

Statistics & Experimental Design with R

Barbara Kitchenham Keele University

Descriptive Statistics

Part 3

Aim

- Visualise a data set
 - Understand nature and limitations
- Identify basic descriptive statistics
 - Statistics of Central Tendency/Location
 - Statistics of Dispersion Scale
 - Standard error of Location metrics

Visualising Distribution of Sample

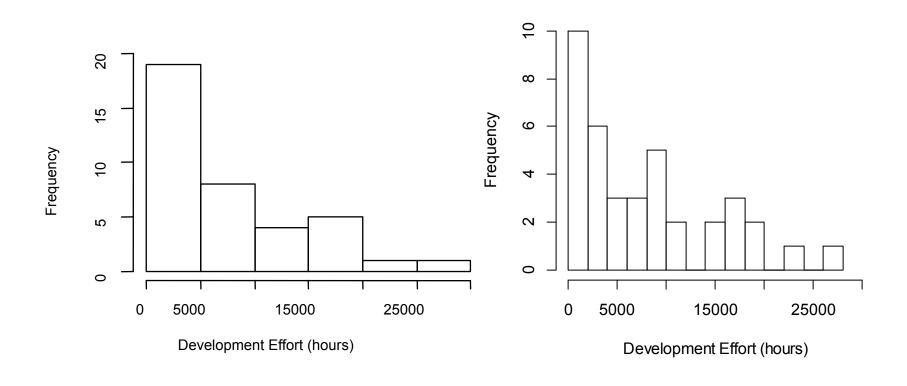
Histogram

- Represents the frequency distribution by "discretising" the sample range into bins
- Calculating the proportion of sample values in each bin

Box plots

- Shows central tendency, dispersion and skewness
- Kernel Density Estimators
 - Smooth histograms to represent continuous frequency function

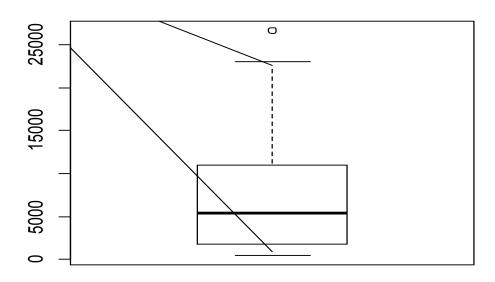
Example Histograms



Histograms

- Give an indication of shape of frequency distribution
- Indicate whether data are symmetric or skewed
- Depend on bin width
 - Suggested bin size 2×IQR×n^{-1/3}
 - Interquantile range ISQ=75%ile-25%ile
- Properties
 - Not smooth
 - Dependent on end point of bins
 - Depend on width of bins

Box Plot



Development Effort

- Box length = Interquartile length
- Line through box = median
- Upper Tail= 1.5×Box_Lenth + 75%ile rounded down to nearest data point
- Points outside upper and lower tails outliers

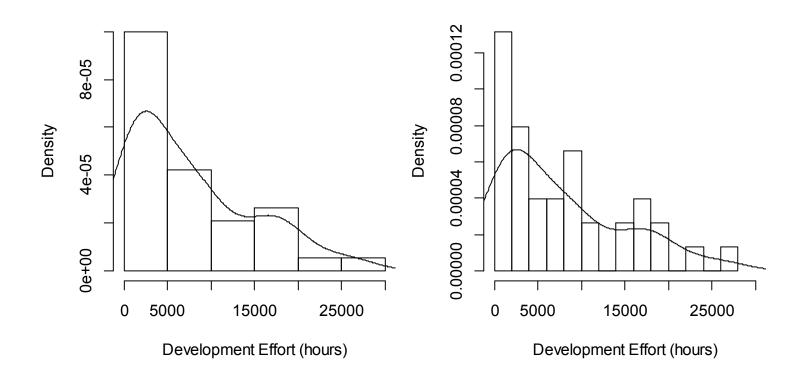
Kernel Density

 Let (x₁,x₂,...,x₃) be iid (independently and identically distributed) with unknown density f, it kernel density is

$$\hat{f}_h(x) = \frac{1}{n} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right)$$

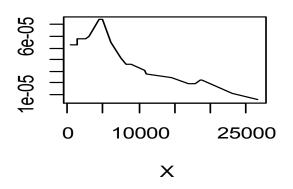
- h>0 is a smoothing parameter called the bandwidth (which should be a small as the data allow)
- There are many kernel functions
 - Uniform, biweight, Epanechnikov, Normal

Example Kernel Density

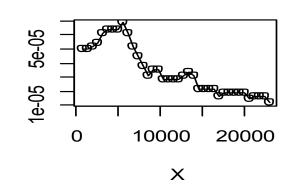


Other Kernels

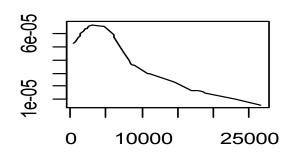
Expected Freq



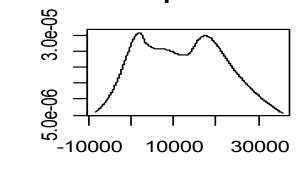
Rosenblatt



Adapt Epanech



Adapt Norm



Kernel density estimators

- Provide "smoothed" depiction of histogram
- Doesn't depend on bin end
- Does depend on "bandwidth"
 - Equivalent to histograms bin width
- Provide a non-parametric estimate of the unknown probability density function
- Importance of Kernel Density Estimators
 - Parameters and their standard errors can be estimated from empirical function rather than data
 - Using numerical methods for integration and differentiation
 - Idea generalises to multivariate datasets
 - Mostly used for regression problems

Central Tendency/Location

- Mean (average) = (Σx_i)/N
 - Very vulnerable to large values
- Median (50 percentile)
 - Very stable
 - Based putting measurement into ascending order
 - If N is even, median = $(x_{(N/2)} + x_{(N/2)+1})/2$
 - If N is odd, median $=x_{(N+1)\setminus 2}$
- Trimmed mean , based on mean of values after
 - M% of upper & lower values removed
- Winsorized mean , based on mean of values after
 - M% of upper and lower values replaced with upper & lower values respectively
- Geometric mean for proportions $m_g = \sqrt[n]{\prod_{i=1}^n (p_i)}$

Trimmed Means

- A robust measure of central tendency
- Remove X% smallest & largest values
 - Usually X=20
- Meant to be a compromise between
 - Mean include all values
 - Median excluding all but one or two
 - i.e. maximally trimmed estimate of central tendency
- Windorized means
 - Find X%ile and 100-X%ile values
 - Usually 20 percentile and 80 percentile
 - Replace lowest 20% with 20 percentile value
 - Replace largest 20% with 80 percentile value
 - Take average of amended data set

Location Metrics for Data set

Metric	Value
Mean	7678.289
Median	5430
20% Trimmed Mean	6123.458
20% Windsorized mean	6796.026
Geometric mean	4431.826

- Geometric mean=e^m
 - where m=Mean(LN(X_i))
- Mean of LN transformed observations

Measure of Scale/Dispersion

- Variance (Squared standard deviation)
 - Average Squared difference between measure and its mean = $\Sigma(x_i-m)^2/(N-1)$
 - Very vulnerable to large values
 - Also versions for trimmed & Winsorized samples
 - Less vulnerable to large values
- Median absolute deviation (MAD) = Σ|x_i-M|/N
 - Normal distribution MAD $^{\sim}$ z_{0.75} σ
- Interquantile range = 75 percentile-25 percentile
- Variance for trimmed/Winsorized means

Scale Metrics

Metric	Value
Sample Variance	50912220
Sample Standard deviation	7135.28
Standard error of mean	1157.495
20% Trimmed Mean SE	1414.929
20% Windsorized Mean SE	1365.714
Interquartile Range	(1750,11023)
Median Absolute Deviation	4037.494
(for Normal data MAD=0.6745σ)	

Standard error of Median? -1

McKean Schrader

Let
$$k = \frac{n+1}{2} - z_{0.995} \sqrt{\frac{n}{4}}$$
 $z_{0.995} = 2.5758$

- Round k down to nearest integer
- Put observations in order $X_{(1)}$, $X_{(2)}$, ... X(n)
- Estimate of SE of Median is

$$s_M^2 = \left(\frac{X_{(n-k+1)} - X_k}{5.1517}\right)^2$$

- -1300.552
- Generally recommended but
 - Has problem if there are tied values in data set
 - There are two ties values in data set

Standard error of Median? -2

- Maritz-Jarrett Estimate
 - Based on a beta function
 - -1841.72
- Kernel density method
 - 1269.011 (Rosenblatt's shifted histogram)
 - 1093.338 (expected frequency curve)
 - 1242.662 (adaptive kernel)
- Bootstrap
 - 1790 (1000 bootstrap samples)