

Statistics & Experimental Design with R

Barbara Kitchenham Keele University

Proportions and Chi-squared

Comparing *Independent*Probabilities

- Address questions such as
 - Is the failure rate of one set of projects greater than failure rate of another?
- General situation
 - We have one set of N₁ objects of which X have a characteristic
 - Another independent set of objects N₂ of which Y have the characteristic
 - Is $p_1=X/N_1$ significantly greater than $p_2=Y/N^2$
- There is an exact test based if X or Y are small based on the hyper geometric distribution
 - R function fisher.test

Large Sample Approximation Chi-Squared test of Homogeneity

	Success	Failures	Totals
Sample 1	O ₁₁	O ₁₂	n ₁ .
Sample 2	O ₂₁	O ₂₂	n ₂ .
Totals	n. ₁	n. ₂	n

$$\hat{p} = \frac{n_{.1}}{n_{..}}$$

$$E_{11} = n_{1.}\hat{p} = \frac{n_{.1} \times n_{1.}}{n_{..}}$$

$$E_{12} = n_{1.}(1 - \hat{p}) = \frac{n_{.2} \times n_{1.}}{n_{..}}$$

$$E_{21} = n_{2.}\hat{p} = \frac{n_{.1} \times n_{2.}}{n}$$

$$E_{22} = n_{2.}(1 - \hat{p}) = \frac{n_{.2} \times n_{2.}}{n_{..}}$$

$$\chi^2 = \frac{(O_{11} - E_{11})^2}{E_{11}} + \frac{(O_{12} - E_{12})^2}{E_{12}} + \frac{(O_{21} - E_{21})^2}{E_{21}} + \frac{(O_{22} - E_{22})^2}{E_{22}}$$

$$\chi^2 = \sum \frac{(O-E)^2}{E} = \frac{n \cdot (O_{11}O_{22} - O_{21}O_{12})^2}{n_{\cdot 1} \times n_{\cdot 2} \times n_{1 \cdot} \times n_{2 \cdot}}$$

Example

	Success	Failures	Totals
Sample 1	4	8	12
Sample 2	1	20	21
Totals	5	33	33

- R has the prop.test which accepts the data directly or via a matrix of the same format
 - prop.test(x=c(4,1),n=c(12,21) correct=F)
 - Chi-squared=4.849, df=1. p-value=0.0448
 - prop.test(x=c(4,1),n=c(12,21) correct=T)
 - Chi-squared=2.8812, p-value=0.8962
- Fisher test has p-value=0.0471

Another Classic solution

- Test a statistic of the form
 - $(p_1-p_2)/(standard error)$
 - Where the standard error is the square root variance of average effect i.e. $p_{ave}=(X+Y)/(N1+N2)$
 - This type of test is called a Wald test
- From Normal approximation
 - $Var(p_{ave}) = p_{ave}(1-p_{ave})/(N1+N2)$
- Is there a potential problem?
 - If H0 is true p_1 and p_2 are both estimates of the probability estimated by p_{ave} and Var(p_{ave}) is best estimate of common variance
 - If H0 is false, the a "common" variance may be misleading particularly if
 - N1 and N2 are very different

Alternative approach

- MonteCarlo simulation
 - Simulate two independent normal variables x and y
 - $M_i = p_i$ and $Var = p_i(1-p_i)/N_i$ (i=1, 2)
 - 500 of each
 - Calculate z=x-y to assess the distribution of the difference between the two parameters
 - Calculate the variance of z
 - Test statistic = $(p_1-p_2)/sqrt(var(z))$

Example

- Is p1=4/12 different to P2=1/21?
- Using classic approach
 - -p1=0.333, p2=0.0476, $p_{ave}=05/33=0.1515$
 - $Var(p_{ave}) = 0.1515*(1-0.1515)/33 = .2.0704$
 - -T=(0.3333-0.0476/sqrt(0.016796)=2.20
 - Critical-level one-sided =1.65 (based on standard normal distribution
- Using a simulation approach (based on a sample of 500 for x and y)
 - Var(diff)=0.01988, sd=.1410
 - T=0.2854/0.1410=2.02

Simulation results

Contingency Tables

- Items in a population are cross-classified in two dimensions
 - Are the characteristics independent?
- Confusion Matrix example
 - Is a predictor algorithm better at identifying faulty modules than chance?
 - Each module is classified according to its true status (faulty, Not faulty)
 - Also classified by predictor as faulty or not faulty
 - Are the correct classifications better than chance?
 - Also used for predicting failing projects

Confusion Matrix

Module	Module Status		
predictions	Faulty	Not	Totals
		Faulty	
Faulty	O ₁₁	O ₁₂	n ₁ .
Not Faulty	O ₂₁	O ₂₂	n_2 .
Totals	n. ₁	n. ₂	N=n

- Let p_{ij} =probability of falling into cell i,j
- p_{11} =Prob(Prediction Faulty)×Prob(Module is faulty)
- H0: $p_{ij}=p_i$. $\times p_{ij}$ for i,j
- Chi-squared approach is exactly the same

$$\chi^2 = \sum \frac{(O-E)^2}{E} = \frac{n \cdot \cdot (O_{11}O_{22} - O_{21}O_{12})^2}{n_{.1} \times n_{.2} \times n_{1.} \times n_{2.}}$$

SE Issues

- Being better than chance at predicting is a pretty weak criterion
 - Would like to assess the strength of the prediction model
 - Cramer Coefficient of Association (Mathews)
 - C=sqrt(chi-squared/N)
 - Exactly the same as Pearson correlation between all the individual pairs of 0 and 1
 - Would like to assess whether one model is better than another
 - Can compare the C values
 - Using correlation equality test

Hypothetical Example

Estimated	Actual		Totals
	Failed	Succeeded	
Failed	26	15	41
Succeeded	7	37	44
Totals	33	52	85

- Chi-squared=20.166
- df=1
- p=7.099e-06
- Correlation=0.487

Conclusions

- Handling proportions is relatively straightforward
- Chi-squared test works
 - For independent proportions
 - Contingency tables
- Contingency tables
 - Used frequently in SE to evaluated procedures for identifying failing projects/components
 - Chi-squared test identifies whether predictions better than chance
 - Correlation indicates strength of association