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Probability Distributions

* Frequency function

— Also called probability density function for
continuous variables

— Integral referred to as “cumulative
distribution function”

* Three properties:
f(x) =0

F(x) = f_oof(x)dx =1

b
ff(X)dx=P{a.<x<b}
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* Probability distribution x~N(u,0?)
1 1 x — U2

f) = —=e 2 (—)

* Any normal distribution can be _x—p
standard/zed z"’N(O 1) Iethng d

f(z) = \/ﬁ 7
e Always symmetric about mean (u)

— P{-o<x< 0)~0.68
— P{-20<x<20)~0.95

Normal (Gaussian) Distribution
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Density
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Normal Deviate



Moments

Un}i<\$eel}§ity
* Moments —a measure of the shape of a set of
points
— Momen’gos about origin %
Iy, = f x*f(x)dx 1= f xf (x)dx

— Moments about mean
we= [ G-mypf@ar 7= @-wed

— 1 & o? define the Normal distribution
— Third (& odd>3) moments about mean (skewness) =0
— Fourth moment about mean (kurstosis)=3
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niversity - Expected value of a function h(x) of random

variable x is defined as:
E[h(x)] =f_ h(x)f (x)dx

— Provide a precise definition of important quantities
— Provide link between samples and populations

* If h(x)=x, E[x]=p,

 Arithmetic transformations of functions of
random variables easy to handle

— E[b+cx]= b+cp,

— Elx X+ ]= 2,
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Expectations of Variance

* Expected value of var x =
Elvar(x)] = [ (x — p1,)*f (x)dx

e For the sum or difference of two variables
E[var(x +y)] = 07 + o) + 20,
E[var(x —y)] = 07 + o) — 20,
— If xand y are independent 20,, =0
e Arithmetic transformations are allowed

E[var(bx + ¢)] = b*0f
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Properties of Normal Variables
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* If{X,,...,X } are a set of independent, identically
distributed Normal variables of size n
e Each with mean=p and variance o?
* E[mean=2X/n]=u
* E[var (2X,/n)]= (202%)/n%?=0?%/n
* IX./nis “N(p,02/n)

* Variance of {X,,...,X,} is chi-squared
distribution with n degrees of freedom
* X(X-W)?/n~o’x /n
* Expected value of 2 =n, var(x?,)=2n
* Var(Z(X- u)?/n )= 2no*/n?=20%/n
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* Generic method of estimating parameters of
a distribution

* Likelihood function (L)
— Joint distribution of elements in a sample given
the values of a parameter 0
L = Prob(x,x,, ... x,\0)

— Parameter estimated by
» Differentiating L ( usually Log(L)) with respect to 6,
e Equating equation derivatives to zero
* Solving equations
* Accept solution for which second derivative is negative
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-5 (x,—u)fo°] _ 2 i
L= ( ) g 2rei=t TR Log(L) = —=log(2mc*) — =
O'\,"% 2 Zizl( o )
- ‘ n .
ou ~* d’ docz 202 20 42(" —H)
n
, 1 _ 1
n = n 4 ‘T )

* Lis like Bayesian model with no Prior

* ME estimate of sigma is biased

 When f(x) Normal, Log(L) is chi-squared with n degrees of
freedom

* Log(L) is used in many statistical tests
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Importance of Normal Distribution
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* Law of large numbers

— The average of the results obtained from a number of
“trials”

* Should be close to expected value
* Becomes closers as more trials are performed

e Central limit theorem

— If{X,,...,X,,} are a set of independent, identically distributed
variables of size n

— S, =2X./n is approximately ~“N(u,c%/n)
— Irrespective of distribution of X’s
* Assuming finite X, have variances

e Normal distribution assumed to occur as the sum of
many small independent effects
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e Classical methods

— With large enough sample size, can assume
the mean of a sample is Normally distributed

* Can use properties of Normal distribution

— E.g. Standard unit distribution can be used to construct
confidence intervals

— An immense body of statistical methods
available if parameters/data are normal

— Many guidelines for transforming the data to
increase Normality
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 Binomial Distribution

* Probability of x successes in n trials

n!
FO) == TR
— p is probability of success for a specific trial
— Expected value of pis D = x/n 5(1 = 7)
— Expected variance of p is s.g i ' P
* Approximately Normal "
— If n large (>30)
— p not too far from 0.5

— Confidence intervals for x or p based on Normal
distribution

— With “corrections” for discrete distribution

n—x

= pa/n
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Confidence Limits of Mean
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* Assume random sample
* Mean is approximately Normal *=2i%/n
2

S

2= ) (=% /(n-1)  var(®= —

. n
— For 95% confidence intervals

f(x)dx =P{—a<x<a}=95%
— For unit normal deviate
f f(x)dx — P{—a_ < x < a} = 9504, —a = .025 qua:rtile = —1.96

— For random sample, confidence limit of mean
CL=X7F1.96 X s/n

15
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Confidence Limits of Differences

* Independent random samples from two
groups, want to investigate x, - x,

sZ 52
- 1,52
var(x; —x,) = —+
L7 n, n
1 N2

* Assuming variance same in each group

(n; —1)sf + (ny, — 1)s;
(ny +n,—2)

s% =

— 1 1
var(x; —x,) = s* (n—l + n—z)
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Student’s t Distribution

* Provide means of correcting for small

samples
— When estimates are less reliable (e.g. <30 per
group) G- wn

t =

S

— Degrees of freedom = n-1

— Confidence limits found as usual (assuming a

level)

— S
CL=%F tax—=

NIQ
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Approximations &Transformations

e Pearson correlation coefficient

e Association between two variables (x,y)

(measured on same item)
_ covariance(x,y) = 2i=1(; =)V =)
P o, JEG =02 L0 - 9)?

1 —r?

* Forlargen>100 seofr=—"7

 For small n, use Normal transformation

7 =1In (i ‘I_' :) var(z) =1/(n—3)
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Problem

How large a sample is needed for good Normal
approximation?
— 30+? Point where “t” distribution and Normal distribution
converge
Systematic studies of Non-normality
— “Heavy” tails (i.e. many outliers) but symmetric
— Skewed but “light-tailed”
— Heavy-tailed and skewed
Show classical methods more vulnerable than expected
— For skewed distributions the mean may be far from “typical”
— Heavy-tails increase the variance
* Making it possible to miss true effects
* Also tests for non-Normality have low power
— They are vulnerable to Type 2 Errors
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* We have reviewed some important classic
techniques
* But
— Will continue to concentrate on conventional
approaches

— But will introduce some new approaches
e Particularly ones that let you visualise your data
— Review some recent approaches to robust
analysis

 However from now approaches will be
illustrated with SE data



