

Statistics & Experimental Design with R

Barbara Kitchenham Keele University

Hypothesis Testing

Aim

- Introduce Hypothesis testing framework
 - Explaining problems
- Introduce concept of Type 1 and Type 2 error and power
- Assessing required size of samples
- Addressing multiple hypothesis tests

Hypothesis testing

- Compare two or more groups of objects
 - With data collected on each object
 - With respect to some metric
 - Usually the mean sometimes the variance
 - In order to decide whether the groups differ with respect to the metric
 - Is the difference "substantial" by some criterion?
- Done within context of experiment or quasi-experiment

Decision making framework

- Hypothesis that groups are the same
 - Referred to as Null hypothesis (H0)
 - Estimate of metric of interest obtained from group1 is the same, within sampling error, as the estimate from group 2
 - H0: $\theta_1 = \theta_2$
- Hypothesis that groups are different
 - Referred to as Alternative Hypothesis (H1)
 - One-sided Hypothesis
 - H1: $\theta_1 > (or <) \theta_2$
 - Two-sided Hypothesis
 - $H1: \theta_1 \neq \theta_2$
 - Difference matters!
 - One sided α =0.05 significance $\theta_2 > \theta_1$, critical value z=1.65
 - Two-sided α =0.05 significance, critical value |z|=1.96

Errors and Power

- Type I error
 - Null hypothesis true but rejected
 - Probability of incorrectly rejecting null hypothesis
 - "Controlled" by selected alpha level
- Type 2 error
 - Null hypothesis wrong but not rejected
 - Probability of incorrectly failing to reject null hypothesis
 - Alternative is true but it is rejected
 - Referred to as beta (β)
- Power of a test
 - Probability of correctly rejecting null hypothesis
 - (1- β)

Comparing Two Distributions

Normal Distribution, Power and Significance

Power and sample size

- Important to have reasonable power
 - Advice is β ~0.2, power=0.8
- Power is determined by
 - Sample size
 - Alpha level
 - Mean Difference
 - Variance
- Mean difference and variance combined into
 - Effect size = Mean difference/ Standard deviation

Example

- Two theoretical distributions had
 - Mean Difference= 2
 - Variance = 1
 - Alpha level =0.05
 - One-sided test
- From unit normal distribution
 - Value of z corresponding to alpha=1.645
 - Corresponds to z on H1 curve=2-1.645=0.335
 - If alternative distribution re-centered on 0
 - Beta is area of Normal curve to left of -0.355
 - =0.3726
 - Power = 0.6274
- For "real" power analysis, we need to consider a sample

R package

- Package=pwr
- Library(pwr)
- Handles all main situations
 - t-test, ANOVA, correlation, chi-squared etc.
- pwr.t.test(n= ,d= ,sig.level= ,power= ,type= , alternative=)
- alternative is "two-sided", "less", "greater"
- type="two.sample", "one.sample", "paired"
- Estimate missing value of n or power
- If d unknown, choose based on best guess
 - Small effect d=0.2, Medium d=0.5, Large d=0.8

Example

- d=0.5
- alpha= 0.05
- Two-sided, two-sample t-test
- pwr.t.test(d=0.5,sig.level=0.05,power=.8)
 - Requires n=64 entities in each group
 - How many if d=0.8?
 - What power if n=15 in each group?
- Power analysis only tractable in simple cases

Effectiveness of tests

- Statisticians use simulation studies to assess effectiveness of tests
 - Extract a sample from each of two of theoretical populations
 - Perform test for the sample for specific alpha level
 - Record outcome test (i.e. reject or accept H0)
 - Repeat for many different pairs of samples
- When the two samples are from an identical distribution
 - The proportion of reject outcomes should $\sim \alpha$
- When samples are from different distributions
 - The proportion of rejects estimates the power i.e. (1-β)
- Used to
 - Assess impact of deviations from Normality
 - Assess relative effectiveness of alternative tests

Hypothesis Testing Problems

- Level of significance is arbitrary
 - Why use 0.05, 0.01 rather than 0.025?
- Significance is not the same as importance

- Recall
$$var(\overline{x}_1 - \overline{x}_2) = s^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)$$

- Variance of difference between means decreases as n_1 and n_2 increase
- Any small difference is importance with large enough sample sizes
- Do enough tests and you'll find something significant
 - With 10 tests probability of one or more by chance
 - 1-[(1-.05) ¹⁰]=0.4013

Compromise position

- Report
 - Confidence limits not just p-values
 - Effect size not just "t" or "z" values
 - Effect size removes reliance on sample size

$$d = \frac{(\overline{x} - \mu)}{s}$$

 Adjust significance level depending on number of tests

Adjusting p-values

- Bonerroni
 - Set new value $p = \alpha/n$, for n = # tests
 - Very conservative
- Rom's "sequentially retentive" method
 - Most effective in a study of 5 alternative methods
 - Tables for alpha 0.05 & 0.01, and n=1 to 10
 - Order the p values for set of tests in descending order i.e. largest p value first
 - Set k=1, if $p_{[k]} < d_k$ from table reject all null hypotheses
 - Otherwise accept null hypothesis H01 and put k=k+1
 - Continue until all hypotheses are accepted or rejected

Hochberg's method

- Hochberg's method similar to Rom's and is simpler when many tests
 - Let p1,...,pC be the α probabilities from C tests
 - Order the p-values in descending order
 - p[1]≥p[2].... ≥p[C]
 - Put k=1
 - Reject all hypotheses if $p[k] \le \alpha/k$ (i.e. α) & exit
 - Otherwise fail to reject hypothesis 1 and continue
 - Increment k by 1. If p[k] ≤α/k stop and reject all remaining hypotheses
 - If $p[k] > \alpha/k$ keep hypothesis k , repeat previous step

Example of ROM's method

ROM's Table

Number	al	pha=	alpha=	
of tests	0.	05	0.01	
	1	0.05	0.01	
	2	0.025	0.005	
	3	0.0169	0.00334	
	4	0.0127	0.00251	
	5	0.0102	0.0021	
	6	0.00851	0.00167	
	7	0.00730	0.00143	
	8	0.00639	0.00126	
	9	0.00568	0.00112	
1	LO	0.00511	0.00101	

Example results

Number of Tests		•	p-values lues ordered		
	1	0.006	0.054		
	2	0.025	0.049		
3	3	0.033	0.033		
4	4	0.054	0.025		
į	5	0.049	0.010		
(6	0.010	0.006		

Conclusions

- Hypothesis testing has philosophical problems
- However, it is advisable to be pragmatic
 - The purpose is to be honest
 - And to be seen to be honest
- The most important things are
 - Be careful about multiple tests
 - Try to ensure adequate power
 - As many independent observations as possible