line based on locally weighted polynomial regression

CrPlots for ICLBT data

Diagnostic aids - 3

- Test for non-constant error variance
 - ncvTest() function
 - For ICLBT data, ChiSquare = 1 4.055072 p=0.044*
- Plot of absolute standardized residuals versus fitted values with best fitting line (Spread-Level Plot)
 - Can indicate possible non-linearity in Y variable
 - Suggests power transform
 - 0 suggestion identifies log transform
 - Suggests –0.33
- Multcollinearity vif() function
 - Only when multiple X variables
 - Measure extent to which parameter standard deviation for a parameter is expanded
 - Relative to model with independent variables
 - If square root of vif >2 there may be a problem
 - No problem for this model

Spread Level Plot

Major Diagnostic Concepts

- Outliers
 - Observations that are not predicted well by model
 - Have large residuals
- High leverage points
 - Are outliers with respect to other predictors
 - Found using the Hat Matrix
- Influential points
 - Observations that have an major impact on parameter values
 - High leverage points that are also outliers
 - Added Value plots
 - Cook's Distance

Cook's Distance

- Aim to summarize the information in
 - Leverage
 - Residual-squared plot
- Into single number index

$$D_{i} = \frac{\epsilon_{i}}{k} \frac{s_{(i)}^{2}}{s^{2}} \sqrt{\frac{(n-1)}{(1-h_{ii})}}$$

- Unusually large Cook's D greater than $2\sqrt{k/n}$
 - k is number of parameters including constant
 - N is number of observations

Aids for Outlier Detection -1

- Outlier detection based on Studentized residuals using outlierTest() function
 - Reports Bonferoni adjusted p-value for the largest absolute residuals
 - Identifies points 61 & 21 as significant outliers
- Added Value Plots
 - For each Xj
 - Show impact of regressing Y on other variables against X_j regressed on other variables
 - Can be used to assess impact of specific data points
- Influence plot
 - Studentized Residals against Hat-values with circles indicating Cook's distance

Influence plot for ICLBT Dataset

- Compare main outliers (i.e. 1, and 7) with outlier detection results Slide (12)
- Effect of removing points easy use:
 - update(fit,subset=-c(7,16))

Hat-Values
Circle size proportional to Cook's distance

Impact of Removing Outliers

Coefficients	Original	New	
Intercept	-3.1804*	-4.1907**	
Log(loc)	0.4895*	0.7089**	
Log(dur)	0.7534	0.390	
Co2	-0.1049	-0.1976	
Co3	0.631	0.4219	
Adj R ²	0.481	0.5876	

Influence Plot of reduced model

Models with Dummy Variables

- Exactly equivalent to Analysis of Covariance (ANCOVA)
- Uses variables that partition the dataset
 - E.g. Co (which stands for company) in the ICLBT database
- Co is coded as an integer and need to be specified to R
 as a factor
- R maps k different levels per factor into k-1 dummy variables
 - The effect of the "missing" dummy variable is included in the intercept
 - If only one dummy variable
 - The Intercept corresponds to the effect of the missing variable
 - The parameter values given to other dummy variables are
 - Effect of missing dummy variable Effect of dummy variable

Dummy Variables - 2

- A dummy variable shifts the intercept of the regression line
 - To give a separate regression line for each data partition
- If we want to change the slope as well as the intercept we need to change the model to a model with interactions
 - lm(log(effort)~co*(log(dur)+log(loc)),data=iclbt)
- Multiple factors in a model with no variables produces a multi-way ANOVA

Interactions with Company

Coefficients	Estimate	Std.Error	t value	Pr(> t)
(Intercept)	-3.646	2.8032	-1.301	0.2057
co2	-2.722	3.7120	-0.733	0.4705
co3	0.7553	3.7311	0.202	0.8413
log(dur)	1.3364	0.6680	2.000	0.0569 (.)
log(loc)	0.3217	0.2839	1.133	0.2683
co2:log(dur)	-0.7094	0.8775	-0.808	0.4268
co3:log(dur)	-1.1025	0.8165	-1.350	0.1895
co2:log(loc)	0.6292	0.4405	1.428	0.1660
co3:log(loc)	0.2763	0.4095	0.675	0.5063

Removing X-variables

- May need to select most plausible model with least number of X-variables
- Stepwise regression available in R
 - Forwards stepwise starts with no variables and adds one at a time
 - Backwards starts with all variables and removes them one at a time
 - Stepwise goes forward but re-assesses all variables as each new one is added
 - Based on Akaike Information Criteria (AIC)
- Can also inspect all possible regressions
 - With limited number of variables

Akaike Information Criterion (AIC)

- Used to judge competing models
 - Function of the Log Likelihood function

$$AIC = 2k - 2\ln(L)$$

- -k = number of parameters in model
- Smaller values are preferable
- Version adjusted for sample size n is preferable $AIC_C = AIC + \frac{2k(k+1)}{n-k-1}$
- Assesses impact of changing number of parameters (not functional form of model)

Other capabilities

- Kabacoff published R functions
 - For Cross-validation
 - Checking a model by splitting the data into validation and training data sets
 - Predicting the outcome value for the validation data
 - Perform k-fold cross validation
 - I.e. creates k different training & validation sets at random
 - Based on changes to the R-square statistic
 - To assess the relative importance of different variables
 - Model must not have categorical variables

Robust Regression

• Lowess Local Polynomial Regression $y = m(x) + \epsilon$

$$y = b_0 + b_1(x - x_0) + b_2(x - x_0)^2 + \dots + b_p(x - x_0)^p$$

$$w(z) = \begin{cases} (1 - |z^3|)^3 & \text{if } |z| < 1 \\ 0 & \text{if } |z| \ge 1 \end{cases} \quad z = (x - x_0)/h$$

- h is half-width of a window enclosing observations for local regression
- At x_0 estimate height of regression curve is $\widehat{y_0} = b_0$
- Typical to adjust h so each local regression includes a fixed s proportion of data
- s is span of local-regression smoother
- Large span smoother fit but larger order of local regression
 - Require a trade-off

Fitted line for ICLBT data Size v. Effort

Duration v. Effort

Multiple lowess Regression

Multiple regression using Lowess

Values on log scale

Kernel Regression

- Kernel estimators estimate some measure of location for y given x
- w_i is a measure of how close x_i is to x

$$\widehat{m}(x) = \sum w_i y_i$$

• K(u) is a contours, bounded and symmetric function $\int K(u)du = 1$

Kernel Regression - Continued

m(x) estimated from

$$w_i = \frac{1}{W_s} K\left(\frac{x - x_i}{h}\right) \qquad w_s = \sum K\left(\frac{x - x_i}{h}\right)$$

- h is span $h = \min(s, ISQ/1.34)$
 - ISQ is interquartile range
- Given x ,
 - b_0 and b_1 estimated using weighted regression $\widehat{m}(x) = b_0 + b_1 x$ $w_i = K(\frac{x_i x}{b})$
- Smooth is created by taking x to be a grid of points and plotting results

Kernel Regression

Non-Parametric Regression

- Theil-Sen can handle multiple regression
 - Not with dummy variables
 - Fitted line fitted mass of data points
 - 5 fitted values were negative

Conclusions

- Combination of transforming variables and extensive diagnostic facilities
 - Seem to reduce the need for robust regression
 - At least in the case of linear models
- Non-parametric approaches don't always work well
 - Don't permit group variables
 - Are not integrated with diagnostics library(car)
- Lowess is promising
 - Not yet well integrated with diagnostics