

Statistics & Experimental Design with R

Barbara Kitchenham Keele University

Quasi-Experiments

Quasi-Experiments

- Experiments where it is impossible or unethical to apply randomization
 - When factor of interest cannot be changed
 - E.g. gender
 - University education
- Within-subject experiments in SE
 - Difficult to find large number of qualified participants
 - So use individuals as their own control
- Importance
 - Are used to assess impact of program change
 - I.e. major business/social changes
 - In context of SE
 - Adoption of CMM
 - Change from 3GL to OO programming

Causal Inferences

- Quasi-experiments must show
 - Cause Precedes Effect
 - Quasi-experiments manipulate the treatment to ensure that it occurs before the effect
 - Same for randomised experiments
 - Cause co-varies with Effect
 - Covariation is usually established statistically
 - Same for randomised experiments
 - Alternative explanations for the effect are implausible
 - Basic problem for quasi-experiments
 - Cannot argue based on randomisation

Basic Principles for QE Design

- Identification and study of plausible threats to internal validity
 - What threats could plausibly have caused the observed relationship treatment-outcome
- Primacy of control by design
 - Adding design elements aims to prevent threats or provide evidence about them
- Coherent pattern matching
 - A complex prediction made about the outcomes that few alternative explanations can match

Basic Forms of Quasi-Experiment

- Type 1: Experiment-like studies
 - Subjects use different methods under controlled conditions
- Type 2: Large scale surveys of trends
 - Interrupted time series
 - Regression Discontinuity
 - Differences in Differences

Design elements

- Time
 - Most quasi-experiments take place over a time period
- Treatment
 - A policy or method intended to cause some measurable affect to change
- Controls
 - Units not receiving the treatment that are matched in some way to the units receiving treatment
- Pre-test
 - Measurements taken before the treatment condition is applied
- Post-test
 - Measurements taken before the treatment condition is applied

Design Variants

- Post-Test only
 - Introduce change then take one measurement

 $X O_1$

- Weakest possible design
 - No way of knowing whether anything changed
 - No way of knowing what would have happened without the treatment
- All other designs add elements to address these weaknesses

Adding Pre-Test Observations

Pre-Test-Post-Test

 $O_1 \qquad \qquad X \qquad O_2$

- Initial observations as a "control"
- With only one before and after measurement the design is still fairly weak
 - Effect could be associated with some other event
- SE Quasi-Experiment
 - Participants
 - Volunteers from set of available people
 - Read a program and identify defects
 - Receive training in defect detecting method
 - Read another program and identify defects

Pre-test & Post-test Patterns

- Adding more observations and treatment changes strengthens design
 - Pretest-Posttest removing treatment
- If the observations follow pattern of interventions
 - Difficult to argue that they are not related
 - But may be vulnerable to a single chance event

Independent Control Groups

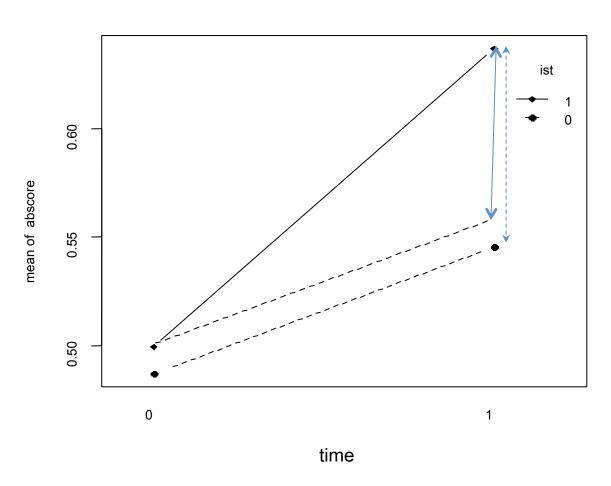
 Post-test designs with control group but no pretest

$$X O_1$$
 O_1

- Weak because the groups may differ on more than just treatment
- SE Experiment Example
 - Students volunteer for extra courses on Formal methods
 - Volunteers and non-volunteers compared on examination results
 - Results attributed benefits of Formal methods
- Adding more pre- and post-test measures again strengthens the design

Difference in Differences Designs

Pre- and Post-tests with controls


$$O_1$$
 X O_2 O_1 O_2

- Matched groups with
 - One group receives intervention (T)
 - Other group doesn't (C)
 - Two time periods
 - Before Treatment Time 0
 - After treatment Time 1
- Not a simple two-way analysis
 - Treatment effect based on four group means
 - Effect = T1-C1+ (T0-C0)
 - Period 2 difference adjusted for Period 1 difference

Example

DinD plot

Analysing D-in-D designs

- Can be analysed as a linear combination of mean values
 - Effect = T1-C1+ (T0-C0)
 - Assumes common within-group variance (s²)
 - For independent groups $s_E^2 = 4\frac{s}{n}$
- Alternatively use regression and dummy variables
 - Time (T) is 1 if time period=1 else 0
 - Treatment (Tr) is 1 for treatment group, 0 for control
 - Treated group (TG) is 1 for treatment group in Time
 Period 1 else 0

Cross-Over Designs

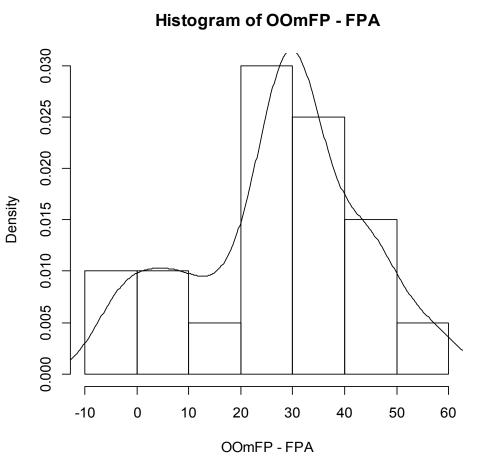
- When comparing two treatments
- Each participant exposed to both treatments
 - Assignment to order randomized

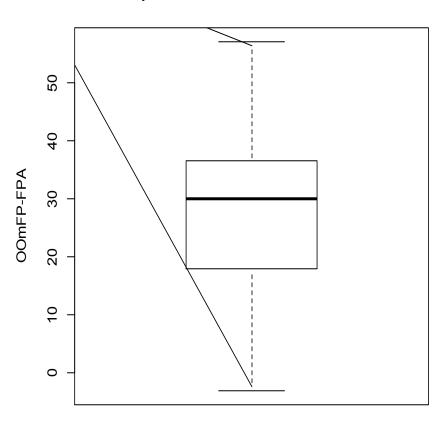
$$X_1$$
 O_1 X_2 O_2 X_3 O_4 X_1 O_2

- Proper analysis removes period effect
 - E.g. general task performance improvement that is independent of treatment
- Still vulnerable to period×treatment interaction
- Can be improved by additional pre- and posttests
- Design is very popular in SE experiments

Cross-Over Model

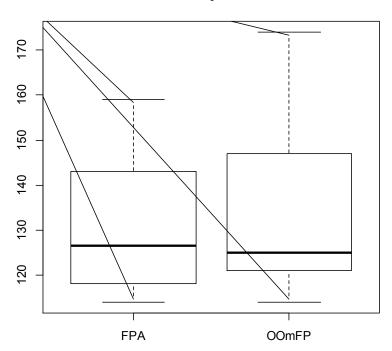
Model based on


- π the period effect due to general difference between period 1 and 2
- τ the treatment effect i.e. difference between T_A and T_B
- λ_A and λ_B the interaction due to doing A before B and vice-versa for analysis, assumed approximately 0
- μ_j the "effect" due to participant j

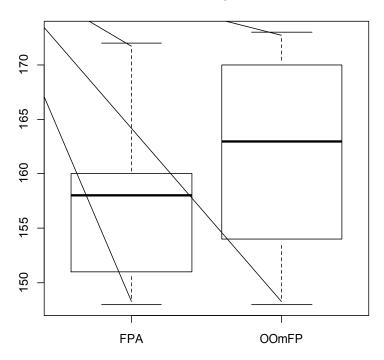

Participant	Expected Response		Cross-Over	Period
			Difference	Difference
	Period 1	Period 2	$T_{A}-T_{B}$	P2-P1
j	$\mu_j + \tau$	$\mu_j + \pi + \lambda_A$	$\tau - \pi - \lambda_{\Delta}$	$\tau - \pi - \lambda_A$
	(Treatment A)	(Treatment B)	41	
k	$\mu_{m{k}}$	$\mu_{\underline{k}} + \tau + \pi + \lambda_{\underline{k}}$	$\tau + \pi + \lambda_R$	$-\tau - \pi - \lambda_{R}$
	(Treatment B)	(Treatment A)	2	2
Sum			$2\tau + \lambda_B - \lambda_A$	$-2\pi + \lambda_B - \lambda_A$

SE Cross-Over Example

Box plot of Treatment effect of OOmFP


Analysis

- Comparing two FPA versions
- 20 participants count same document
 - 10 used FPA first
 - 10 used OOmFPA first
- Period effect= -0.45
- Treatment effect =27.25
 - Use standard "t" test on Cross-over values (i.e. differences)
 - Variance of Cross-over values=259.04
 - SE treatment effect= 3.6
 - T=7.57 with 19 d.f. Critical Value=2.093 (two-sided, p=0.05)
 - Alternatively use trimmed mean
 - If concerned about non-normal distribution
- Not so simple if groups not same size and period effects significant

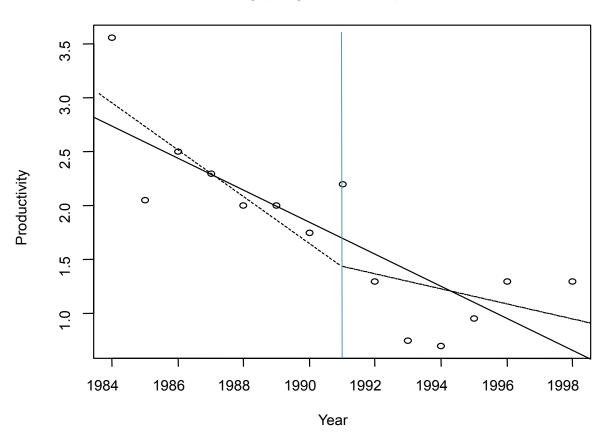

Cross-Over Example

FPA counts for subjects in Cross-Over

Label indicates which treatment was first

OOmFPA counts for subjects in Cross-Over

Label indicates which treatment was first


Large Scale Interventions

- Interrupted Time-Series
 - Based on taking observations at many points before and after intervention
 - O_1 O_2 O_3 O_4 O_5 X O_6 O_7 O_8 O_9 O_{10}
 - Estimate Regression lines before and after intervention
 - Look for difference in slope or intercept
- Still may be a confounding effects
 - Need to be listed and accounted for
 - Changes in measurement process could affect results
- As always adding extra elements to design can help
 - E.g plotting another variable that the treatment should NOT effect

SE Example CMM Introduction

Productivity per year (Effort per unit size)

Interrupted Time Series Model

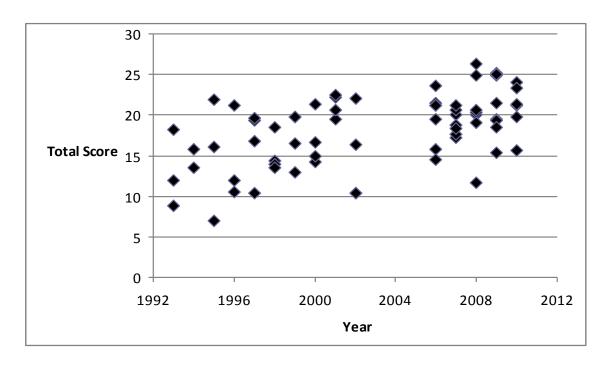
Analyses is based on a specific model

$$Sc_{ijk} = \beta_0 + \beta_1 Year_i + \beta_2 Group_j + \beta_3 TP2 Year_i + \epsilon_{ijk}$$

- Group_j is dummy variable identifying observations record before (Group₁=0) or after (Group₂=1) the intervention
 - β1 >0 implies a change in intercept
- Year_i (or any appropriate time period) identifies when the observations were recorded
 - β2 >0 implies a common regression line in the two time periods
- TP2Year_i refers to each year in the second time period (i.e. when the dummy variable Group=1)
 - B3>0 implies the slope of the regression line is different for the second time period

Common Problems with Interrupted Time series

- Gradual rather than abrupt changes
 - So change is not clear cut
- Delayed effects
 - Effects take place some time after change introduced
- Short time series
- Insufficient data points for statistical analysis



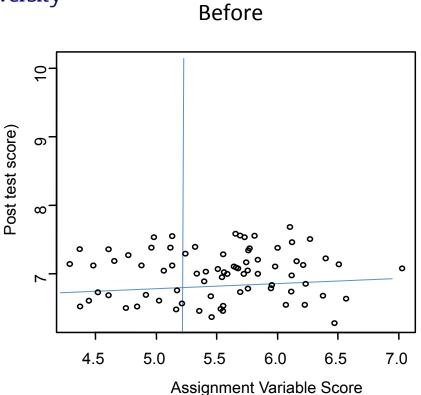
SE Example

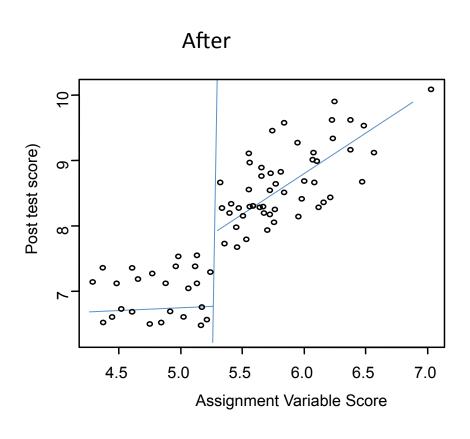
- Assessing the quality of SE experiments and quasiexperiments
- Investigated whether there was an improvement
 - Due to text book & articles in early 2000's
- Used two measures
 - Subjective assessment
 - Quality scale based on 9 questions
- Evaluated articles from TSE,IST,JSS and ESJ
 - 70 articles in all,
 - Assessed separately by three different people
- Selected papers from years 1993 2010
 - Omitted years 2003-2005
 - Because those would be a period of transition

Outcome of Experiment

- Analysis based on average score for each paper
- Only b₁ significantly different from 0
- So common trend before and after 2004

Regression Discontinuity


- Experimenter assigns participants to two or more treatment conditions with a posttest
 - The assignment procedure is based on some measurement taken prior to treatment


O _A	С	X	02	
O _A	С		O ₂	

 Control and Treatment group outcomes plotted against post-test measure

Regression Discontinuity

Summary

- Quasi-experiments
 - Not second class citizens
 - Often impossible to do randomized experiments
 - Particularly in field
- With appropriate designs
 - Quasi-experiments can be extremely reliable
- Often need specialised analysis to match the specialised design
- Also need to consider how to argue that results can be generalised.