

Statistics & Experimental Design with R

Barbara Kitchenham Keele University

Comparing two or more groups

Part 5

Aim

- To cover standard approaches for independent and dependent groups
 - For two groups
 - Student's "t" test (parametric)
 - Mann-Whitney Wicoxon (non-parametric)
 - For multiple groups
 - ANOVA
 - Kruskal-Wallis
- To introduce more modern approaches for 2 and more groups
 - Non-parametric
 - Robust

Student's "t"

- Standard classical method
- Two independent groups
 - Size n₁ and n₂
 - Some measure of interest x_{ii}
 - i=1 or 2 specifying group
 - j=1,... n₁ if i=1
 - j=1,... n_2 if i=2
- Assumptions
 - x_{ij} are iid
 - $-x_{ij}^{N}(\mu_{i},\sigma^{2})$
- H0: $\mu_1 = \mu_2$, H1: $\mu_1 \neq \mu_2 \mid \mu_1 < \mu_2 \mid \mu_1 > \mu_2$

Justification

- Normal distribution means: $\bar{x}_i \sim N(\mu_i, \sigma^2/n_i)$
- Since individual x_{ij} independent μ_i in each group are independent
 Variance of \$\overline{x}_1 \overline{x}_2\$ is \$\sigma^2 \left(\frac{1}{n_1} + \frac{1}{n_2} \right)\$
- Estimate of σ^2 is

$$s^{2} = \frac{(n_{1}-1)\sum_{j=1}^{n_{1}}(x_{1,j}-\overline{x}_{1})+(n_{2}-1)\sum_{j=1}^{n_{2}}(x_{2,j}-\overline{x}_{1})}{(n_{1}+n_{2}-2)}$$

- Under null hypothesis $t = \frac{(\overline{x}_1 \overline{x}_2)}{s(\frac{1}{n} + \frac{1}{n})} = 0$
 - With n₁+n₂-2 degrees of freedom

Variation1

- Paired values
 - $-n_1=n_2=n$
 - Paired values are not independent so

$$var(\overline{x}_1 - \overline{x}_2) = \frac{2(s^2 - cov(x_1, x_2))}{n}$$

- Difference
 - $d_j = x_{1j} x_{2j}$
- Paired values reduces variance
 - More likely to find a significant difference
 - Reason why repeat measure experiments are considered useful
- Degrees of freedom=n-1

Variation 2

- Variance of groups differ
 - Welch's test (default in R)

$$var(\overline{x}_1 - \overline{x}_2) = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 + n_2 - 2)}$$

Changes degrees of freedom (v)

$$\nu = \frac{(q_1 + q_2)^2}{\left(\frac{s_1^2}{(n_1 - 1)} + \frac{s_2^2}{(n_2 - 1)}\right)}$$

– where $q_i = \frac{s_i^2}{n_1}$

Problems with t-test

- Mean is not robust
 - Single large value can inflate mean
- Estimate of variance may be very poor
 - If there are outlier values that inflate mean they will also inflate variance
 - Estimate of variance is not robust
- If outliers in the data real effects may not be found
 - i.e. power of t-test is low if there are outliers
- In the presence of outliers, the outliers may not be easily detected (i.e. masked)

Mann-Whitney-Wilcoxon test

- Non-parametric test
 - Used very frequently in SE studies because datasets are often not Normal
- Usually estimated via ranks
 - Values measured on items in two groups
 - Rank values across all values

- Mann-Whitney
$$U = \sum_{i=1}^{m} \sum_{j=1}^{n} \phi(x_i, y_j)$$
- where $\phi(x_i, y_i) = \begin{cases} 1 & \text{if } x_i < y_i \\ otherwise \end{cases}$

- Wilcoxon, W=Sum of ranks from G2
 - W=U+n (n+1)/2

Testing process

- Large sample approximation
- Converts into standard normal deviate
 - $E_0(W) = n(m+n+1)/2$
 - Sum of all ranks = $(n+m)\times(n+m+1)/2$
 - Under H₀ Proportion of ranks in Group 2= n/(n+m)
 - $Var_0(W) = mn(n+1)/12$
 - Standardized (W)=[W- E_0 (W)]/[Var₀]^{0.5}
 - For U
 - $E_0(U)=mn/2$
 - $Var_0(U)=mn(m+n+1)/12$
- R function: wilcox.test reports U (but says W)

Problems with Mann-Whitney

- Has poor power if:
 - Ties among data
 - When distribution of two groups differs, uses the wrong standard error
- Alternative methods available
 - Mann-Whitney test is related to probability (p)
 than random observation from group 1 < random observation from group 2

• H0: p=0.5
$$\hat{p} = \frac{U}{n_1 n_2}$$

Other methods based on this viewpoint

Alternative "New" Nonparametric Methods

- Cliff's method (1996)
 - $-p_1=P(X_{11}>X_{12}), p_2=P(X_{11}=X_{12}), p_3=P(X_{11}<X_{12})$
 - $P = p_3 + 0.5p_2$
 - $-\delta = p_3 p_1$ H0: $\delta = 0$ giving $\delta = 1 2P$
- Brunner-Munzel (2000)
 - When tied values average rank of tied values

$$\overline{R}_{j} = \frac{1}{n_{j}} \sum_{1}^{n_{j}} R_{ij} \qquad \qquad \widehat{p} = \frac{1}{n} (\overline{R}_{1} - \overline{R}_{2}) + 0.5$$

- R functions in WRS package
 - Load library WRS

Advantages of New methods

- P provides a sensible non-parametric effect size
- Have well-defined process for handling tied data
- Version of both Cliff & Brunner-Munzel available for three or more groups
 - Although tests suggest Cliff is slightly better at achieving specified alpha level

Permutation test

- Useful when data sets are small
- Calculate test statistic based on actual data T₀
 - Could be "t" value, the Mann-Whitney statistics or another test statistic e.g. sum of ranks of smallest group
- Resample data without replacement
 - Calculate and record new sum (T₁)
- Repeat for every possible way of arrangement of data
- Arrange T_i in ascending order
- If T_0 fall outside the middle 95% of values, reject hypothesis
- If too many permutations, take sample

R Permutation Test facility

- Load packages
 - -coin & ImPerm
- library(coin)
 - For t-test
 - oneway_test(y~A)
 - For Wilcoxon test
 - wilcox_test(y~A)
 - A must be defined as a factor with two levels

Other robust approaches

Use differences between medians and standard error of medians, then

$$M1 - M2 \mp c\sqrt{S_1^2 + S_2^2}$$

- where $c=(1-\alpha/2)$ quantile of unit normal distribution
- But which estimate of SE of median?
- Version of t-test based on 20% trimmed means
 - Allowing for unstable variances
 - Yuen-Welch method available in R package WRS
 - Library(WRS)
 - yuen(y,x,tr=0.2,alpha=0.05)

Comparing Two Groups

- From COCOMO dataset
- Productivity (KLoc/MM) of organic projects that used different amounts of tool support
- GR1 (Low): {0.09, 0.13, 0.77,0.08, 0.20, 0.22, 0.12}
- GR2 (Average): {0.19,0.48,0.72,0.31,0.34,0.34,0.45,0.64, 0.35,0.56 }

Box plot

Are groups different?

- Basic statistics
 - Mean G1=0.23 (n_1 =7)
 - Mean G2=0.4236 (n_2 =11)
 - StDev1=0.2439
 - StDev2=0.1622
 - Median G1=0.13
 - Median G2=0.35

Difference Test Results

- t-test, t=2.0348, df=16, p=0.05879
- Welch test, t=1.8558, df=9.406, p= 0.09503,
- Wilcoxon rank test p=0.0204
- Yuen-Welch test for trimmed means
 - 20% Trimmed means G1=0.152, G2=0.4014
 - p=0.0029, df=9.3
- Cliff, \hat{p} =0.8312, Cl (0.46131, 0.9659), p=0.081
- Brunner-Munzel, \hat{p} =0.8312, CI (0.4894, 1.1729), p=0.056, df=6.42
- Permutation t-test, z=1.8694, p=0.062
- Permutation Wilcoxon test ,z=2.3095, p=0.019

Robust methods plot difference

Reasons for Disagreement

- Outlier in Group 1
 - Group 1 Mean and Variance appear inflated
- Box plots suggest groups do not have the same variance
 - Variance inflation has masked difference
 - Ordinary t-test close to significant because degree of freedom greater than for Welch test
- Trimmed means remove outlier, reduce group1 variance and find significant difference
- Standard robust measures fairly resilient to outlier
- New methods do not find a significant effect
- Permutation methods mimic their base test

Issues with Robust methods

- The main problem with using more appropriate methods
- Major reduction with degrees of freedom
- One approach is to use bootstrap to calculate
 - Standard error
 - Confidence limits

Example

- Yuen-Welch (catering for heteroscedasity)
 - No trimming
 - Without bootstrap CI (-0.4281, 0.04085)
 - Bootstrap CI (-0.4820, 0.09478)
 - 20% Trimming
 - Without bootstrap CI(-0.3901, -0.1088)
 - With bootstrap CI (-0.3807, -0.1187)
- No major difference but
 - Bootstrap values probably more reliable

Conclusions

- Always inspect your data
- Different results from different methods need to be investigated
- Permutation method mimics the standard test statistic it uses
 - Still may be useful if no standard statistic exists!
- We need to be able to identify outliers
 - Also need to know what we do about them

Multiple Group Methods

Non-parametric and Robust

COCOMO Productivity for each Mode

Summary Statistics

Mode	Projects	Mean	St Dev	20%Trimmed
		Productivity	Productivity	mean
Embedded	28	0.1296	0.1232	0.1052
(E)				
Semi-	12	0.2910	0.1670	0.2850
Detached				
(SD)				
Organic (O)	23	0.4368	0.2998	0.3900

Robust methods

- Yuen-Welch method for trimmed means
 - Allowing for heteroscedasticty
 - Has been adapted for three or more groups
- Also possible to estimate linear combinations of means
 - E.g can check whether effect of three treatments is linear
 - If effect of T1>T2>T3, linear increase can be tested with linear combination
 - Mean(T3)-Mean(T2)=Mean(T2)-Mean(T1)
 - Mean(T3)-2Mean(T2)+Mean(T1)=0

Yeun-Welch Results

- Use R Function lincon(w,con=0, tr=0.2, alpha=0.05)
 - con describes the linear combination
 - If 0 all pair-wise contrasts performed

Group 1	Group 2	Test	Critical	se	df
		statistic	value		
Е	SD	4.8904	2.8967	0.03677	8.8933
Е	0	4.1887	2.6690	0.0680	14.8940
SD	О	1.3961	2.5945	0.7523	19.6753

Linear Combinations

- COCOMO cost drivers are supposed to have an increasing impact on effort/productivity
 - TOOLcat recoded to
 - low=very low or low (20 projects)
 - Normal (28 projects)
 - High= High, Very High, Extra High (14 projects)
 - Linear Contrast: low-2 × normal-high=0
 - Using lincon(x,con=vec,tr=.20) where vec=c(1,-2,1)
 - x is list variable containing Productivity values for each TOOLcat group
 - Lc=0.0352 with s.e.=0.1295
 - Test value=0.2523, with df=19.93, p=0.803
 - Results consistent with linear relationship between levels

Standard Non-Parametric Method

- Kruskall-Wallis
 - Standard Analysis of Variance
 - Using Ranks not raw data
 - kruskal.test(Productivity~Modecat,cocomo)
- Finds significant difference between productivity for different Modes
 - Test statistic=24.1368
 - p-value=5.738e-06

Robust Non-Parametric Methods

- Brunner, Dette & Munk (BDM) method
 - Based on ranks
 - Allows tied values
 - R Function bdm(w)
 - Finds significant difference between productivity for different modes p=.000295
 - Relative effect sizes reported when more than two groups
 - Mode E RES=0.3033
 - Mode SD RES=0.5860
 - Mode O RES=0.6946

Relative Effect Size

- BDM method reports relative effect size if more than two groups
- The relative effect size is

$$RES = \boldsymbol{\widehat{p}_i} = \frac{\overline{R}_{i\cdot} - 0.5}{N}$$

- Where \overline{R}_{i} is mean rank of group i
- N is total number of observations
- If H0 true all groups have a similar RES

Robust Non-Parametric Methods - Continued

- Cliff method with Hochberg's method for controlling multiple tests
- R function cidmulv2(w)

Group 1	Group 2	phat	p-value	Critical
		Prob(G1 <g2)< td=""><td></td><td>value</td></g2)<>		value
E	SD	0.8036	0.017	0.025
E	О	0.8804	0.001	0.0167
SD	О	0.6341	0.200	0.05

Recommendation

- With obviously non-Normal data
 - Cliff's test is an appropriate choice
 - Provides a robust, non-parametric effect size
 - Test that is reliable when there are tied values
- If both data sets are symmetric
 - But heavy tails (i.e. many outliers)
 - Interested in whether central location is different
 - Consider trimmed means
 - Yuen-Welch method